1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * long double x, y, tgammal();
30 * Returns gamma function of the argument. The result is
33 * Arguments |x| <= 13 are reduced by recurrence and the function
34 * approximated by a rational function of degree 7/8 in the
35 * interval (2,3). Large arguments are handled by Stirling's
36 * formula. Large negative arguments are made positive using
37 * a reflection formula.
43 * arithmetic domain # trials peak rms
44 * IEEE -40,+40 10000 3.6e-19 7.9e-20
45 * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
47 * Accuracy for large arguments is dominated by error in powl().
53 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
54 long double tgammal(long double x)
58 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
60 tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
65 Relative error spread = 8.4e-23
67 static const long double P[8] = {
68 4.212760487471622013093E-5L,
69 4.542931960608009155600E-4L,
70 4.092666828394035500949E-3L,
71 2.385363243461108252554E-2L,
72 1.113062816019361559013E-1L,
73 3.629515436640239168939E-1L,
74 8.378004301573126728826E-1L,
75 1.000000000000000000009E0L,
77 static const long double Q[9] = {
78 -1.397148517476170440917E-5L,
79 2.346584059160635244282E-4L,
80 -1.237799246653152231188E-3L,
81 -7.955933682494738320586E-4L,
82 2.773706565840072979165E-2L,
83 -4.633887671244534213831E-2L,
84 -2.243510905670329164562E-1L,
85 4.150160950588455434583E-1L,
86 9.999999999999999999908E-1L,
90 static const long double P[] = {
91 -3.01525602666895735709e0L,
92 -3.25157411956062339893e1L,
93 -2.92929976820724030353e2L,
94 -1.70730828800510297666e3L,
95 -7.96667499622741999770e3L,
96 -2.59780216007146401957e4L,
97 -5.99650230220855581642e4L,
98 -7.15743521530849602425e4L
100 static const long double Q[] = {
101 1.00000000000000000000e0L,
102 -1.67955233807178858919e1L,
103 8.85946791747759881659e1L,
104 5.69440799097468430177e1L,
105 -1.98526250512761318471e3L,
106 3.31667508019495079814e3L,
107 1.60577839621734713377e4L,
108 -2.97045081369399940529e4L,
109 -7.15743521530849602412e4L
112 #define MAXGAML 1755.455L
113 /*static const long double LOGPI = 1.14472988584940017414L;*/
115 /* Stirling's formula for the gamma function
116 tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
121 Peak error = 9.44e-21
122 Relative error spread = 8.8e-4
124 static const long double STIR[9] = {
125 7.147391378143610789273E-4L,
126 -2.363848809501759061727E-5L,
127 -5.950237554056330156018E-4L,
128 6.989332260623193171870E-5L,
129 7.840334842744753003862E-4L,
130 -2.294719747873185405699E-4L,
131 -2.681327161876304418288E-3L,
132 3.472222222230075327854E-3L,
133 8.333333333333331800504E-2L,
136 #define MAXSTIR 1024.0L
137 static const long double SQTPI = 2.50662827463100050242E0L;
139 /* 1/tgamma(x) = z P(z)
142 * Peak relative error 4.2e-23
144 static const long double S[9] = {
145 -1.193945051381510095614E-3L,
146 7.220599478036909672331E-3L,
147 -9.622023360406271645744E-3L,
148 -4.219773360705915470089E-2L,
149 1.665386113720805206758E-1L,
150 -4.200263503403344054473E-2L,
151 -6.558780715202540684668E-1L,
152 5.772156649015328608253E-1L,
153 1.000000000000000000000E0L,
156 /* 1/tgamma(-x) = z P(z)
159 * Peak relative error 5.16e-23
160 * Relative error spread = 2.5e-24
162 static const long double SN[9] = {
163 1.133374167243894382010E-3L,
164 7.220837261893170325704E-3L,
165 9.621911155035976733706E-3L,
166 -4.219773343731191721664E-2L,
167 -1.665386113944413519335E-1L,
168 -4.200263503402112910504E-2L,
169 6.558780715202536547116E-1L,
170 5.772156649015328608727E-1L,
171 -1.000000000000000000000E0L,
174 static const long double PIL = 3.1415926535897932384626L;
176 /* Gamma function computed by Stirling's formula.
178 static long double stirf(long double x)
183 /* For large x, use rational coefficients from the analytical expansion. */
185 w = (((((6.97281375836585777429E-5L * w
186 + 7.84039221720066627474E-4L) * w
187 - 2.29472093621399176955E-4L) * w
188 - 2.68132716049382716049E-3L) * w
189 + 3.47222222222222222222E-3L) * w
190 + 8.33333333333333333333E-2L) * w
193 w = 1.0 + w * __polevll(w, STIR, 8);
195 if (x > MAXSTIR) { /* Avoid overflow in pow() */
196 v = powl(x, 0.5L * x - 0.25L);
199 y = powl(x, x - 0.5L) / y;
205 long double tgammal(long double x)
226 z = q * sinl(PIL * z);
227 z = fabsl(z) * stirf(q);
230 if (0.5 * p == floorl(q * 0.5))
232 } else if (x > MAXGAML) {
245 while (x < -0.03125L) {
259 p = __polevll(x, P, 7);
260 q = __polevll(x, Q, 8);
265 /* z==1 if x was originally +-0 */
266 if (x == 0 && z != 1)
270 q = z / (x * __polevll(x, SN, 8));
272 q = z / (x * __polevll(x, S, 8));