1 /* origin: FreeBSD /usr/src/lib/msun/src/s_remquol.c */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
15 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
16 long double remquol(long double x, long double y, int *quo)
18 return remquo(x, y, quo);
20 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
22 #define BIAS (LDBL_MAX_EXP - 1)
24 #if LDBL_MANL_SIZE > 32
25 typedef uint64_t manl_t;
27 typedef uint32_t manl_t;
30 #if LDBL_MANH_SIZE > 32
31 typedef uint64_t manh_t;
33 typedef uint32_t manh_t;
37 * These macros add and remove an explicit integer bit in front of the
38 * fractional mantissa, if the architecture doesn't have such a bit by
41 #ifdef LDBL_IMPLICIT_NBIT
42 #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
43 #define HFRAC_BITS LDBL_MANH_SIZE
45 #define SET_NBIT(hx) (hx)
46 #define HFRAC_BITS (LDBL_MANH_SIZE - 1)
49 #define MANL_SHIFT (LDBL_MANL_SIZE - 1)
51 static const long double Zero[] = {0.0, -0.0};
54 * Return the IEEE remainder and set *quo to the last n bits of the
55 * quotient, rounded to the nearest integer. We choose n=31 because
56 * we wind up computing all the integer bits of the quotient anyway as
57 * a side-effect of computing the remainder by the shift and subtract
58 * method. In practice, this is far more bits than are needed to use
59 * remquo in reduction algorithms.
62 * - The low part of the mantissa fits in a manl_t exactly.
63 * - The high part of the mantissa fits in an int64_t with enough room
64 * for an explicit integer bit in front of the fractional bits.
66 long double remquol(long double x, long double y, int *quo)
68 union IEEEl2bits ux, uy;
69 int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
77 sxy = sx ^ uy.bits.sign;
78 ux.bits.sign = 0; /* |x| */
79 uy.bits.sign = 0; /* |y| */
82 /* purge off exception values */
83 if ((uy.bits.exp|uy.bits.manh|uy.bits.manl)==0 || /* y=0 */
84 (ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
85 (uy.bits.exp == BIAS + LDBL_MAX_EXP &&
86 ((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */
88 if (ux.bits.exp <= uy.bits.exp) {
89 if ((ux.bits.exp < uy.bits.exp) ||
90 (ux.bits.manh <= uy.bits.manh &&
91 (ux.bits.manh < uy.bits.manh ||
92 ux.bits.manl < uy.bits.manl))) {
94 goto fixup; /* |x|<|y| return x or x-y */
96 if (ux.bits.manh == uy.bits.manh && ux.bits.manl == uy.bits.manl) {
98 return Zero[sx]; /* |x|=|y| return x*0*/
102 /* determine ix = ilogb(x) */
103 if (ux.bits.exp == 0) { /* subnormal x */
105 ix = ux.bits.exp - (BIAS + 512);
107 ix = ux.bits.exp - BIAS;
110 /* determine iy = ilogb(y) */
111 if (uy.bits.exp == 0) { /* subnormal y */
113 iy = uy.bits.exp - (BIAS + 512);
115 iy = uy.bits.exp - BIAS;
118 /* set up {hx,lx}, {hy,ly} and align y to x */
119 hx = SET_NBIT(ux.bits.manh);
120 hy = SET_NBIT(uy.bits.manh);
134 hx = hx + hx + (lx>>MANL_SHIFT);
137 hx = hz + hz + (lz>>MANL_SHIFT);
153 /* convert back to floating value and restore the sign */
154 if ((hx|lx) == 0) { /* return sign(x)*0 */
159 while (hx < (1ULL<<HFRAC_BITS)) { /* normalize x */
160 hx = hx + hx + (lx>>MANL_SHIFT);
164 ux.bits.manh = hx; /* The integer bit is truncated here if needed. */
166 if (iy < LDBL_MIN_EXP) {
167 ux.bits.exp = iy + (BIAS + 512);
170 ux.bits.exp = iy + BIAS;
176 if (y < LDBL_MIN * 2) {
177 if (x + x > y || (x + x == y && (q & 1))) {
181 } else if (x > 0.5*y || (x == 0.5*y && (q & 1))) {