Merge tag 'u-boot-atmel-fixes-2020.07-a' of https://gitlab.denx.de/u-boot/custodians...
[oweals/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10
11 #include <common.h>
12 #include <hang.h>
13 #include <init.h>
14 #include <log.h>
15 #include <net.h>
16 #include <asm/emif.h>
17 #include <asm/arch/clock.h>
18 #include <asm/arch/sys_proto.h>
19 #include <asm/omap_common.h>
20 #include <asm/omap_sec_common.h>
21 #include <asm/utils.h>
22 #include <linux/compiler.h>
23 #include <asm/ti-common/ti-edma3.h>
24 #include <linux/delay.h>
25
26 static int emif1_enabled = -1, emif2_enabled = -1;
27
28 void set_lpmode_selfrefresh(u32 base)
29 {
30         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
31         u32 reg;
32
33         reg = readl(&emif->emif_pwr_mgmt_ctrl);
34         reg &= ~EMIF_REG_LP_MODE_MASK;
35         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
36         reg &= ~EMIF_REG_SR_TIM_MASK;
37         writel(reg, &emif->emif_pwr_mgmt_ctrl);
38
39         /* dummy read for the new SR_TIM to be loaded */
40         readl(&emif->emif_pwr_mgmt_ctrl);
41 }
42
43 void force_emif_self_refresh()
44 {
45         set_lpmode_selfrefresh(EMIF1_BASE);
46         if (!is_dra72x())
47                 set_lpmode_selfrefresh(EMIF2_BASE);
48 }
49
50 inline u32 emif_num(u32 base)
51 {
52         if (base == EMIF1_BASE)
53                 return 1;
54         else if (base == EMIF2_BASE)
55                 return 2;
56         else
57                 return 0;
58 }
59
60 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
61 {
62         u32 mr;
63         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64
65         mr_addr |= cs << EMIF_REG_CS_SHIFT;
66         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67         if (omap_revision() == OMAP4430_ES2_0)
68                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
69         else
70                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
71         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
72               cs, mr_addr, mr);
73         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
74             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
75             ((mr & 0xff000000) >> 24) == (mr & 0xff))
76                 return mr & 0xff;
77         else
78                 return mr;
79 }
80
81 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
82 {
83         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
84
85         mr_addr |= cs << EMIF_REG_CS_SHIFT;
86         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
87         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
88 }
89
90 void emif_reset_phy(u32 base)
91 {
92         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
93         u32 iodft;
94
95         iodft = readl(&emif->emif_iodft_tlgc);
96         iodft |= EMIF_REG_RESET_PHY_MASK;
97         writel(iodft, &emif->emif_iodft_tlgc);
98 }
99
100 static void do_lpddr2_init(u32 base, u32 cs)
101 {
102         u32 mr_addr;
103         const struct lpddr2_mr_regs *mr_regs;
104
105         get_lpddr2_mr_regs(&mr_regs);
106         /* Wait till device auto initialization is complete */
107         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
108                 ;
109         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
110         /*
111          * tZQINIT = 1 us
112          * Enough loops assuming a maximum of 2GHz
113          */
114
115         sdelay(2000);
116
117         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
118         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
119
120         /*
121          * Enable refresh along with writing MR2
122          * Encoding of RL in MR2 is (RL - 2)
123          */
124         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
125         set_mr(base, cs, mr_addr, mr_regs->mr2);
126
127         if (mr_regs->mr3 > 0)
128                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
129 }
130
131 static void lpddr2_init(u32 base, const struct emif_regs *regs)
132 {
133         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
134
135         /* Not NVM */
136         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
137
138         /*
139          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
140          * when EMIF_SDRAM_CONFIG register is written
141          */
142         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
143
144         /*
145          * Set the SDRAM_CONFIG and PHY_CTRL for the
146          * un-locked frequency & default RL
147          */
148         writel(regs->sdram_config_init, &emif->emif_sdram_config);
149         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
150
151         do_ext_phy_settings(base, regs);
152
153         do_lpddr2_init(base, CS0);
154         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
155                 do_lpddr2_init(base, CS1);
156
157         writel(regs->sdram_config, &emif->emif_sdram_config);
158         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
159
160         /* Enable refresh now */
161         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
162
163         }
164
165 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
166 {
167 }
168
169 void emif_update_timings(u32 base, const struct emif_regs *regs)
170 {
171         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
172
173         if (!is_dra7xx())
174                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
175         else
176                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
177
178         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
179         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
180         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
181         if (omap_revision() == OMAP4430_ES1_0) {
182                 /* ES1 bug EMIF should be in force idle during freq_update */
183                 writel(0, &emif->emif_pwr_mgmt_ctrl);
184         } else {
185                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
186                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
187         }
188         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
189         writel(regs->zq_config, &emif->emif_zq_config);
190         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
191         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
192
193         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
194                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
195                         &emif->emif_l3_config);
196         } else if (omap_revision() >= OMAP4460_ES1_0) {
197                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
198                         &emif->emif_l3_config);
199         } else {
200                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
201                         &emif->emif_l3_config);
202         }
203 }
204
205 #ifndef CONFIG_OMAP44XX
206 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
207 {
208         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
209
210         /* keep sdram in self-refresh */
211         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
212                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
213         __udelay(130);
214
215         /*
216          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
217          * Invert clock adds an additional half cycle delay on the
218          * command interface.  The additional half cycle, is usually
219          * meant to enable leveling in the situation that DQS is later
220          * than CK on the board.It also helps provide some additional
221          * margin for leveling.
222          */
223         writel(regs->emif_ddr_phy_ctlr_1,
224                &emif->emif_ddr_phy_ctrl_1);
225
226         writel(regs->emif_ddr_phy_ctlr_1,
227                &emif->emif_ddr_phy_ctrl_1_shdw);
228         __udelay(130);
229
230         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
231                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
232
233         /* Launch Full leveling */
234         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
235
236         /* Wait till full leveling is complete */
237         readl(&emif->emif_rd_wr_lvl_ctl);
238               __udelay(130);
239
240         /* Read data eye leveling no of samples */
241         config_data_eye_leveling_samples(base);
242
243         /*
244          * Launch 8 incremental WR_LVL- to compensate for
245          * PHY limitation.
246          */
247         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
248                &emif->emif_rd_wr_lvl_ctl);
249
250         __udelay(130);
251
252         /* Launch Incremental leveling */
253         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
254                __udelay(130);
255 }
256
257 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
258 {
259         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
260         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
261         u32 reg, i, phy;
262
263         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
264         phy = readl(&emif->emif_ddr_phy_ctrl_1);
265
266         /* Update PHY_REG_RDDQS_RATIO */
267         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
268         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
269                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
270                         reg = readl(emif_phy_status++);
271                         writel(reg, emif_ext_phy_ctrl_reg++);
272                         writel(reg, emif_ext_phy_ctrl_reg++);
273                 }
274
275         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
276         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
277         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
278         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
279                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
280                         reg = readl(emif_phy_status++);
281                         writel(reg, emif_ext_phy_ctrl_reg++);
282                         writel(reg, emif_ext_phy_ctrl_reg++);
283                 }
284
285         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
286         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
287         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
288         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
289                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
290                         reg = readl(emif_phy_status++);
291                         writel(reg, emif_ext_phy_ctrl_reg++);
292                         writel(reg, emif_ext_phy_ctrl_reg++);
293                 }
294
295         /* Disable Leveling */
296         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
297         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
298         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
299 }
300
301 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
302 {
303         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
304
305         /* Clear Error Status */
306         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309
310         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
311                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
312                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
313
314         /* Disable refreshed before leveling */
315         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
316                         EMIF_REG_INITREF_DIS_MASK);
317
318         /* Start Full leveling */
319         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
320
321         __udelay(300);
322
323         /* Check for leveling timeout */
324         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
325                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
326                 return;
327         }
328
329         /* Enable refreshes after leveling */
330         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
331
332         debug("HW leveling success\n");
333         /*
334          * Update slave ratios in EXT_PHY_CTRLx registers
335          * as per HW leveling output
336          */
337         update_hwleveling_output(base, regs);
338 }
339
340 static void dra7_reset_ddr_data(u32 base, u32 size)
341 {
342 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
343         enable_edma3_clocks();
344
345         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
346
347         disable_edma3_clocks();
348 #else
349         memset((void *)base, 0, size);
350 #endif
351 }
352
353 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
354 {
355         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
356         u32 rgn, rgn_start, size, ctrl_reg;
357
358         /* ECC available only on dra76x EMIF1 */
359         if ((base != EMIF1_BASE) || !is_dra76x())
360                 return;
361
362         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
363                 /* Disable high-order interleaving */
364                 clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
365
366 #ifdef CONFIG_DRA7XX
367                 /* Clear the status flags and other history */
368                 writel(readl(&emif->emif_1b_ecc_err_cnt),
369                        &emif->emif_1b_ecc_err_cnt);
370                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
371                 writel(0x2, &emif->emif_1b_ecc_err_addr_log);
372                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
373                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
374                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
375                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
376                        &emif->emif_irqstatus_sys);
377 #endif
378                 writel(regs->emif_ecc_address_range_1,
379                        &emif->emif_ecc_address_range_1);
380                 writel(regs->emif_ecc_address_range_2,
381                        &emif->emif_ecc_address_range_2);
382
383                 /* Disable RMW and ECC verification for read accesses */
384                 ctrl_reg = (regs->emif_ecc_ctrl_reg &
385                             ~EMIF_ECC_REG_RMW_EN_MASK) |
386                            EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
387                 writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
388
389                 /* Set region1 memory with 0 */
390                 rgn_start = (regs->emif_ecc_address_range_1 &
391                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
392                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
393                 size = (regs->emif_ecc_address_range_1 &
394                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
395
396                 if (regs->emif_ecc_ctrl_reg &
397                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
398                         dra7_reset_ddr_data(rgn, size);
399
400                 /* Set region2 memory with 0 */
401                 rgn_start = (regs->emif_ecc_address_range_2 &
402                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
403                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
404                 size = (regs->emif_ecc_address_range_2 &
405                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
406
407                 if (regs->emif_ecc_ctrl_reg &
408                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
409                         dra7_reset_ddr_data(rgn, size);
410
411                 /* Default value enables RMW and ECC verification */
412                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
413         }
414 }
415
416 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
417 {
418         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
419
420         if (warm_reset()) {
421                 emif_reset_phy(base);
422                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
423         }
424         do_ext_phy_settings(base, regs);
425
426         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
427                &emif->emif_sdram_ref_ctrl);
428         /* Update timing registers */
429         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
430         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
431         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
432
433         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
434         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
435         writel(regs->zq_config, &emif->emif_zq_config);
436         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
437         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
438         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
439
440         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
441         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
442
443         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
444
445         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
446         writel(regs->sdram_config_init, &emif->emif_sdram_config);
447
448         __udelay(1000);
449
450         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
451
452         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
453                 /*
454                  * Perform Dummy ECC setup just to allow hardware
455                  * leveling of ECC memories
456                  */
457                 if (is_dra76x() && (base == EMIF1_BASE) &&
458                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
459                         writel(0, &emif->emif_ecc_address_range_1);
460                         writel(0, &emif->emif_ecc_address_range_2);
461                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
462                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
463                                &emif->emif_ecc_ctrl_reg);
464                 }
465
466                 dra7_ddr3_leveling(base, regs);
467
468                 /* Disable ECC */
469                 if (is_dra76x())
470                         writel(0, &emif->emif_ecc_ctrl_reg);
471         }
472
473         /* Enable ECC as necessary */
474         dra7_enable_ecc(base, regs);
475 }
476
477 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
478 {
479         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
480
481         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
482         writel(regs->sdram_config_init, &emif->emif_sdram_config);
483         /*
484          * Set SDRAM_CONFIG and PHY control registers to locked frequency
485          * and RL =7. As the default values of the Mode Registers are not
486          * defined, contents of mode Registers must be fully initialized.
487          * H/W takes care of this initialization
488          */
489         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
490
491         /* Update timing registers */
492         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
493         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
494         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
495
496         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
497
498         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
499         writel(regs->sdram_config_init, &emif->emif_sdram_config);
500         do_ext_phy_settings(base, regs);
501
502         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
503         omap5_ddr3_leveling(base, regs);
504 }
505
506 static void ddr3_init(u32 base, const struct emif_regs *regs)
507 {
508         if (is_omap54xx())
509                 omap5_ddr3_init(base, regs);
510         else
511                 dra7_ddr3_init(base, regs);
512 }
513 #endif
514
515 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
516 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
517
518 /*
519  * Organization and refresh requirements for LPDDR2 devices of different
520  * types and densities. Derived from JESD209-2 section 2.4
521  */
522 const struct lpddr2_addressing addressing_table[] = {
523         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
524         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
525         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
526         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
527         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
528         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
529         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
530         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
531         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
532         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
533         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
534 };
535
536 static const u32 lpddr2_density_2_size_in_mbytes[] = {
537         8,                      /* 64Mb */
538         16,                     /* 128Mb */
539         32,                     /* 256Mb */
540         64,                     /* 512Mb */
541         128,                    /* 1Gb   */
542         256,                    /* 2Gb   */
543         512,                    /* 4Gb   */
544         1024,                   /* 8Gb   */
545         2048,                   /* 16Gb  */
546         4096                    /* 32Gb  */
547 };
548
549 /*
550  * Calculate the period of DDR clock from frequency value and set the
551  * denominator and numerator in global variables for easy access later
552  */
553 static void set_ddr_clk_period(u32 freq)
554 {
555         /*
556          * period = 1/freq
557          * period_in_ns = 10^9/freq
558          */
559         *T_num = 1000000000;
560         *T_den = freq;
561         cancel_out(T_num, T_den, 200);
562
563 }
564
565 /*
566  * Convert time in nano seconds to number of cycles of DDR clock
567  */
568 static inline u32 ns_2_cycles(u32 ns)
569 {
570         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
571 }
572
573 /*
574  * ns_2_cycles with the difference that the time passed is 2 times the actual
575  * value(to avoid fractions). The cycles returned is for the original value of
576  * the timing parameter
577  */
578 static inline u32 ns_x2_2_cycles(u32 ns)
579 {
580         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
581 }
582
583 /*
584  * Find addressing table index based on the device's type(S2 or S4) and
585  * density
586  */
587 s8 addressing_table_index(u8 type, u8 density, u8 width)
588 {
589         u8 index;
590         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
591                 return -1;
592
593         /*
594          * Look at the way ADDR_TABLE_INDEX* values have been defined
595          * in emif.h compared to LPDDR2_DENSITY_* values
596          * The table is layed out in the increasing order of density
597          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
598          * at the end
599          */
600         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
601                 index = ADDR_TABLE_INDEX1GS2;
602         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
603                 index = ADDR_TABLE_INDEX2GS2;
604         else
605                 index = density;
606
607         debug("emif: addressing table index %d\n", index);
608
609         return index;
610 }
611
612 /*
613  * Find the the right timing table from the array of timing
614  * tables of the device using DDR clock frequency
615  */
616 static const struct lpddr2_ac_timings *get_timings_table(const struct
617                         lpddr2_ac_timings *const *device_timings,
618                         u32 freq)
619 {
620         u32 i, temp, freq_nearest;
621         const struct lpddr2_ac_timings *timings = 0;
622
623         emif_assert(freq <= MAX_LPDDR2_FREQ);
624         emif_assert(device_timings);
625
626         /*
627          * Start with the maximum allowed frequency - that is always safe
628          */
629         freq_nearest = MAX_LPDDR2_FREQ;
630         /*
631          * Find the timings table that has the max frequency value:
632          *   i.  Above or equal to the DDR frequency - safe
633          *   ii. The lowest that satisfies condition (i) - optimal
634          */
635         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
636                 temp = device_timings[i]->max_freq;
637                 if ((temp >= freq) && (temp <= freq_nearest)) {
638                         freq_nearest = temp;
639                         timings = device_timings[i];
640                 }
641         }
642         debug("emif: timings table: %d\n", freq_nearest);
643         return timings;
644 }
645
646 /*
647  * Finds the value of emif_sdram_config_reg
648  * All parameters are programmed based on the device on CS0.
649  * If there is a device on CS1, it will be same as that on CS0 or
650  * it will be NVM. We don't support NVM yet.
651  * If cs1_device pointer is NULL it is assumed that there is no device
652  * on CS1
653  */
654 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
655                                 const struct lpddr2_device_details *cs1_device,
656                                 const struct lpddr2_addressing *addressing,
657                                 u8 RL)
658 {
659         u32 config_reg = 0;
660
661         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
662         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
663                         EMIF_REG_IBANK_POS_SHIFT;
664
665         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
666
667         config_reg |= RL << EMIF_REG_CL_SHIFT;
668
669         config_reg |= addressing->row_sz[cs0_device->io_width] <<
670                         EMIF_REG_ROWSIZE_SHIFT;
671
672         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
673
674         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
675                         EMIF_REG_EBANK_SHIFT;
676
677         config_reg |= addressing->col_sz[cs0_device->io_width] <<
678                         EMIF_REG_PAGESIZE_SHIFT;
679
680         return config_reg;
681 }
682
683 static u32 get_sdram_ref_ctrl(u32 freq,
684                               const struct lpddr2_addressing *addressing)
685 {
686         u32 ref_ctrl = 0, val = 0, freq_khz;
687         freq_khz = freq / 1000;
688         /*
689          * refresh rate to be set is 'tREFI * freq in MHz
690          * division by 10000 to account for khz and x10 in t_REFI_us_x10
691          */
692         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
693         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
694
695         return ref_ctrl;
696 }
697
698 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
699                                const struct lpddr2_min_tck *min_tck,
700                                const struct lpddr2_addressing *addressing)
701 {
702         u32 tim1 = 0, val = 0;
703         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
704         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
705
706         if (addressing->num_banks == BANKS8)
707                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
708                                                         (4 * (*T_num)) - 1;
709         else
710                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
711
712         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
713
714         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
715         tim1 |= val << EMIF_REG_T_RC_SHIFT;
716
717         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
718         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
719
720         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
721         tim1 |= val << EMIF_REG_T_WR_SHIFT;
722
723         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
724         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
725
726         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
727         tim1 |= val << EMIF_REG_T_RP_SHIFT;
728
729         return tim1;
730 }
731
732 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
733                                const struct lpddr2_min_tck *min_tck)
734 {
735         u32 tim2 = 0, val = 0;
736         val = max(min_tck->tCKE, timings->tCKE) - 1;
737         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
738
739         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
740         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
741
742         /*
743          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
744          * same value
745          */
746         val = ns_2_cycles(timings->tXSR) - 1;
747         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
748         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
749
750         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
751         tim2 |= val << EMIF_REG_T_XP_SHIFT;
752
753         return tim2;
754 }
755
756 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
757                                const struct lpddr2_min_tck *min_tck,
758                                const struct lpddr2_addressing *addressing)
759 {
760         u32 tim3 = 0, val = 0;
761         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
762         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
763
764         val = ns_2_cycles(timings->tRFCab) - 1;
765         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
766
767         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
768         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
769
770         val = ns_2_cycles(timings->tZQCS) - 1;
771         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
772
773         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
774         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
775
776         return tim3;
777 }
778
779 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
780                              const struct lpddr2_addressing *addressing,
781                              u8 volt_ramp)
782 {
783         u32 zq = 0, val = 0;
784         if (volt_ramp)
785                 val =
786                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
787                     addressing->t_REFI_us_x10;
788         else
789                 val =
790                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
791                     addressing->t_REFI_us_x10;
792         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
793
794         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
795
796         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
797
798         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
799
800         /*
801          * Assuming that two chipselects have a single calibration resistor
802          * If there are indeed two calibration resistors, then this flag should
803          * be enabled to take advantage of dual calibration feature.
804          * This data should ideally come from board files. But considering
805          * that none of the boards today have calibration resistors per CS,
806          * it would be an unnecessary overhead.
807          */
808         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
809
810         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
811
812         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
813
814         return zq;
815 }
816
817 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
818                                  const struct lpddr2_addressing *addressing,
819                                  u8 is_derated)
820 {
821         u32 alert = 0, interval;
822         interval =
823             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
824         if (is_derated)
825                 interval *= 4;
826         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
827
828         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
829
830         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
831
832         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
833
834         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
835
836         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
837
838         return alert;
839 }
840
841 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
842 {
843         u32 idle = 0, val = 0;
844         if (volt_ramp)
845                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
846         else
847                 /*Maximum value in normal conditions - suggested by hw team */
848                 val = 0x1FF;
849         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
850
851         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
852
853         return idle;
854 }
855
856 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
857 {
858         u32 phy = 0, val = 0;
859
860         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
861
862         if (freq <= 100000000)
863                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
864         else if (freq <= 200000000)
865                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
866         else
867                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
868         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
869
870         /* Other fields are constant magic values. Hardcode them together */
871         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
872                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
873
874         return phy;
875 }
876
877 static u32 get_emif_mem_size(u32 base)
878 {
879         u32 size_mbytes = 0, temp;
880         struct emif_device_details dev_details;
881         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
882         u32 emif_nr = emif_num(base);
883
884         emif_reset_phy(base);
885         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
886                                                 &cs0_dev_details);
887         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
888                                                 &cs1_dev_details);
889         emif_reset_phy(base);
890
891         if (dev_details.cs0_device_details) {
892                 temp = dev_details.cs0_device_details->density;
893                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
894         }
895
896         if (dev_details.cs1_device_details) {
897                 temp = dev_details.cs1_device_details->density;
898                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
899         }
900         /* convert to bytes */
901         return size_mbytes << 20;
902 }
903
904 /* Gets the encoding corresponding to a given DMM section size */
905 u32 get_dmm_section_size_map(u32 section_size)
906 {
907         /*
908          * Section size mapping:
909          * 0x0: 16-MiB section
910          * 0x1: 32-MiB section
911          * 0x2: 64-MiB section
912          * 0x3: 128-MiB section
913          * 0x4: 256-MiB section
914          * 0x5: 512-MiB section
915          * 0x6: 1-GiB section
916          * 0x7: 2-GiB section
917          */
918         section_size >>= 24; /* divide by 16 MB */
919         return log_2_n_round_down(section_size);
920 }
921
922 static void emif_calculate_regs(
923                 const struct emif_device_details *emif_dev_details,
924                 u32 freq, struct emif_regs *regs)
925 {
926         u32 temp, sys_freq;
927         const struct lpddr2_addressing *addressing;
928         const struct lpddr2_ac_timings *timings;
929         const struct lpddr2_min_tck *min_tck;
930         const struct lpddr2_device_details *cs0_dev_details =
931                                         emif_dev_details->cs0_device_details;
932         const struct lpddr2_device_details *cs1_dev_details =
933                                         emif_dev_details->cs1_device_details;
934         const struct lpddr2_device_timings *cs0_dev_timings =
935                                         emif_dev_details->cs0_device_timings;
936
937         emif_assert(emif_dev_details);
938         emif_assert(regs);
939         /*
940          * You can not have a device on CS1 without one on CS0
941          * So configuring EMIF without a device on CS0 doesn't
942          * make sense
943          */
944         emif_assert(cs0_dev_details);
945         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
946         /*
947          * If there is a device on CS1 it should be same type as CS0
948          * (or NVM. But NVM is not supported in this driver yet)
949          */
950         emif_assert((cs1_dev_details == NULL) ||
951                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
952                     (cs0_dev_details->type == cs1_dev_details->type));
953         emif_assert(freq <= MAX_LPDDR2_FREQ);
954
955         set_ddr_clk_period(freq);
956
957         /*
958          * The device on CS0 is used for all timing calculations
959          * There is only one set of registers for timings per EMIF. So, if the
960          * second CS(CS1) has a device, it should have the same timings as the
961          * device on CS0
962          */
963         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
964         emif_assert(timings);
965         min_tck = cs0_dev_timings->min_tck;
966
967         temp = addressing_table_index(cs0_dev_details->type,
968                                       cs0_dev_details->density,
969                                       cs0_dev_details->io_width);
970
971         emif_assert((temp >= 0));
972         addressing = &(addressing_table[temp]);
973         emif_assert(addressing);
974
975         sys_freq = get_sys_clk_freq();
976
977         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
978                                                         cs1_dev_details,
979                                                         addressing, RL_BOOT);
980
981         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
982                                                 cs1_dev_details,
983                                                 addressing, RL_FINAL);
984
985         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
986
987         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
988
989         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
990
991         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
992
993         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
994
995         regs->temp_alert_config =
996             get_temp_alert_config(cs1_dev_details, addressing, 0);
997
998         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
999                                             LPDDR2_VOLTAGE_STABLE);
1000
1001         regs->emif_ddr_phy_ctlr_1_init =
1002                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1003
1004         regs->emif_ddr_phy_ctlr_1 =
1005                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
1006
1007         regs->freq = freq;
1008
1009         print_timing_reg(regs->sdram_config_init);
1010         print_timing_reg(regs->sdram_config);
1011         print_timing_reg(regs->ref_ctrl);
1012         print_timing_reg(regs->sdram_tim1);
1013         print_timing_reg(regs->sdram_tim2);
1014         print_timing_reg(regs->sdram_tim3);
1015         print_timing_reg(regs->read_idle_ctrl);
1016         print_timing_reg(regs->temp_alert_config);
1017         print_timing_reg(regs->zq_config);
1018         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1019         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1020 }
1021 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1022
1023 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1024 const char *get_lpddr2_type(u8 type_id)
1025 {
1026         switch (type_id) {
1027         case LPDDR2_TYPE_S4:
1028                 return "LPDDR2-S4";
1029         case LPDDR2_TYPE_S2:
1030                 return "LPDDR2-S2";
1031         default:
1032                 return NULL;
1033         }
1034 }
1035
1036 const char *get_lpddr2_io_width(u8 width_id)
1037 {
1038         switch (width_id) {
1039         case LPDDR2_IO_WIDTH_8:
1040                 return "x8";
1041         case LPDDR2_IO_WIDTH_16:
1042                 return "x16";
1043         case LPDDR2_IO_WIDTH_32:
1044                 return "x32";
1045         default:
1046                 return NULL;
1047         }
1048 }
1049
1050 const char *get_lpddr2_manufacturer(u32 manufacturer)
1051 {
1052         switch (manufacturer) {
1053         case LPDDR2_MANUFACTURER_SAMSUNG:
1054                 return "Samsung";
1055         case LPDDR2_MANUFACTURER_QIMONDA:
1056                 return "Qimonda";
1057         case LPDDR2_MANUFACTURER_ELPIDA:
1058                 return "Elpida";
1059         case LPDDR2_MANUFACTURER_ETRON:
1060                 return "Etron";
1061         case LPDDR2_MANUFACTURER_NANYA:
1062                 return "Nanya";
1063         case LPDDR2_MANUFACTURER_HYNIX:
1064                 return "Hynix";
1065         case LPDDR2_MANUFACTURER_MOSEL:
1066                 return "Mosel";
1067         case LPDDR2_MANUFACTURER_WINBOND:
1068                 return "Winbond";
1069         case LPDDR2_MANUFACTURER_ESMT:
1070                 return "ESMT";
1071         case LPDDR2_MANUFACTURER_SPANSION:
1072                 return "Spansion";
1073         case LPDDR2_MANUFACTURER_SST:
1074                 return "SST";
1075         case LPDDR2_MANUFACTURER_ZMOS:
1076                 return "ZMOS";
1077         case LPDDR2_MANUFACTURER_INTEL:
1078                 return "Intel";
1079         case LPDDR2_MANUFACTURER_NUMONYX:
1080                 return "Numonyx";
1081         case LPDDR2_MANUFACTURER_MICRON:
1082                 return "Micron";
1083         default:
1084                 return NULL;
1085         }
1086 }
1087
1088 static void display_sdram_details(u32 emif_nr, u32 cs,
1089                                   struct lpddr2_device_details *device)
1090 {
1091         const char *mfg_str;
1092         const char *type_str;
1093         char density_str[10];
1094         u32 density;
1095
1096         debug("EMIF%d CS%d\t", emif_nr, cs);
1097
1098         if (!device) {
1099                 debug("None\n");
1100                 return;
1101         }
1102
1103         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1104         type_str = get_lpddr2_type(device->type);
1105
1106         density = lpddr2_density_2_size_in_mbytes[device->density];
1107         if ((density / 1024 * 1024) == density) {
1108                 density /= 1024;
1109                 sprintf(density_str, "%d GB", density);
1110         } else
1111                 sprintf(density_str, "%d MB", density);
1112         if (mfg_str && type_str)
1113                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1114 }
1115
1116 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1117                                   struct lpddr2_device_details *lpddr2_device)
1118 {
1119         u32 mr = 0, temp;
1120
1121         mr = get_mr(base, cs, LPDDR2_MR0);
1122         if (mr > 0xFF) {
1123                 /* Mode register value bigger than 8 bit */
1124                 return 0;
1125         }
1126
1127         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1128         if (temp) {
1129                 /* Not SDRAM */
1130                 return 0;
1131         }
1132         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1133
1134         if (temp) {
1135                 /* DNV supported - But DNV is only supported for NVM */
1136                 return 0;
1137         }
1138
1139         mr = get_mr(base, cs, LPDDR2_MR4);
1140         if (mr > 0xFF) {
1141                 /* Mode register value bigger than 8 bit */
1142                 return 0;
1143         }
1144
1145         mr = get_mr(base, cs, LPDDR2_MR5);
1146         if (mr > 0xFF) {
1147                 /* Mode register value bigger than 8 bit */
1148                 return 0;
1149         }
1150
1151         if (!get_lpddr2_manufacturer(mr)) {
1152                 /* Manufacturer not identified */
1153                 return 0;
1154         }
1155         lpddr2_device->manufacturer = mr;
1156
1157         mr = get_mr(base, cs, LPDDR2_MR6);
1158         if (mr >= 0xFF) {
1159                 /* Mode register value bigger than 8 bit */
1160                 return 0;
1161         }
1162
1163         mr = get_mr(base, cs, LPDDR2_MR7);
1164         if (mr >= 0xFF) {
1165                 /* Mode register value bigger than 8 bit */
1166                 return 0;
1167         }
1168
1169         mr = get_mr(base, cs, LPDDR2_MR8);
1170         if (mr >= 0xFF) {
1171                 /* Mode register value bigger than 8 bit */
1172                 return 0;
1173         }
1174
1175         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1176         if (!get_lpddr2_type(temp)) {
1177                 /* Not SDRAM */
1178                 return 0;
1179         }
1180         lpddr2_device->type = temp;
1181
1182         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1183         if (temp > LPDDR2_DENSITY_32Gb) {
1184                 /* Density not supported */
1185                 return 0;
1186         }
1187         lpddr2_device->density = temp;
1188
1189         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1190         if (!get_lpddr2_io_width(temp)) {
1191                 /* IO width unsupported value */
1192                 return 0;
1193         }
1194         lpddr2_device->io_width = temp;
1195
1196         /*
1197          * If all the above tests pass we should
1198          * have a device on this chip-select
1199          */
1200         return 1;
1201 }
1202
1203 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1204                         struct lpddr2_device_details *lpddr2_dev_details)
1205 {
1206         u32 phy;
1207         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1208
1209         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1210
1211         if (!lpddr2_dev_details)
1212                 return NULL;
1213
1214         /* Do the minimum init for mode register accesses */
1215         if (!(running_from_sdram() || warm_reset())) {
1216                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1217                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1218         }
1219
1220         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1221                 return NULL;
1222
1223         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1224
1225         return lpddr2_dev_details;
1226 }
1227 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1228
1229 static void do_sdram_init(u32 base)
1230 {
1231         const struct emif_regs *regs;
1232         u32 in_sdram, emif_nr;
1233
1234         debug(">>do_sdram_init() %x\n", base);
1235
1236         in_sdram = running_from_sdram();
1237         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1238
1239 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1240         emif_get_reg_dump(emif_nr, &regs);
1241         if (!regs) {
1242                 debug("EMIF: reg dump not provided\n");
1243                 return;
1244         }
1245 #else
1246         /*
1247          * The user has not provided the register values. We need to
1248          * calculate it based on the timings and the DDR frequency
1249          */
1250         struct emif_device_details dev_details;
1251         struct emif_regs calculated_regs;
1252
1253         /*
1254          * Get device details:
1255          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1256          * - Obtained from user otherwise
1257          */
1258         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1259         emif_reset_phy(base);
1260         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1261                                                 &cs0_dev_details);
1262         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1263                                                 &cs1_dev_details);
1264         emif_reset_phy(base);
1265
1266         /* Return if no devices on this EMIF */
1267         if (!dev_details.cs0_device_details &&
1268             !dev_details.cs1_device_details) {
1269                 return;
1270         }
1271
1272         /*
1273          * Get device timings:
1274          * - Default timings specified by JESD209-2 if
1275          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1276          * - Obtained from user otherwise
1277          */
1278         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1279                                 &dev_details.cs1_device_timings);
1280
1281         /* Calculate the register values */
1282         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1283         regs = &calculated_regs;
1284 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1285
1286         /*
1287          * Initializing the DDR device can not happen from SDRAM.
1288          * Changing the timing registers in EMIF can happen(going from one
1289          * OPP to another)
1290          */
1291         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1292                 if (emif_sdram_type(regs->sdram_config) ==
1293                     EMIF_SDRAM_TYPE_LPDDR2)
1294                         lpddr2_init(base, regs);
1295 #ifndef CONFIG_OMAP44XX
1296                 else
1297                         ddr3_init(base, regs);
1298 #endif
1299         }
1300 #ifdef CONFIG_OMAP54XX
1301         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1302             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1303                 set_lpmode_selfrefresh(base);
1304                 emif_reset_phy(base);
1305                 omap5_ddr3_leveling(base, regs);
1306         }
1307 #endif
1308
1309         /* Write to the shadow registers */
1310         emif_update_timings(base, regs);
1311
1312         debug("<<do_sdram_init() %x\n", base);
1313 }
1314
1315 void emif_post_init_config(u32 base)
1316 {
1317         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1318         u32 omap_rev = omap_revision();
1319
1320         /* reset phy on ES2.0 */
1321         if (omap_rev == OMAP4430_ES2_0)
1322                 emif_reset_phy(base);
1323
1324         /* Put EMIF back in smart idle on ES1.0 */
1325         if (omap_rev == OMAP4430_ES1_0)
1326                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1327 }
1328
1329 void dmm_init(u32 base)
1330 {
1331         const struct dmm_lisa_map_regs *lisa_map_regs;
1332         u32 i, section, valid;
1333
1334 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1335         emif_get_dmm_regs(&lisa_map_regs);
1336 #else
1337         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1338         u32 section_cnt, sys_addr;
1339         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1340
1341         mapped_size = 0;
1342         section_cnt = 3;
1343         sys_addr = CONFIG_SYS_SDRAM_BASE;
1344         emif1_size = get_emif_mem_size(EMIF1_BASE);
1345         emif2_size = get_emif_mem_size(EMIF2_BASE);
1346         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1347
1348         if (!emif1_size && !emif2_size)
1349                 return;
1350
1351         /* symmetric interleaved section */
1352         if (emif1_size && emif2_size) {
1353                 mapped_size = min(emif1_size, emif2_size);
1354                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1355                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1356                 /* only MSB */
1357                 section_map |= (sys_addr >> 24) <<
1358                                 EMIF_SYS_ADDR_SHIFT;
1359                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1360                                 << EMIF_SYS_SIZE_SHIFT;
1361                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1362                 emif1_size -= mapped_size;
1363                 emif2_size -= mapped_size;
1364                 sys_addr += (mapped_size * 2);
1365                 section_cnt--;
1366         }
1367
1368         /*
1369          * Single EMIF section(we can have a maximum of 1 single EMIF
1370          * section- either EMIF1 or EMIF2 or none, but not both)
1371          */
1372         if (emif1_size) {
1373                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1374                 section_map |= get_dmm_section_size_map(emif1_size)
1375                                 << EMIF_SYS_SIZE_SHIFT;
1376                 /* only MSB */
1377                 section_map |= (mapped_size >> 24) <<
1378                                 EMIF_SDRC_ADDR_SHIFT;
1379                 /* only MSB */
1380                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1381                 section_cnt--;
1382         }
1383         if (emif2_size) {
1384                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1385                 section_map |= get_dmm_section_size_map(emif2_size) <<
1386                                 EMIF_SYS_SIZE_SHIFT;
1387                 /* only MSB */
1388                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1389                 /* only MSB */
1390                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1391                 section_cnt--;
1392         }
1393
1394         if (section_cnt == 2) {
1395                 /* Only 1 section - either symmetric or single EMIF */
1396                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1397                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1398                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1399         } else {
1400                 /* 2 sections - 1 symmetric, 1 single EMIF */
1401                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1402                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1403         }
1404
1405         /* TRAP for invalid TILER mappings in section 0 */
1406         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1407
1408         if (omap_revision() >= OMAP4460_ES1_0)
1409                 lis_map_regs_calculated.is_ma_present = 1;
1410
1411         lisa_map_regs = &lis_map_regs_calculated;
1412 #endif
1413         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1414             (struct dmm_lisa_map_regs *)base;
1415
1416         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1417         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1418         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1419         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1420
1421         writel(lisa_map_regs->dmm_lisa_map_3,
1422                 &hw_lisa_map_regs->dmm_lisa_map_3);
1423         writel(lisa_map_regs->dmm_lisa_map_2,
1424                 &hw_lisa_map_regs->dmm_lisa_map_2);
1425         writel(lisa_map_regs->dmm_lisa_map_1,
1426                 &hw_lisa_map_regs->dmm_lisa_map_1);
1427         writel(lisa_map_regs->dmm_lisa_map_0,
1428                 &hw_lisa_map_regs->dmm_lisa_map_0);
1429
1430         if (lisa_map_regs->is_ma_present) {
1431                 hw_lisa_map_regs =
1432                     (struct dmm_lisa_map_regs *)MA_BASE;
1433
1434                 writel(lisa_map_regs->dmm_lisa_map_3,
1435                         &hw_lisa_map_regs->dmm_lisa_map_3);
1436                 writel(lisa_map_regs->dmm_lisa_map_2,
1437                         &hw_lisa_map_regs->dmm_lisa_map_2);
1438                 writel(lisa_map_regs->dmm_lisa_map_1,
1439                         &hw_lisa_map_regs->dmm_lisa_map_1);
1440                 writel(lisa_map_regs->dmm_lisa_map_0,
1441                         &hw_lisa_map_regs->dmm_lisa_map_0);
1442
1443                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1444         }
1445
1446         /*
1447          * EMIF should be configured only when
1448          * memory is mapped on it. Using emif1_enabled
1449          * and emif2_enabled variables for this.
1450          */
1451         emif1_enabled = 0;
1452         emif2_enabled = 0;
1453         for (i = 0; i < 4; i++) {
1454                 section = __raw_readl(DMM_BASE + i*4);
1455                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1456                         (EMIF_SDRC_MAP_SHIFT);
1457                 if (valid == 3) {
1458                         emif1_enabled = 1;
1459                         emif2_enabled = 1;
1460                         break;
1461                 }
1462
1463                 if (valid == 1)
1464                         emif1_enabled = 1;
1465
1466                 if (valid == 2)
1467                         emif2_enabled = 1;
1468         }
1469 }
1470
1471 static void do_bug0039_workaround(u32 base)
1472 {
1473         u32 val, i, clkctrl;
1474         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1475         const struct read_write_regs *bug_00339_regs;
1476         u32 iterations;
1477         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1478         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1479
1480         if (is_dra7xx())
1481                 phy_status_base++;
1482
1483         bug_00339_regs = get_bug_regs(&iterations);
1484
1485         /* Put EMIF in to idle */
1486         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1487         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1488
1489         /* Copy the phy status registers in to phy ctrl shadow registers */
1490         for (i = 0; i < iterations; i++) {
1491                 val = __raw_readl(phy_status_base +
1492                                   bug_00339_regs[i].read_reg - 1);
1493
1494                 __raw_writel(val, phy_ctrl_base +
1495                              ((bug_00339_regs[i].write_reg - 1) << 1));
1496
1497                 __raw_writel(val, phy_ctrl_base +
1498                              (bug_00339_regs[i].write_reg << 1) - 1);
1499         }
1500
1501         /* Disable leveling */
1502         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1503
1504         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1505 }
1506
1507 /*
1508  * SDRAM initialization:
1509  * SDRAM initialization has two parts:
1510  * 1. Configuring the SDRAM device
1511  * 2. Update the AC timings related parameters in the EMIF module
1512  * (1) should be done only once and should not be done while we are
1513  * running from SDRAM.
1514  * (2) can and should be done more than once if OPP changes.
1515  * Particularly, this may be needed when we boot without SPL and
1516  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1517  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1518  * the frequency. So,
1519  * Doing (1) and (2) makes sense - first time initialization
1520  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1521  * Doing (1) and not (2) doen't make sense
1522  * See do_sdram_init() for the details
1523  */
1524 void sdram_init(void)
1525 {
1526         u32 in_sdram, size_prog, size_detect;
1527         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1528         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1529
1530         debug(">>sdram_init()\n");
1531
1532         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1533                 return;
1534
1535         in_sdram = running_from_sdram();
1536         debug("in_sdram = %d\n", in_sdram);
1537
1538         if (!in_sdram) {
1539                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1540                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1541                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1542                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1543         }
1544
1545         if (!in_sdram)
1546                 dmm_init(DMM_BASE);
1547
1548         if (emif1_enabled)
1549                 do_sdram_init(EMIF1_BASE);
1550
1551         if (emif2_enabled)
1552                 do_sdram_init(EMIF2_BASE);
1553
1554         if (!(in_sdram || warm_reset())) {
1555                 if (emif1_enabled)
1556                         emif_post_init_config(EMIF1_BASE);
1557                 if (emif2_enabled)
1558                         emif_post_init_config(EMIF2_BASE);
1559         }
1560
1561         /* for the shadow registers to take effect */
1562         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1563                 freq_update_core();
1564
1565         /* Do some testing after the init */
1566         if (!in_sdram) {
1567                 size_prog = omap_sdram_size();
1568                 size_prog = log_2_n_round_down(size_prog);
1569                 size_prog = (1 << size_prog);
1570
1571                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1572                                                 size_prog);
1573                 /* Compare with the size programmed */
1574                 if (size_detect != size_prog) {
1575                         printf("SDRAM: identified size not same as expected"
1576                                 " size identified: %x expected: %x\n",
1577                                 size_detect,
1578                                 size_prog);
1579                 } else
1580                         debug("get_ram_size() successful");
1581         }
1582
1583 #if defined(CONFIG_TI_SECURE_DEVICE)
1584         /*
1585          * On HS devices, do static EMIF firewall configuration
1586          * but only do it if not already running in SDRAM
1587          */
1588         if (!in_sdram)
1589                 if (0 != secure_emif_reserve())
1590                         hang();
1591
1592         /* On HS devices, ensure static EMIF firewall APIs are locked */
1593         if (0 != secure_emif_firewall_lock())
1594                 hang();
1595 #endif
1596
1597         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1598             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1599                 if (emif1_enabled)
1600                         do_bug0039_workaround(EMIF1_BASE);
1601                 if (emif2_enabled)
1602                         do_bug0039_workaround(EMIF2_BASE);
1603         }
1604
1605         debug("<<sdram_init()\n");
1606 }