2 * CDE - Common Desktop Environment
4 * Copyright (c) 1993-2012, The Open Group. All rights reserved.
6 * These libraries and programs are free software; you can
7 * redistribute them and/or modify them under the terms of the GNU
8 * Lesser General Public License as published by the Free Software
9 * Foundation; either version 2 of the License, or (at your option)
12 * These libraries and programs are distributed in the hope that
13 * they will be useful, but WITHOUT ANY WARRANTY; without even the
14 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15 * PURPOSE. See the GNU Lesser General Public License for more
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with these librararies and programs; if not, write
20 * to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
21 * Floor, Boston, MA 02110-1301 USA
23 /* $XConsortium: jquant1.c /main/2 1996/05/09 03:53:55 drk $ */
27 * Copyright (C) 1991-1996, Thomas G. Lane.
28 * This file is part of the Independent JPEG Group's software.
29 * For conditions of distribution and use, see the accompanying README file.
31 * This file contains 1-pass color quantization (color mapping) routines.
32 * These routines provide mapping to a fixed color map using equally spaced
33 * color values. Optional Floyd-Steinberg or ordered dithering is available.
36 #define JPEG_INTERNALS
40 #ifdef QUANT_1PASS_SUPPORTED
44 * The main purpose of 1-pass quantization is to provide a fast, if not very
45 * high quality, colormapped output capability. A 2-pass quantizer usually
46 * gives better visual quality; however, for quantized grayscale output this
47 * quantizer is perfectly adequate. Dithering is highly recommended with this
48 * quantizer, though you can turn it off if you really want to.
50 * In 1-pass quantization the colormap must be chosen in advance of seeing the
51 * image. We use a map consisting of all combinations of Ncolors[i] color
52 * values for the i'th component. The Ncolors[] values are chosen so that
53 * their product, the total number of colors, is no more than that requested.
54 * (In most cases, the product will be somewhat less.)
56 * Since the colormap is orthogonal, the representative value for each color
57 * component can be determined without considering the other components;
58 * then these indexes can be combined into a colormap index by a standard
59 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
60 * can be precalculated and stored in the lookup table colorindex[].
61 * colorindex[i][j] maps pixel value j in component i to the nearest
62 * representative value (grid plane) for that component; this index is
63 * multiplied by the array stride for component i, so that the
64 * index of the colormap entry closest to a given pixel value is just
65 * sum( colorindex[component-number][pixel-component-value] )
66 * Aside from being fast, this scheme allows for variable spacing between
67 * representative values with no additional lookup cost.
69 * If gamma correction has been applied in color conversion, it might be wise
70 * to adjust the color grid spacing so that the representative colors are
71 * equidistant in linear space. At this writing, gamma correction is not
72 * implemented by jdcolor, so nothing is done here.
76 /* Declarations for ordered dithering.
78 * We use a standard 16x16 ordered dither array. The basic concept of ordered
79 * dithering is described in many references, for instance Dale Schumacher's
80 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
81 * In place of Schumacher's comparisons against a "threshold" value, we add a
82 * "dither" value to the input pixel and then round the result to the nearest
83 * output value. The dither value is equivalent to (0.5 - threshold) times
84 * the distance between output values. For ordered dithering, we assume that
85 * the output colors are equally spaced; if not, results will probably be
86 * worse, since the dither may be too much or too little at a given point.
88 * The normal calculation would be to form pixel value + dither, range-limit
89 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
90 * We can skip the separate range-limiting step by extending the colorindex
91 * table in both directions.
94 #define ODITHER_SIZE 16 /* dimension of dither matrix */
95 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
96 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
97 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
99 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
100 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
102 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
103 /* Bayer's order-4 dither array. Generated by the code given in
104 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
105 * The values in this array must range from 0 to ODITHER_CELLS-1.
107 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
108 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
109 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
110 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
111 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
112 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
113 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
114 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
115 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
116 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
117 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
118 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
119 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
120 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
121 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
122 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
126 /* Declarations for Floyd-Steinberg dithering.
128 * Errors are accumulated into the array fserrors[], at a resolution of
129 * 1/16th of a pixel count. The error at a given pixel is propagated
130 * to its not-yet-processed neighbors using the standard F-S fractions,
133 * We work left-to-right on even rows, right-to-left on odd rows.
135 * We can get away with a single array (holding one row's worth of errors)
136 * by using it to store the current row's errors at pixel columns not yet
137 * processed, but the next row's errors at columns already processed. We
138 * need only a few extra variables to hold the errors immediately around the
139 * current column. (If we are lucky, those variables are in registers, but
140 * even if not, they're probably cheaper to access than array elements are.)
142 * The fserrors[] array is indexed [component#][position].
143 * We provide (#columns + 2) entries per component; the extra entry at each
144 * end saves us from special-casing the first and last pixels.
146 * Note: on a wide image, we might not have enough room in a PC's near data
147 * segment to hold the error array; so it is allocated with alloc_large.
150 #if BITS_IN_JSAMPLE == 8
151 typedef INT16 FSERROR; /* 16 bits should be enough */
152 typedef int LOCFSERROR; /* use 'int' for calculation temps */
154 typedef INT32 FSERROR; /* may need more than 16 bits */
155 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
158 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
161 /* Private subobject */
163 #define MAX_Q_COMPS 4 /* max components I can handle */
166 struct jpeg_color_quantizer pub; /* public fields */
168 /* Initially allocated colormap is saved here */
169 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
170 int sv_actual; /* number of entries in use */
172 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
173 /* colorindex[i][j] = index of color closest to pixel value j in component i,
174 * premultiplied as described above. Since colormap indexes must fit into
175 * JSAMPLEs, the entries of this array will too.
177 boolean is_padded; /* is the colorindex padded for odither? */
179 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
181 /* Variables for ordered dithering */
182 int row_index; /* cur row's vertical index in dither matrix */
183 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
185 /* Variables for Floyd-Steinberg dithering */
186 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
187 boolean on_odd_row; /* flag to remember which row we are on */
190 typedef my_cquantizer * my_cquantize_ptr;
194 * Policy-making subroutines for create_colormap and create_colorindex.
195 * These routines determine the colormap to be used. The rest of the module
196 * only assumes that the colormap is orthogonal.
198 * * select_ncolors decides how to divvy up the available colors
199 * among the components.
200 * * output_value defines the set of representative values for a component.
201 * * largest_input_value defines the mapping from input values to
202 * representative values for a component.
203 * Note that the latter two routines may impose different policies for
204 * different components, though this is not currently done.
209 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
210 /* Determine allocation of desired colors to components, */
211 /* and fill in Ncolors[] array to indicate choice. */
212 /* Return value is total number of colors (product of Ncolors[] values). */
214 int nc = cinfo->out_color_components; /* number of color components */
215 int max_colors = cinfo->desired_number_of_colors;
216 int total_colors, iroot, i, j;
219 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
221 /* We can allocate at least the nc'th root of max_colors per component. */
222 /* Compute floor(nc'th root of max_colors). */
226 temp = iroot; /* set temp = iroot ** nc */
227 for (i = 1; i < nc; i++)
229 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
230 iroot--; /* now iroot = floor(root) */
232 /* Must have at least 2 color values per component */
234 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
236 /* Initialize to iroot color values for each component */
238 for (i = 0; i < nc; i++) {
240 total_colors *= iroot;
242 /* We may be able to increment the count for one or more components without
243 * exceeding max_colors, though we know not all can be incremented.
244 * Sometimes, the first component can be incremented more than once!
245 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
246 * In RGB colorspace, try to increment G first, then R, then B.
250 for (i = 0; i < nc; i++) {
251 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
252 /* calculate new total_colors if Ncolors[j] is incremented */
253 temp = total_colors / Ncolors[j];
254 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
255 if (temp > (long) max_colors)
256 break; /* won't fit, done with this pass */
257 Ncolors[j]++; /* OK, apply the increment */
258 total_colors = (int) temp;
268 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
269 /* Return j'th output value, where j will range from 0 to maxj */
270 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
272 /* We always provide values 0 and MAXJSAMPLE for each component;
273 * any additional values are equally spaced between these limits.
274 * (Forcing the upper and lower values to the limits ensures that
275 * dithering can't produce a color outside the selected gamut.)
277 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
282 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
283 /* Return largest input value that should map to j'th output value */
284 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
286 /* Breakpoints are halfway between values returned by output_value */
287 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
292 * Create the colormap.
296 create_colormap (j_decompress_ptr cinfo)
298 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
299 JSAMPARRAY colormap; /* Created colormap */
300 int total_colors; /* Number of distinct output colors */
301 int i,j,k, nci, blksize, blkdist, ptr, val;
303 /* Select number of colors for each component */
304 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
306 /* Report selected color counts */
307 if (cinfo->out_color_components == 3)
308 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
309 total_colors, cquantize->Ncolors[0],
310 cquantize->Ncolors[1], cquantize->Ncolors[2]);
312 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
314 /* Allocate and fill in the colormap. */
315 /* The colors are ordered in the map in standard row-major order, */
316 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
318 colormap = (*cinfo->mem->alloc_sarray)
319 ((j_common_ptr) cinfo, JPOOL_IMAGE,
320 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
322 /* blksize is number of adjacent repeated entries for a component */
323 /* blkdist is distance between groups of identical entries for a component */
324 blkdist = total_colors;
326 for (i = 0; i < cinfo->out_color_components; i++) {
327 /* fill in colormap entries for i'th color component */
328 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
329 blksize = blkdist / nci;
330 for (j = 0; j < nci; j++) {
331 /* Compute j'th output value (out of nci) for component */
332 val = output_value(cinfo, i, j, nci-1);
333 /* Fill in all colormap entries that have this value of this component */
334 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
335 /* fill in blksize entries beginning at ptr */
336 for (k = 0; k < blksize; k++)
337 colormap[i][ptr+k] = (JSAMPLE) val;
340 blkdist = blksize; /* blksize of this color is blkdist of next */
343 /* Save the colormap in private storage,
344 * where it will survive color quantization mode changes.
346 cquantize->sv_colormap = colormap;
347 cquantize->sv_actual = total_colors;
352 * Create the color index table.
356 create_colorindex (j_decompress_ptr cinfo)
358 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
360 int i,j,k, nci, blksize, val, pad;
362 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
363 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
364 * This is not necessary in the other dithering modes. However, we
365 * flag whether it was done in case user changes dithering mode.
367 if (cinfo->dither_mode == JDITHER_ORDERED) {
369 cquantize->is_padded = TRUE;
372 cquantize->is_padded = FALSE;
375 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
376 ((j_common_ptr) cinfo, JPOOL_IMAGE,
377 (JDIMENSION) (MAXJSAMPLE+1 + pad),
378 (JDIMENSION) cinfo->out_color_components);
380 /* blksize is number of adjacent repeated entries for a component */
381 blksize = cquantize->sv_actual;
383 for (i = 0; i < cinfo->out_color_components; i++) {
384 /* fill in colorindex entries for i'th color component */
385 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
386 blksize = blksize / nci;
388 /* adjust colorindex pointers to provide padding at negative indexes. */
390 cquantize->colorindex[i] += MAXJSAMPLE;
392 /* in loop, val = index of current output value, */
393 /* and k = largest j that maps to current val */
394 indexptr = cquantize->colorindex[i];
396 k = largest_input_value(cinfo, i, 0, nci-1);
397 for (j = 0; j <= MAXJSAMPLE; j++) {
398 while (j > k) /* advance val if past boundary */
399 k = largest_input_value(cinfo, i, ++val, nci-1);
400 /* premultiply so that no multiplication needed in main processing */
401 indexptr[j] = (JSAMPLE) (val * blksize);
403 /* Pad at both ends if necessary */
405 for (j = 1; j <= MAXJSAMPLE; j++) {
406 indexptr[-j] = indexptr[0];
407 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
414 * Create an ordered-dither array for a component having ncolors
415 * distinct output values.
418 LOCAL(ODITHER_MATRIX_PTR)
419 make_odither_array (j_decompress_ptr cinfo, int ncolors)
421 ODITHER_MATRIX_PTR odither;
425 odither = (ODITHER_MATRIX_PTR)
426 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
427 SIZEOF(ODITHER_MATRIX));
428 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
429 * Hence the dither value for the matrix cell with fill order f
430 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
431 * On 16-bit-int machine, be careful to avoid overflow.
433 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
434 for (j = 0; j < ODITHER_SIZE; j++) {
435 for (k = 0; k < ODITHER_SIZE; k++) {
436 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
438 /* Ensure round towards zero despite C's lack of consistency
439 * about rounding negative values in integer division...
441 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
449 * Create the ordered-dither tables.
450 * Components having the same number of representative colors may
451 * share a dither table.
455 create_odither_tables (j_decompress_ptr cinfo)
457 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
458 ODITHER_MATRIX_PTR odither;
461 for (i = 0; i < cinfo->out_color_components; i++) {
462 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
463 odither = NULL; /* search for matching prior component */
464 for (j = 0; j < i; j++) {
465 if (nci == cquantize->Ncolors[j]) {
466 odither = cquantize->odither[j];
470 if (odither == NULL) /* need a new table? */
471 odither = make_odither_array(cinfo, nci);
472 cquantize->odither[i] = odither;
478 * Map some rows of pixels to the output colormapped representation.
482 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
483 JSAMPARRAY output_buf, int num_rows)
484 /* General case, no dithering */
486 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
487 JSAMPARRAY colorindex = cquantize->colorindex;
488 register int pixcode, ci;
489 register JSAMPROW ptrin, ptrout;
492 JDIMENSION width = cinfo->output_width;
493 register int nc = cinfo->out_color_components;
495 for (row = 0; row < num_rows; row++) {
496 ptrin = input_buf[row];
497 ptrout = output_buf[row];
498 for (col = width; col > 0; col--) {
500 for (ci = 0; ci < nc; ci++) {
501 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
503 *ptrout++ = (JSAMPLE) pixcode;
510 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
511 JSAMPARRAY output_buf, int num_rows)
512 /* Fast path for out_color_components==3, no dithering */
514 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
515 register int pixcode;
516 register JSAMPROW ptrin, ptrout;
517 JSAMPROW colorindex0 = cquantize->colorindex[0];
518 JSAMPROW colorindex1 = cquantize->colorindex[1];
519 JSAMPROW colorindex2 = cquantize->colorindex[2];
522 JDIMENSION width = cinfo->output_width;
524 for (row = 0; row < num_rows; row++) {
525 ptrin = input_buf[row];
526 ptrout = output_buf[row];
527 for (col = width; col > 0; col--) {
528 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
529 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
530 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
531 *ptrout++ = (JSAMPLE) pixcode;
538 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
539 JSAMPARRAY output_buf, int num_rows)
540 /* General case, with ordered dithering */
542 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
543 register JSAMPROW input_ptr;
544 register JSAMPROW output_ptr;
545 JSAMPROW colorindex_ci;
546 int * dither; /* points to active row of dither matrix */
547 int row_index, col_index; /* current indexes into dither matrix */
548 int nc = cinfo->out_color_components;
552 JDIMENSION width = cinfo->output_width;
554 for (row = 0; row < num_rows; row++) {
555 /* Initialize output values to 0 so can process components separately */
556 jzero_far((void FAR *) output_buf[row],
557 (size_t) (width * SIZEOF(JSAMPLE)));
558 row_index = cquantize->row_index;
559 for (ci = 0; ci < nc; ci++) {
560 input_ptr = input_buf[row] + ci;
561 output_ptr = output_buf[row];
562 colorindex_ci = cquantize->colorindex[ci];
563 dither = cquantize->odither[ci][row_index];
566 for (col = width; col > 0; col--) {
567 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
568 * select output value, accumulate into output code for this pixel.
569 * Range-limiting need not be done explicitly, as we have extended
570 * the colorindex table to produce the right answers for out-of-range
571 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
572 * required amount of padding.
574 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
577 col_index = (col_index + 1) & ODITHER_MASK;
580 /* Advance row index for next row */
581 row_index = (row_index + 1) & ODITHER_MASK;
582 cquantize->row_index = row_index;
588 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
589 JSAMPARRAY output_buf, int num_rows)
590 /* Fast path for out_color_components==3, with ordered dithering */
592 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
593 register int pixcode;
594 register JSAMPROW input_ptr;
595 register JSAMPROW output_ptr;
596 JSAMPROW colorindex0 = cquantize->colorindex[0];
597 JSAMPROW colorindex1 = cquantize->colorindex[1];
598 JSAMPROW colorindex2 = cquantize->colorindex[2];
599 int * dither0; /* points to active row of dither matrix */
602 int row_index, col_index; /* current indexes into dither matrix */
605 JDIMENSION width = cinfo->output_width;
607 for (row = 0; row < num_rows; row++) {
608 row_index = cquantize->row_index;
609 input_ptr = input_buf[row];
610 output_ptr = output_buf[row];
611 dither0 = cquantize->odither[0][row_index];
612 dither1 = cquantize->odither[1][row_index];
613 dither2 = cquantize->odither[2][row_index];
616 for (col = width; col > 0; col--) {
617 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
618 dither0[col_index]]);
619 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
620 dither1[col_index]]);
621 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
622 dither2[col_index]]);
623 *output_ptr++ = (JSAMPLE) pixcode;
624 col_index = (col_index + 1) & ODITHER_MASK;
626 row_index = (row_index + 1) & ODITHER_MASK;
627 cquantize->row_index = row_index;
633 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
634 JSAMPARRAY output_buf, int num_rows)
635 /* General case, with Floyd-Steinberg dithering */
637 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
638 register LOCFSERROR cur; /* current error or pixel value */
639 LOCFSERROR belowerr; /* error for pixel below cur */
640 LOCFSERROR bpreverr; /* error for below/prev col */
641 LOCFSERROR bnexterr; /* error for below/next col */
643 register FSERRPTR errorptr; /* => fserrors[] at column before current */
644 register JSAMPROW input_ptr;
645 register JSAMPROW output_ptr;
646 JSAMPROW colorindex_ci;
647 JSAMPROW colormap_ci;
649 int nc = cinfo->out_color_components;
650 int dir; /* 1 for left-to-right, -1 for right-to-left */
651 int dirnc; /* dir * nc */
655 JDIMENSION width = cinfo->output_width;
656 JSAMPLE *range_limit = cinfo->sample_range_limit;
659 for (row = 0; row < num_rows; row++) {
660 /* Initialize output values to 0 so can process components separately */
661 jzero_far((void FAR *) output_buf[row],
662 (size_t) (width * SIZEOF(JSAMPLE)));
663 for (ci = 0; ci < nc; ci++) {
664 input_ptr = input_buf[row] + ci;
665 output_ptr = output_buf[row];
666 if (cquantize->on_odd_row) {
667 /* work right to left in this row */
668 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
669 output_ptr += width-1;
672 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
674 /* work left to right in this row */
677 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
679 colorindex_ci = cquantize->colorindex[ci];
680 colormap_ci = cquantize->sv_colormap[ci];
681 /* Preset error values: no error propagated to first pixel from left */
683 /* and no error propagated to row below yet */
684 belowerr = bpreverr = 0;
686 for (col = width; col > 0; col--) {
687 /* cur holds the error propagated from the previous pixel on the
688 * current line. Add the error propagated from the previous line
689 * to form the complete error correction term for this pixel, and
690 * round the error term (which is expressed * 16) to an integer.
691 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
692 * for either sign of the error value.
693 * Note: errorptr points to *previous* column's array entry.
695 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
696 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
697 * The maximum error is +- MAXJSAMPLE; this sets the required size
698 * of the range_limit array.
700 cur += GETJSAMPLE(*input_ptr);
701 cur = GETJSAMPLE(range_limit[cur]);
702 /* Select output value, accumulate into output code for this pixel */
703 pixcode = GETJSAMPLE(colorindex_ci[cur]);
704 *output_ptr += (JSAMPLE) pixcode;
705 /* Compute actual representation error at this pixel */
706 /* Note: we can do this even though we don't have the final */
707 /* pixel code, because the colormap is orthogonal. */
708 cur -= GETJSAMPLE(colormap_ci[pixcode]);
709 /* Compute error fractions to be propagated to adjacent pixels.
710 * Add these into the running sums, and simultaneously shift the
711 * next-line error sums left by 1 column.
715 cur += delta; /* form error * 3 */
716 errorptr[0] = (FSERROR) (bpreverr + cur);
717 cur += delta; /* form error * 5 */
718 bpreverr = belowerr + cur;
720 cur += delta; /* form error * 7 */
721 /* At this point cur contains the 7/16 error value to be propagated
722 * to the next pixel on the current line, and all the errors for the
723 * next line have been shifted over. We are therefore ready to move on.
725 input_ptr += dirnc; /* advance input ptr to next column */
726 output_ptr += dir; /* advance output ptr to next column */
727 errorptr += dir; /* advance errorptr to current column */
729 /* Post-loop cleanup: we must unload the final error value into the
730 * final fserrors[] entry. Note we need not unload belowerr because
731 * it is for the dummy column before or after the actual array.
733 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
735 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
741 * Allocate workspace for Floyd-Steinberg errors.
745 alloc_fs_workspace (j_decompress_ptr cinfo)
747 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
751 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
752 for (i = 0; i < cinfo->out_color_components; i++) {
753 cquantize->fserrors[i] = (FSERRPTR)
754 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
760 * Initialize for one-pass color quantization.
764 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
766 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
770 /* Install my colormap. */
771 cinfo->colormap = cquantize->sv_colormap;
772 cinfo->actual_number_of_colors = cquantize->sv_actual;
774 /* Initialize for desired dithering mode. */
775 switch (cinfo->dither_mode) {
777 if (cinfo->out_color_components == 3)
778 cquantize->pub.color_quantize = color_quantize3;
780 cquantize->pub.color_quantize = color_quantize;
782 case JDITHER_ORDERED:
783 if (cinfo->out_color_components == 3)
784 cquantize->pub.color_quantize = quantize3_ord_dither;
786 cquantize->pub.color_quantize = quantize_ord_dither;
787 cquantize->row_index = 0; /* initialize state for ordered dither */
788 /* If user changed to ordered dither from another mode,
789 * we must recreate the color index table with padding.
790 * This will cost extra space, but probably isn't very likely.
792 if (! cquantize->is_padded)
793 create_colorindex(cinfo);
794 /* Create ordered-dither tables if we didn't already. */
795 if (cquantize->odither[0] == NULL)
796 create_odither_tables(cinfo);
799 cquantize->pub.color_quantize = quantize_fs_dither;
800 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
801 /* Allocate Floyd-Steinberg workspace if didn't already. */
802 if (cquantize->fserrors[0] == NULL)
803 alloc_fs_workspace(cinfo);
804 /* Initialize the propagated errors to zero. */
805 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
806 for (i = 0; i < cinfo->out_color_components; i++)
807 jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
810 ERREXIT(cinfo, JERR_NOT_COMPILED);
817 * Finish up at the end of the pass.
821 finish_pass_1_quant (j_decompress_ptr cinfo)
823 /* no work in 1-pass case */
828 * Switch to a new external colormap between output passes.
829 * Shouldn't get to this module!
833 new_color_map_1_quant (j_decompress_ptr cinfo)
835 ERREXIT(cinfo, JERR_MODE_CHANGE);
840 * Module initialization routine for 1-pass color quantization.
844 jinit_1pass_quantizer (j_decompress_ptr cinfo)
846 my_cquantize_ptr cquantize;
848 cquantize = (my_cquantize_ptr)
849 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
850 SIZEOF(my_cquantizer));
851 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
852 cquantize->pub.start_pass = start_pass_1_quant;
853 cquantize->pub.finish_pass = finish_pass_1_quant;
854 cquantize->pub.new_color_map = new_color_map_1_quant;
855 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
856 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
858 /* Make sure my internal arrays won't overflow */
859 if (cinfo->out_color_components > MAX_Q_COMPS)
860 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
861 /* Make sure colormap indexes can be represented by JSAMPLEs */
862 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
863 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
865 /* Create the colormap and color index table. */
866 create_colormap(cinfo);
867 create_colorindex(cinfo);
869 /* Allocate Floyd-Steinberg workspace now if requested.
870 * We do this now since it is FAR storage and may affect the memory
871 * manager's space calculations. If the user changes to FS dither
872 * mode in a later pass, we will allocate the space then, and will
873 * possibly overrun the max_memory_to_use setting.
875 if (cinfo->dither_mode == JDITHER_FS)
876 alloc_fs_workspace(cinfo);
879 #endif /* QUANT_1PASS_SUPPORTED */