math: fix pow signed shift ub
[oweals/musl.git] / src / math / __tandf.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  * Optimized by Bruce D. Evans.
5  */
6 /*
7  * ====================================================
8  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
9  *
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #include "libm.h"
17
18 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
19 static const double T[] = {
20   0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
21   0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
22   0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
23   0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
24   0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
25   0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
26 };
27
28 float __tandf(double x, int odd)
29 {
30         double_t z,r,w,s,t,u;
31
32         z = x*x;
33         /*
34          * Split up the polynomial into small independent terms to give
35          * opportunities for parallel evaluation.  The chosen splitting is
36          * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
37          * relative to Horner's method on sequential machines.
38          *
39          * We add the small terms from lowest degree up for efficiency on
40          * non-sequential machines (the lowest degree terms tend to be ready
41          * earlier).  Apart from this, we don't care about order of
42          * operations, and don't need to to care since we have precision to
43          * spare.  However, the chosen splitting is good for accuracy too,
44          * and would give results as accurate as Horner's method if the
45          * small terms were added from highest degree down.
46          */
47         r = T[4] + z*T[5];
48         t = T[2] + z*T[3];
49         w = z*z;
50         s = z*x;
51         u = T[0] + z*T[1];
52         r = (x + s*u) + (s*w)*(t + w*r);
53         return odd ? -1.0/r : r;
54 }