math: use the rounding idiom consistently
[oweals/musl.git] / src / math / atanf.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16
17 #include "libm.h"
18
19 static const float atanhi[] = {
20   4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
21   7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
22   9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
23   1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
24 };
25
26 static const float atanlo[] = {
27   5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
28   3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
29   3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
30   7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
31 };
32
33 static const float aT[] = {
34   3.3333328366e-01,
35  -1.9999158382e-01,
36   1.4253635705e-01,
37  -1.0648017377e-01,
38   6.1687607318e-02,
39 };
40
41 float atanf(float x)
42 {
43         float_t w,s1,s2,z;
44         uint32_t ix,sign;
45         int id;
46
47         GET_FLOAT_WORD(ix, x);
48         sign = ix>>31;
49         ix &= 0x7fffffff;
50         if (ix >= 0x4c800000) {  /* if |x| >= 2**26 */
51                 if (isnan(x))
52                         return x;
53                 z = atanhi[3] + 0x1p-120f;
54                 return sign ? -z : z;
55         }
56         if (ix < 0x3ee00000) {   /* |x| < 0.4375 */
57                 if (ix < 0x39800000) {  /* |x| < 2**-12 */
58                         if (ix < 0x00800000)
59                                 /* raise underflow for subnormal x */
60                                 FORCE_EVAL(x*x);
61                         return x;
62                 }
63                 id = -1;
64         } else {
65                 x = fabsf(x);
66                 if (ix < 0x3f980000) {  /* |x| < 1.1875 */
67                         if (ix < 0x3f300000) {  /*  7/16 <= |x| < 11/16 */
68                                 id = 0;
69                                 x = (2.0f*x - 1.0f)/(2.0f + x);
70                         } else {                /* 11/16 <= |x| < 19/16 */
71                                 id = 1;
72                                 x = (x - 1.0f)/(x + 1.0f);
73                         }
74                 } else {
75                         if (ix < 0x401c0000) {  /* |x| < 2.4375 */
76                                 id = 2;
77                                 x = (x - 1.5f)/(1.0f + 1.5f*x);
78                         } else {                /* 2.4375 <= |x| < 2**26 */
79                                 id = 3;
80                                 x = -1.0f/x;
81                         }
82                 }
83         }
84         /* end of argument reduction */
85         z = x*x;
86         w = z*z;
87         /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
88         s1 = z*(aT[0]+w*(aT[2]+w*aT[4]));
89         s2 = w*(aT[1]+w*aT[3]);
90         if (id < 0)
91                 return x - x*(s1+s2);
92         z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
93         return sign ? -z : z;
94 }