math: clean up atan2.c
[oweals/musl.git] / src / math / atan.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* atan(x)
13  * Method
14  *   1. Reduce x to positive by atan(x) = -atan(-x).
15  *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
16  *      is further reduced to one of the following intervals and the
17  *      arctangent of t is evaluated by the corresponding formula:
18  *
19  *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
20  *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
21  *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
22  *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
23  *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
24  *
25  * Constants:
26  * The hexadecimal values are the intended ones for the following
27  * constants. The decimal values may be used, provided that the
28  * compiler will convert from decimal to binary accurately enough
29  * to produce the hexadecimal values shown.
30  */
31
32
33 #include "libm.h"
34
35 static const double atanhi[] = {
36   4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
37   7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
38   9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
39   1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
40 };
41
42 static const double atanlo[] = {
43   2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
44   3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
45   1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
46   6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
47 };
48
49 static const double aT[] = {
50   3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
51  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
52   1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
53  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
54   9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
55  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
56   6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
57  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
58   4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
59  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
60   1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
61 };
62
63 double atan(double x)
64 {
65         double_t w,s1,s2,z;
66         uint32_t ix,sign;
67         int id;
68
69         GET_HIGH_WORD(ix, x);
70         sign = ix >> 31;
71         ix &= 0x7fffffff;
72         if (ix >= 0x44100000) {   /* if |x| >= 2^66 */
73                 if (isnan(x))
74                         return x;
75                 z = atanhi[3] + 0x1p-120f;
76                 return sign ? -z : z;
77         }
78         if (ix < 0x3fdc0000) {    /* |x| < 0.4375 */
79                 if (ix < 0x3e400000) {  /* |x| < 2^-27 */
80                         if (ix < 0x00100000)
81                                 /* raise underflow for subnormal x */
82                                 FORCE_EVAL((float)x);
83                         return x;
84                 }
85                 id = -1;
86         } else {
87                 x = fabs(x);
88                 if (ix < 0x3ff30000) {  /* |x| < 1.1875 */
89                         if (ix < 0x3fe60000) {  /*  7/16 <= |x| < 11/16 */
90                                 id = 0;
91                                 x = (2.0*x-1.0)/(2.0+x);
92                         } else {                /* 11/16 <= |x| < 19/16 */
93                                 id = 1;
94                                 x = (x-1.0)/(x+1.0);
95                         }
96                 } else {
97                         if (ix < 0x40038000) {  /* |x| < 2.4375 */
98                                 id = 2;
99                                 x = (x-1.5)/(1.0+1.5*x);
100                         } else {                /* 2.4375 <= |x| < 2^66 */
101                                 id = 3;
102                                 x = -1.0/x;
103                         }
104                 }
105         }
106         /* end of argument reduction */
107         z = x*x;
108         w = z*z;
109         /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
110         s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
111         s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
112         if (id < 0)
113                 return x - x*(s1+s2);
114         z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
115         return sign ? -z : z;
116 }