2 * CDE - Common Desktop Environment
4 * Copyright (c) 1993-2012, The Open Group. All rights reserved.
6 * These libraries and programs are free software; you can
7 * redistribute them and/or modify them under the terms of the GNU
8 * Lesser General Public License as published by the Free Software
9 * Foundation; either version 2 of the License, or (at your option)
12 * These libraries and programs are distributed in the hope that
13 * they will be useful, but WITHOUT ANY WARRANTY; without even the
14 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15 * PURPOSE. See the GNU Lesser General Public License for more
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with these librararies and programs; if not, write
20 * to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
21 * Floor, Boston, MA 02110-1301 USA
23 /* $XConsortium: jmemmgr.c /main/2 1996/05/09 03:52:10 drk $ */
27 * Copyright (C) 1991-1996, Thomas G. Lane.
28 * This file is part of the Independent JPEG Group's software.
29 * For conditions of distribution and use, see the accompanying README file.
31 * This file contains the JPEG system-independent memory management
32 * routines. This code is usable across a wide variety of machines; most
33 * of the system dependencies have been isolated in a separate file.
34 * The major functions provided here are:
35 * * pool-based allocation and freeing of memory;
36 * * policy decisions about how to divide available memory among the
38 * * control logic for swapping virtual arrays between main memory and
40 * The separate system-dependent file provides the actual backing-storage
41 * access code, and it contains the policy decision about how much total
43 * This file is system-dependent in the sense that some of its functions
44 * are unnecessary in some systems. For example, if there is enough virtual
45 * memory so that backing storage will never be used, much of the virtual
46 * array control logic could be removed. (Of course, if you have that much
47 * memory then you shouldn't care about a little bit of unused code...)
50 #define JPEG_INTERNALS
51 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
54 #include "jmemsys.h" /* import the system-dependent declarations */
57 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
58 extern char * getenv JPP((const char * name));
64 * Some important notes:
65 * The allocation routines provided here must never return NULL.
66 * They should exit to error_exit if unsuccessful.
68 * It's not a good idea to try to merge the sarray and barray routines,
69 * even though they are textually almost the same, because samples are
70 * usually stored as bytes while coefficients are shorts or ints. Thus,
71 * in machines where byte pointers have a different representation from
72 * word pointers, the resulting machine code could not be the same.
77 * Many machines require storage alignment: longs must start on 4-byte
78 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
79 * always returns pointers that are multiples of the worst-case alignment
80 * requirement, and we had better do so too.
81 * There isn't any really portable way to determine the worst-case alignment
82 * requirement. This module assumes that the alignment requirement is
83 * multiples of sizeof(ALIGN_TYPE).
84 * By default, we define ALIGN_TYPE as double. This is necessary on some
85 * workstations (where doubles really do need 8-byte alignment) and will work
86 * fine on nearly everything. If your machine has lesser alignment needs,
87 * you can save a few bytes by making ALIGN_TYPE smaller.
88 * The only place I know of where this will NOT work is certain Macintosh
89 * 680x0 compilers that define double as a 10-byte IEEE extended float.
90 * Doing 10-byte alignment is counterproductive because longwords won't be
91 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
95 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
96 #define ALIGN_TYPE double
101 * We allocate objects from "pools", where each pool is gotten with a single
102 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
103 * overhead within a pool, except for alignment padding. Each pool has a
104 * header with a link to the next pool of the same class.
105 * Small and large pool headers are identical except that the latter's
106 * link pointer must be FAR on 80x86 machines.
107 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
108 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
109 * of the alignment requirement of ALIGN_TYPE.
112 typedef union small_pool_struct * small_pool_ptr;
114 typedef union small_pool_struct {
116 small_pool_ptr next; /* next in list of pools */
117 size_t bytes_used; /* how many bytes already used within pool */
118 size_t bytes_left; /* bytes still available in this pool */
120 ALIGN_TYPE dummy; /* included in union to ensure alignment */
123 typedef union large_pool_struct FAR * large_pool_ptr;
125 typedef union large_pool_struct {
127 large_pool_ptr next; /* next in list of pools */
128 size_t bytes_used; /* how many bytes already used within pool */
129 size_t bytes_left; /* bytes still available in this pool */
131 ALIGN_TYPE dummy; /* included in union to ensure alignment */
136 * Here is the full definition of a memory manager object.
140 struct jpeg_memory_mgr pub; /* public fields */
142 /* Each pool identifier (lifetime class) names a linked list of pools. */
143 small_pool_ptr small_list[JPOOL_NUMPOOLS];
144 large_pool_ptr large_list[JPOOL_NUMPOOLS];
146 /* Since we only have one lifetime class of virtual arrays, only one
147 * linked list is necessary (for each datatype). Note that the virtual
148 * array control blocks being linked together are actually stored somewhere
149 * in the small-pool list.
151 jvirt_sarray_ptr virt_sarray_list;
152 jvirt_barray_ptr virt_barray_list;
154 /* This counts total space obtained from jpeg_get_small/large */
155 long total_space_allocated;
157 /* alloc_sarray and alloc_barray set this value for use by virtual
160 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
163 typedef my_memory_mgr * my_mem_ptr;
167 * The control blocks for virtual arrays.
168 * Note that these blocks are allocated in the "small" pool area.
169 * System-dependent info for the associated backing store (if any) is hidden
170 * inside the backing_store_info struct.
173 struct jvirt_sarray_control {
174 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
175 JDIMENSION rows_in_array; /* total virtual array height */
176 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
177 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
178 JDIMENSION rows_in_mem; /* height of memory buffer */
179 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
180 JDIMENSION cur_start_row; /* first logical row # in the buffer */
181 JDIMENSION first_undef_row; /* row # of first uninitialized row */
182 boolean pre_zero; /* pre-zero mode requested? */
183 boolean dirty; /* do current buffer contents need written? */
184 boolean b_s_open; /* is backing-store data valid? */
185 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
186 backing_store_info b_s_info; /* System-dependent control info */
189 struct jvirt_barray_control {
190 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
191 JDIMENSION rows_in_array; /* total virtual array height */
192 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
193 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
194 JDIMENSION rows_in_mem; /* height of memory buffer */
195 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
196 JDIMENSION cur_start_row; /* first logical row # in the buffer */
197 JDIMENSION first_undef_row; /* row # of first uninitialized row */
198 boolean pre_zero; /* pre-zero mode requested? */
199 boolean dirty; /* do current buffer contents need written? */
200 boolean b_s_open; /* is backing-store data valid? */
201 jvirt_barray_ptr next; /* link to next virtual barray control block */
202 backing_store_info b_s_info; /* System-dependent control info */
206 #ifdef MEM_STATS /* optional extra stuff for statistics */
209 print_mem_stats (j_common_ptr cinfo, int pool_id)
211 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
212 small_pool_ptr shdr_ptr;
213 large_pool_ptr lhdr_ptr;
215 /* Since this is only a debugging stub, we can cheat a little by using
216 * fprintf directly rather than going through the trace message code.
217 * This is helpful because message parm array can't handle longs.
219 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
220 pool_id, mem->total_space_allocated);
222 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
223 lhdr_ptr = lhdr_ptr->hdr.next) {
224 fprintf(stderr, " Large chunk used %ld\n",
225 (long) lhdr_ptr->hdr.bytes_used);
228 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
229 shdr_ptr = shdr_ptr->hdr.next) {
230 fprintf(stderr, " Small chunk used %ld free %ld\n",
231 (long) shdr_ptr->hdr.bytes_used,
232 (long) shdr_ptr->hdr.bytes_left);
236 #endif /* MEM_STATS */
240 out_of_memory (j_common_ptr cinfo, int which)
241 /* Report an out-of-memory error and stop execution */
242 /* If we compiled MEM_STATS support, report alloc requests before dying */
245 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
247 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
252 * Allocation of "small" objects.
254 * For these, we use pooled storage. When a new pool must be created,
255 * we try to get enough space for the current request plus a "slop" factor,
256 * where the slop will be the amount of leftover space in the new pool.
257 * The speed vs. space tradeoff is largely determined by the slop values.
258 * A different slop value is provided for each pool class (lifetime),
259 * and we also distinguish the first pool of a class from later ones.
260 * NOTE: the values given work fairly well on both 16- and 32-bit-int
261 * machines, but may be too small if longs are 64 bits or more.
264 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
266 1600, /* first PERMANENT pool */
267 16000 /* first IMAGE pool */
270 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
272 0, /* additional PERMANENT pools */
273 5000 /* additional IMAGE pools */
276 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
280 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
281 /* Allocate a "small" object */
283 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
284 small_pool_ptr hdr_ptr, prev_hdr_ptr;
286 size_t odd_bytes, min_request, slop;
288 /* Check for unsatisfiable request (do now to ensure no overflow below) */
289 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
290 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
292 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
293 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
295 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
297 /* See if space is available in any existing pool */
298 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
299 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
301 hdr_ptr = mem->small_list[pool_id];
302 while (hdr_ptr != NULL) {
303 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
304 break; /* found pool with enough space */
305 prev_hdr_ptr = hdr_ptr;
306 hdr_ptr = hdr_ptr->hdr.next;
309 /* Time to make a new pool? */
310 if (hdr_ptr == NULL) {
311 /* min_request is what we need now, slop is what will be leftover */
312 min_request = sizeofobject + SIZEOF(small_pool_hdr);
313 if (prev_hdr_ptr == NULL) /* first pool in class? */
314 slop = first_pool_slop[pool_id];
316 slop = extra_pool_slop[pool_id];
317 /* Don't ask for more than MAX_ALLOC_CHUNK */
318 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
319 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
320 /* Try to get space, if fail reduce slop and try again */
322 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
326 if (slop < MIN_SLOP) /* give up when it gets real small */
327 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
329 mem->total_space_allocated += min_request + slop;
330 /* Success, initialize the new pool header and add to end of list */
331 hdr_ptr->hdr.next = NULL;
332 hdr_ptr->hdr.bytes_used = 0;
333 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
334 if (prev_hdr_ptr == NULL) /* first pool in class? */
335 mem->small_list[pool_id] = hdr_ptr;
337 prev_hdr_ptr->hdr.next = hdr_ptr;
340 /* OK, allocate the object from the current pool */
341 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
342 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
343 hdr_ptr->hdr.bytes_used += sizeofobject;
344 hdr_ptr->hdr.bytes_left -= sizeofobject;
346 return (void *) data_ptr;
351 * Allocation of "large" objects.
353 * The external semantics of these are the same as "small" objects,
354 * except that FAR pointers are used on 80x86. However the pool
355 * management heuristics are quite different. We assume that each
356 * request is large enough that it may as well be passed directly to
357 * jpeg_get_large; the pool management just links everything together
358 * so that we can free it all on demand.
359 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
360 * structures. The routines that create these structures (see below)
361 * deliberately bunch rows together to ensure a large request size.
364 METHODDEF(void FAR *)
365 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
366 /* Allocate a "large" object */
368 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
369 large_pool_ptr hdr_ptr;
372 /* Check for unsatisfiable request (do now to ensure no overflow below) */
373 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
374 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
376 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
377 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
379 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
381 /* Always make a new pool */
382 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
383 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
385 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
386 SIZEOF(large_pool_hdr));
388 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
389 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
391 /* Success, initialize the new pool header and add to list */
392 hdr_ptr->hdr.next = mem->large_list[pool_id];
393 /* We maintain space counts in each pool header for statistical purposes,
394 * even though they are not needed for allocation.
396 hdr_ptr->hdr.bytes_used = sizeofobject;
397 hdr_ptr->hdr.bytes_left = 0;
398 mem->large_list[pool_id] = hdr_ptr;
400 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
405 * Creation of 2-D sample arrays.
406 * The pointers are in near heap, the samples themselves in FAR heap.
408 * To minimize allocation overhead and to allow I/O of large contiguous
409 * blocks, we allocate the sample rows in groups of as many rows as possible
410 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
411 * NB: the virtual array control routines, later in this file, know about
412 * this chunking of rows. The rowsperchunk value is left in the mem manager
413 * object so that it can be saved away if this sarray is the workspace for
417 METHODDEF(JSAMPARRAY)
418 alloc_sarray (j_common_ptr cinfo, int pool_id,
419 JDIMENSION samplesperrow, JDIMENSION numrows)
420 /* Allocate a 2-D sample array */
422 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
425 JDIMENSION rowsperchunk, currow, i;
428 /* Calculate max # of rows allowed in one allocation chunk */
429 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
430 ((long) samplesperrow * SIZEOF(JSAMPLE));
432 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
433 if (ltemp < (long) numrows)
434 rowsperchunk = (JDIMENSION) ltemp;
436 rowsperchunk = numrows;
437 mem->last_rowsperchunk = rowsperchunk;
439 /* Get space for row pointers (small object) */
440 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
441 (size_t) (numrows * SIZEOF(JSAMPROW)));
443 /* Get the rows themselves (large objects) */
445 while (currow < numrows) {
446 rowsperchunk = MIN(rowsperchunk, numrows - currow);
447 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
448 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
450 for (i = rowsperchunk; i > 0; i--) {
451 result[currow++] = workspace;
452 workspace += samplesperrow;
461 * Creation of 2-D coefficient-block arrays.
462 * This is essentially the same as the code for sample arrays, above.
465 METHODDEF(JBLOCKARRAY)
466 alloc_barray (j_common_ptr cinfo, int pool_id,
467 JDIMENSION blocksperrow, JDIMENSION numrows)
468 /* Allocate a 2-D coefficient-block array */
470 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
473 JDIMENSION rowsperchunk, currow, i;
476 /* Calculate max # of rows allowed in one allocation chunk */
477 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
478 ((long) blocksperrow * SIZEOF(JBLOCK));
480 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
481 if (ltemp < (long) numrows)
482 rowsperchunk = (JDIMENSION) ltemp;
484 rowsperchunk = numrows;
485 mem->last_rowsperchunk = rowsperchunk;
487 /* Get space for row pointers (small object) */
488 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
489 (size_t) (numrows * SIZEOF(JBLOCKROW)));
491 /* Get the rows themselves (large objects) */
493 while (currow < numrows) {
494 rowsperchunk = MIN(rowsperchunk, numrows - currow);
495 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
496 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
498 for (i = rowsperchunk; i > 0; i--) {
499 result[currow++] = workspace;
500 workspace += blocksperrow;
509 * About virtual array management:
511 * The above "normal" array routines are only used to allocate strip buffers
512 * (as wide as the image, but just a few rows high). Full-image-sized buffers
513 * are handled as "virtual" arrays. The array is still accessed a strip at a
514 * time, but the memory manager must save the whole array for repeated
515 * accesses. The intended implementation is that there is a strip buffer in
516 * memory (as high as is possible given the desired memory limit), plus a
517 * backing file that holds the rest of the array.
519 * The request_virt_array routines are told the total size of the image and
520 * the maximum number of rows that will be accessed at once. The in-memory
521 * buffer must be at least as large as the maxaccess value.
523 * The request routines create control blocks but not the in-memory buffers.
524 * That is postponed until realize_virt_arrays is called. At that time the
525 * total amount of space needed is known (approximately, anyway), so free
526 * memory can be divided up fairly.
528 * The access_virt_array routines are responsible for making a specific strip
529 * area accessible (after reading or writing the backing file, if necessary).
530 * Note that the access routines are told whether the caller intends to modify
531 * the accessed strip; during a read-only pass this saves having to rewrite
532 * data to disk. The access routines are also responsible for pre-zeroing
533 * any newly accessed rows, if pre-zeroing was requested.
535 * In current usage, the access requests are usually for nonoverlapping
536 * strips; that is, successive access start_row numbers differ by exactly
537 * num_rows = maxaccess. This means we can get good performance with simple
538 * buffer dump/reload logic, by making the in-memory buffer be a multiple
539 * of the access height; then there will never be accesses across bufferload
540 * boundaries. The code will still work with overlapping access requests,
541 * but it doesn't handle bufferload overlaps very efficiently.
545 METHODDEF(jvirt_sarray_ptr)
546 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
547 JDIMENSION samplesperrow, JDIMENSION numrows,
548 JDIMENSION maxaccess)
549 /* Request a virtual 2-D sample array */
551 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
552 jvirt_sarray_ptr result;
554 /* Only IMAGE-lifetime virtual arrays are currently supported */
555 if (pool_id != JPOOL_IMAGE)
556 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
558 /* get control block */
559 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
560 SIZEOF(struct jvirt_sarray_control));
562 result->mem_buffer = NULL; /* marks array not yet realized */
563 result->rows_in_array = numrows;
564 result->samplesperrow = samplesperrow;
565 result->maxaccess = maxaccess;
566 result->pre_zero = pre_zero;
567 result->b_s_open = FALSE; /* no associated backing-store object */
568 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
569 mem->virt_sarray_list = result;
575 METHODDEF(jvirt_barray_ptr)
576 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
577 JDIMENSION blocksperrow, JDIMENSION numrows,
578 JDIMENSION maxaccess)
579 /* Request a virtual 2-D coefficient-block array */
581 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
582 jvirt_barray_ptr result;
584 /* Only IMAGE-lifetime virtual arrays are currently supported */
585 if (pool_id != JPOOL_IMAGE)
586 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
588 /* get control block */
589 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
590 SIZEOF(struct jvirt_barray_control));
592 result->mem_buffer = NULL; /* marks array not yet realized */
593 result->rows_in_array = numrows;
594 result->blocksperrow = blocksperrow;
595 result->maxaccess = maxaccess;
596 result->pre_zero = pre_zero;
597 result->b_s_open = FALSE; /* no associated backing-store object */
598 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
599 mem->virt_barray_list = result;
606 realize_virt_arrays (j_common_ptr cinfo)
607 /* Allocate the in-memory buffers for any unrealized virtual arrays */
609 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
610 long space_per_minheight, maximum_space, avail_mem;
611 long minheights, max_minheights;
612 jvirt_sarray_ptr sptr;
613 jvirt_barray_ptr bptr;
615 /* Compute the minimum space needed (maxaccess rows in each buffer)
616 * and the maximum space needed (full image height in each buffer).
617 * These may be of use to the system-dependent jpeg_mem_available routine.
619 space_per_minheight = 0;
621 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
622 if (sptr->mem_buffer == NULL) { /* if not realized yet */
623 space_per_minheight += (long) sptr->maxaccess *
624 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
625 maximum_space += (long) sptr->rows_in_array *
626 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
629 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
630 if (bptr->mem_buffer == NULL) { /* if not realized yet */
631 space_per_minheight += (long) bptr->maxaccess *
632 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
633 maximum_space += (long) bptr->rows_in_array *
634 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
638 if (space_per_minheight <= 0)
639 return; /* no unrealized arrays, no work */
641 /* Determine amount of memory to actually use; this is system-dependent. */
642 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
643 mem->total_space_allocated);
645 /* If the maximum space needed is available, make all the buffers full
646 * height; otherwise parcel it out with the same number of minheights
649 if (avail_mem >= maximum_space)
650 max_minheights = 1000000000L;
652 max_minheights = avail_mem / space_per_minheight;
653 /* If there doesn't seem to be enough space, try to get the minimum
654 * anyway. This allows a "stub" implementation of jpeg_mem_available().
656 if (max_minheights <= 0)
660 /* Allocate the in-memory buffers and initialize backing store as needed. */
662 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
663 if (sptr->mem_buffer == NULL) { /* if not realized yet */
664 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
665 if (minheights <= max_minheights) {
666 /* This buffer fits in memory */
667 sptr->rows_in_mem = sptr->rows_in_array;
669 /* It doesn't fit in memory, create backing store. */
670 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
671 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
672 (long) sptr->rows_in_array *
673 (long) sptr->samplesperrow *
674 (long) SIZEOF(JSAMPLE));
675 sptr->b_s_open = TRUE;
677 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
678 sptr->samplesperrow, sptr->rows_in_mem);
679 sptr->rowsperchunk = mem->last_rowsperchunk;
680 sptr->cur_start_row = 0;
681 sptr->first_undef_row = 0;
686 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
687 if (bptr->mem_buffer == NULL) { /* if not realized yet */
688 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
689 if (minheights <= max_minheights) {
690 /* This buffer fits in memory */
691 bptr->rows_in_mem = bptr->rows_in_array;
693 /* It doesn't fit in memory, create backing store. */
694 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
695 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
696 (long) bptr->rows_in_array *
697 (long) bptr->blocksperrow *
698 (long) SIZEOF(JBLOCK));
699 bptr->b_s_open = TRUE;
701 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
702 bptr->blocksperrow, bptr->rows_in_mem);
703 bptr->rowsperchunk = mem->last_rowsperchunk;
704 bptr->cur_start_row = 0;
705 bptr->first_undef_row = 0;
713 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
714 /* Do backing store read or write of a virtual sample array */
716 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
718 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
719 file_offset = ptr->cur_start_row * bytesperrow;
720 /* Loop to read or write each allocation chunk in mem_buffer */
721 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
722 /* One chunk, but check for short chunk at end of buffer */
723 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
724 /* Transfer no more than is currently defined */
725 thisrow = (long) ptr->cur_start_row + i;
726 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
727 /* Transfer no more than fits in file */
728 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
729 if (rows <= 0) /* this chunk might be past end of file! */
731 byte_count = rows * bytesperrow;
733 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
734 (void FAR *) ptr->mem_buffer[i],
735 file_offset, byte_count);
737 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
738 (void FAR *) ptr->mem_buffer[i],
739 file_offset, byte_count);
740 file_offset += byte_count;
746 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
747 /* Do backing store read or write of a virtual coefficient-block array */
749 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
751 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
752 file_offset = ptr->cur_start_row * bytesperrow;
753 /* Loop to read or write each allocation chunk in mem_buffer */
754 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
755 /* One chunk, but check for short chunk at end of buffer */
756 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
757 /* Transfer no more than is currently defined */
758 thisrow = (long) ptr->cur_start_row + i;
759 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
760 /* Transfer no more than fits in file */
761 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
762 if (rows <= 0) /* this chunk might be past end of file! */
764 byte_count = rows * bytesperrow;
766 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
767 (void FAR *) ptr->mem_buffer[i],
768 file_offset, byte_count);
770 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
771 (void FAR *) ptr->mem_buffer[i],
772 file_offset, byte_count);
773 file_offset += byte_count;
778 METHODDEF(JSAMPARRAY)
779 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
780 JDIMENSION start_row, JDIMENSION num_rows,
782 /* Access the part of a virtual sample array starting at start_row */
783 /* and extending for num_rows rows. writable is true if */
784 /* caller intends to modify the accessed area. */
786 JDIMENSION end_row = start_row + num_rows;
787 JDIMENSION undef_row;
789 /* debugging check */
790 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
791 ptr->mem_buffer == NULL)
792 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
794 /* Make the desired part of the virtual array accessible */
795 if (start_row < ptr->cur_start_row ||
796 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
798 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
799 /* Flush old buffer contents if necessary */
801 do_sarray_io(cinfo, ptr, TRUE);
804 /* Decide what part of virtual array to access.
805 * Algorithm: if target address > current window, assume forward scan,
806 * load starting at target address. If target address < current window,
807 * assume backward scan, load so that target area is top of window.
808 * Note that when switching from forward write to forward read, will have
809 * start_row = 0, so the limiting case applies and we load from 0 anyway.
811 if (start_row > ptr->cur_start_row) {
812 ptr->cur_start_row = start_row;
814 /* use long arithmetic here to avoid overflow & unsigned problems */
817 ltemp = (long) end_row - (long) ptr->rows_in_mem;
819 ltemp = 0; /* don't fall off front end of file */
820 ptr->cur_start_row = (JDIMENSION) ltemp;
822 /* Read in the selected part of the array.
823 * During the initial write pass, we will do no actual read
824 * because the selected part is all undefined.
826 do_sarray_io(cinfo, ptr, FALSE);
828 /* Ensure the accessed part of the array is defined; prezero if needed.
829 * To improve locality of access, we only prezero the part of the array
830 * that the caller is about to access, not the entire in-memory array.
832 if (ptr->first_undef_row < end_row) {
833 if (ptr->first_undef_row < start_row) {
834 if (writable) /* writer skipped over a section of array */
835 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
836 undef_row = start_row; /* but reader is allowed to read ahead */
838 undef_row = ptr->first_undef_row;
841 ptr->first_undef_row = end_row;
843 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
844 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
845 end_row -= ptr->cur_start_row;
846 while (undef_row < end_row) {
847 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
851 if (! writable) /* reader looking at undefined data */
852 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
855 /* Flag the buffer dirty if caller will write in it */
858 /* Return address of proper part of the buffer */
859 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
863 METHODDEF(JBLOCKARRAY)
864 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
865 JDIMENSION start_row, JDIMENSION num_rows,
867 /* Access the part of a virtual block array starting at start_row */
868 /* and extending for num_rows rows. writable is true if */
869 /* caller intends to modify the accessed area. */
871 JDIMENSION end_row = start_row + num_rows;
872 JDIMENSION undef_row;
874 /* debugging check */
875 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
876 ptr->mem_buffer == NULL)
877 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
879 /* Make the desired part of the virtual array accessible */
880 if (start_row < ptr->cur_start_row ||
881 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
883 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
884 /* Flush old buffer contents if necessary */
886 do_barray_io(cinfo, ptr, TRUE);
889 /* Decide what part of virtual array to access.
890 * Algorithm: if target address > current window, assume forward scan,
891 * load starting at target address. If target address < current window,
892 * assume backward scan, load so that target area is top of window.
893 * Note that when switching from forward write to forward read, will have
894 * start_row = 0, so the limiting case applies and we load from 0 anyway.
896 if (start_row > ptr->cur_start_row) {
897 ptr->cur_start_row = start_row;
899 /* use long arithmetic here to avoid overflow & unsigned problems */
902 ltemp = (long) end_row - (long) ptr->rows_in_mem;
904 ltemp = 0; /* don't fall off front end of file */
905 ptr->cur_start_row = (JDIMENSION) ltemp;
907 /* Read in the selected part of the array.
908 * During the initial write pass, we will do no actual read
909 * because the selected part is all undefined.
911 do_barray_io(cinfo, ptr, FALSE);
913 /* Ensure the accessed part of the array is defined; prezero if needed.
914 * To improve locality of access, we only prezero the part of the array
915 * that the caller is about to access, not the entire in-memory array.
917 if (ptr->first_undef_row < end_row) {
918 if (ptr->first_undef_row < start_row) {
919 if (writable) /* writer skipped over a section of array */
920 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
921 undef_row = start_row; /* but reader is allowed to read ahead */
923 undef_row = ptr->first_undef_row;
926 ptr->first_undef_row = end_row;
928 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
929 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
930 end_row -= ptr->cur_start_row;
931 while (undef_row < end_row) {
932 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
936 if (! writable) /* reader looking at undefined data */
937 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
940 /* Flag the buffer dirty if caller will write in it */
943 /* Return address of proper part of the buffer */
944 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
949 * Release all objects belonging to a specified pool.
953 free_pool (j_common_ptr cinfo, int pool_id)
955 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
956 small_pool_ptr shdr_ptr;
957 large_pool_ptr lhdr_ptr;
960 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
961 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
964 if (cinfo->err->trace_level > 1)
965 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
968 /* If freeing IMAGE pool, close any virtual arrays first */
969 if (pool_id == JPOOL_IMAGE) {
970 jvirt_sarray_ptr sptr;
971 jvirt_barray_ptr bptr;
973 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
974 if (sptr->b_s_open) { /* there may be no backing store */
975 sptr->b_s_open = FALSE; /* prevent recursive close if error */
976 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
979 mem->virt_sarray_list = NULL;
980 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
981 if (bptr->b_s_open) { /* there may be no backing store */
982 bptr->b_s_open = FALSE; /* prevent recursive close if error */
983 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
986 mem->virt_barray_list = NULL;
989 /* Release large objects */
990 lhdr_ptr = mem->large_list[pool_id];
991 mem->large_list[pool_id] = NULL;
993 while (lhdr_ptr != NULL) {
994 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
995 space_freed = lhdr_ptr->hdr.bytes_used +
996 lhdr_ptr->hdr.bytes_left +
997 SIZEOF(large_pool_hdr);
998 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
999 mem->total_space_allocated -= space_freed;
1000 lhdr_ptr = next_lhdr_ptr;
1003 /* Release small objects */
1004 shdr_ptr = mem->small_list[pool_id];
1005 mem->small_list[pool_id] = NULL;
1007 while (shdr_ptr != NULL) {
1008 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
1009 space_freed = shdr_ptr->hdr.bytes_used +
1010 shdr_ptr->hdr.bytes_left +
1011 SIZEOF(small_pool_hdr);
1012 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1013 mem->total_space_allocated -= space_freed;
1014 shdr_ptr = next_shdr_ptr;
1020 * Close up shop entirely.
1021 * Note that this cannot be called unless cinfo->mem is non-NULL.
1025 self_destruct (j_common_ptr cinfo)
1029 /* Close all backing store, release all memory.
1030 * Releasing pools in reverse order might help avoid fragmentation
1031 * with some (brain-damaged) malloc libraries.
1033 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1034 free_pool(cinfo, pool);
1037 /* Release the memory manager control block too. */
1038 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1039 cinfo->mem = NULL; /* ensures I will be called only once */
1041 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1046 * Memory manager initialization.
1047 * When this is called, only the error manager pointer is valid in cinfo!
1051 jinit_memory_mgr (j_common_ptr cinfo)
1058 cinfo->mem = NULL; /* for safety if init fails */
1060 /* Check for configuration errors.
1061 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1062 * doesn't reflect any real hardware alignment requirement.
1063 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1064 * in common if and only if X is a power of 2, ie has only one one-bit.
1065 * Some compilers may give an "unreachable code" warning here; ignore it.
1067 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1068 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1069 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1070 * a multiple of SIZEOF(ALIGN_TYPE).
1071 * Again, an "unreachable code" warning may be ignored here.
1072 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1074 test_mac = (size_t) MAX_ALLOC_CHUNK;
1075 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1076 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1077 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1079 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1081 /* Attempt to allocate memory manager's control block */
1082 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1085 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1086 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1089 /* OK, fill in the method pointers */
1090 mem->pub.alloc_small = alloc_small;
1091 mem->pub.alloc_large = alloc_large;
1092 mem->pub.alloc_sarray = alloc_sarray;
1093 mem->pub.alloc_barray = alloc_barray;
1094 mem->pub.request_virt_sarray = request_virt_sarray;
1095 mem->pub.request_virt_barray = request_virt_barray;
1096 mem->pub.realize_virt_arrays = realize_virt_arrays;
1097 mem->pub.access_virt_sarray = access_virt_sarray;
1098 mem->pub.access_virt_barray = access_virt_barray;
1099 mem->pub.free_pool = free_pool;
1100 mem->pub.self_destruct = self_destruct;
1102 /* Initialize working state */
1103 mem->pub.max_memory_to_use = max_to_use;
1105 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1106 mem->small_list[pool] = NULL;
1107 mem->large_list[pool] = NULL;
1109 mem->virt_sarray_list = NULL;
1110 mem->virt_barray_list = NULL;
1112 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1114 /* Declare ourselves open for business */
1115 cinfo->mem = & mem->pub;
1117 /* Check for an environment variable JPEGMEM; if found, override the
1118 * default max_memory setting from jpeg_mem_init. Note that the
1119 * surrounding application may again override this value.
1120 * If your system doesn't support getenv(), define NO_GETENV to disable
1126 if ((memenv = getenv("JPEGMEM")) != NULL) {
1129 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1130 if (ch == 'm' || ch == 'M')
1131 max_to_use *= 1000L;
1132 mem->pub.max_memory_to_use = max_to_use * 1000L;