1 /* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
3 * ====================================================
4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
12 * Returns the exponential of x.
15 * 1. Argument reduction:
16 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
17 * Given x, find r and integer k such that
19 * x = k*ln2 + r, |r| <= 0.5*ln2.
21 * Here r will be represented as r = hi-lo for better
24 * 2. Approximation of exp(r) by a special rational function on
25 * the interval [0,0.34658]:
27 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
28 * We use a special Remez algorithm on [0,0.34658] to generate
29 * a polynomial of degree 5 to approximate R. The maximum error
30 * of this polynomial approximation is bounded by 2**-59. In
32 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
33 * (where z=r*r, and the values of P1 to P5 are listed below)
36 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
38 * The computation of exp(r) thus becomes
40 * exp(r) = 1 + ----------
43 * = 1 + r + ----------- (for better accuracy)
47 * c(r) = r - (P1*r + P2*r + ... + P5*r ).
49 * 3. Scale back to obtain exp(x):
50 * From step 1, we have
51 * exp(x) = 2^k * exp(r)
54 * exp(INF) is INF, exp(NaN) is NaN;
56 * for finite argument, only exp(0)=1 is exact.
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
64 * if x > 709.782712893383973096 then exp(x) overflows
65 * if x < -745.133219101941108420 then exp(x) underflows
72 ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
73 ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
74 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
75 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
76 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
77 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
78 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
79 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
89 hx &= 0x7fffffff; /* high word of |x| */
92 if (hx >= 0x40862e42) { /* if |x| >= 709.78... */
95 if (hx == 0x7ff00000 && sign) /* -inf */
97 if (x > 709.782712893383973096) {
98 /* overflow if x!=inf */
99 STRICT_ASSIGN(double, x, 0x1p1023 * x);
102 if (x < -745.13321910194110842) {
104 STRICT_ASSIGN(double, x, 0x1p-1000 * 0x1p-1000);
109 /* argument reduction */
110 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
111 if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
112 k = (int)(invln2*x + half[sign]);
115 hi = x - k*ln2hi; /* k*ln2hi is exact here */
117 STRICT_ASSIGN(double, x, hi - lo);
118 } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
123 /* inexact if x!=0 */
124 FORCE_EVAL(0x1p1023 + x);
128 /* x is now in primary range */
130 c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
131 x = 1 + (x*c/(2-c) - lo + hi);