1 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
12 /* double log1p(double x)
15 * 1. Argument Reduction: find k and f such that
17 * where sqrt(2)/2 < 1+f < sqrt(2) .
19 * Note. If k=0, then f=x is exact. However, if k!=0, then f
20 * may not be representable exactly. In that case, a correction
21 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
22 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
23 * and add back the correction term c/u.
24 * (Note: when x > 2**53, one can simply return log(x))
26 * 2. Approximation of log1p(f).
27 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30 * We use a special Reme algorithm on [0,0.1716] to generate
31 * a polynomial of degree 14 to approximate R The maximum error
32 * of this polynomial approximation is bounded by 2**-58.45. In
35 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
36 * (the values of Lp1 to Lp7 are listed in the program)
39 * | Lp1*s +...+Lp7*s - R(z) | <= 2
41 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42 * In order to guarantee error in log below 1ulp, we compute log
44 * log1p(f) = f - (hfsq - s*(hfsq+R)).
46 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
47 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48 * Here ln2 is split into two floating point number:
50 * where n*ln2_hi is always exact for |n| < 2000.
53 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
54 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
55 * log1p(NaN) is that NaN with no signal.
58 * according to an error analysis, the error is always less than
59 * 1 ulp (unit in the last place).
62 * The hexadecimal values are the intended ones for the following
63 * constants. The decimal values may be used, provided that the
64 * compiler will convert from decimal to binary accurately enough
65 * to produce the hexadecimal values shown.
67 * Note: Assuming log() return accurate answer, the following
68 * algorithm can be used to compute log1p(x) to within a few ULP:
71 * if(u==1.0) return x ; else
72 * return log(u)*(x/(u-1.0));
74 * See HP-15C Advanced Functions Handbook, p.193.
80 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
81 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
82 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
83 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
84 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
85 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
86 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
87 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
88 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
89 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
91 double log1p(double x)
93 double hfsq,f,c,s,z,R,u;
100 if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
101 if (ax >= 0x3ff00000) { /* x <= -1.0 */
103 return -two54/0.0; /* log1p(-1)=+inf */
104 return (x-x)/(x-x); /* log1p(x<-1)=NaN */
106 if (ax < 0x3e200000) { /* |x| < 2**-29 */
108 if (two54 + x > 0.0 && ax < 0x3c900000) /* |x| < 2**-54 */
112 if (hx > 0 || hx <= (int32_t)0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
118 if (hx >= 0x7ff00000)
121 if (hx < 0x43400000) {
122 STRICT_ASSIGN(double, u, 1.0 + x);
123 GET_HIGH_WORD(hu, u);
125 c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */
135 * The approximation to sqrt(2) used in thresholds is not
136 * critical. However, the ones used above must give less
137 * strict bounds than the one here so that the k==0 case is
138 * never reached from here, since here we have committed to
139 * using the correction term but don't use it if k==0.
141 if (hu < 0x6a09e) { /* u ~< sqrt(2) */
142 SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */
145 SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */
146 hu = (0x00100000-hu)>>2;
151 if (hu == 0) { /* |f| < 2**-20 */
158 R = hfsq*(1.0 - 0.66666666666666666*f);
161 return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
165 R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
167 return f - (hfsq-s*(hfsq+R));
168 return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);