math: use the rounding idiom consistently
[oweals/musl.git] / src / math / cos.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* cos(x)
13  * Return cosine function of x.
14  *
15  * kernel function:
16  *      __sin           ... sine function on [-pi/4,pi/4]
17  *      __cos           ... cosine function on [-pi/4,pi/4]
18  *      __rem_pio2      ... argument reduction routine
19  *
20  * Method.
21  *      Let S,C and T denote the sin, cos and tan respectively on
22  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
23  *      in [-pi/4 , +pi/4], and let n = k mod 4.
24  *      We have
25  *
26  *          n        sin(x)      cos(x)        tan(x)
27  *     ----------------------------------------------------------
28  *          0          S           C             T
29  *          1          C          -S            -1/T
30  *          2         -S          -C             T
31  *          3         -C           S            -1/T
32  *     ----------------------------------------------------------
33  *
34  * Special cases:
35  *      Let trig be any of sin, cos, or tan.
36  *      trig(+-INF)  is NaN, with signals;
37  *      trig(NaN)    is that NaN;
38  *
39  * Accuracy:
40  *      TRIG(x) returns trig(x) nearly rounded
41  */
42
43 #include "libm.h"
44
45 double cos(double x)
46 {
47         double y[2];
48         uint32_t ix;
49         unsigned n;
50
51         GET_HIGH_WORD(ix, x);
52         ix &= 0x7fffffff;
53
54         /* |x| ~< pi/4 */
55         if (ix <= 0x3fe921fb) {
56                 if (ix < 0x3e46a09e) {  /* |x| < 2**-27 * sqrt(2) */
57                         /* raise inexact if x!=0 */
58                         FORCE_EVAL(x + 0x1p120f);
59                         return 1.0;
60                 }
61                 return __cos(x, 0);
62         }
63
64         /* cos(Inf or NaN) is NaN */
65         if (ix >= 0x7ff00000)
66                 return x-x;
67
68         /* argument reduction */
69         n = __rem_pio2(x, y);
70         switch (n&3) {
71         case 0: return  __cos(y[0], y[1]);
72         case 1: return -__sin(y[0], y[1], 1);
73         case 2: return -__cos(y[0], y[1]);
74         default:
75                 return  __sin(y[0], y[1], 1);
76         }
77 }