Merge tag 'u-boot-atmel-fixes-2020.07-a' of https://gitlab.denx.de/u-boot/custodians...
[oweals/u-boot.git] / arch / arm / mach-keystone / clock.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Keystone2: pll initialization
4  *
5  * (C) Copyright 2012-2014
6  *     Texas Instruments Incorporated, <www.ti.com>
7  */
8
9 #include <common.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/clock_defs.h>
12 #include <linux/bitops.h>
13
14 /* DEV and ARM speed definitions as specified in DEVSPEED register */
15 int __weak speeds[DEVSPEED_NUMSPDS] = {
16         SPD1000,
17         SPD1200,
18         SPD1350,
19         SPD1400,
20         SPD1500,
21         SPD1400,
22         SPD1350,
23         SPD1200,
24         SPD1000,
25         SPD800,
26 };
27
28 const struct keystone_pll_regs keystone_pll_regs[] = {
29         [CORE_PLL]      = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
30         [PASS_PLL]      = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
31         [TETRIS_PLL]    = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
32         [DDR3A_PLL]     = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
33         [DDR3B_PLL]     = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
34         [UART_PLL]      = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
35 };
36
37 inline void pll_pa_clk_sel(void)
38 {
39         setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
40 }
41
42 static void wait_for_completion(const struct pll_init_data *data)
43 {
44         int i;
45         for (i = 0; i < 100; i++) {
46                 sdelay(450);
47                 if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
48                         break;
49         }
50 }
51
52 static inline void bypass_main_pll(const struct pll_init_data *data)
53 {
54         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
55                            PLLCTL_PLLEN_MASK);
56
57         /* 4 cycles of reference clock CLKIN*/
58         sdelay(340);
59 }
60
61 static void configure_mult_div(const struct pll_init_data *data)
62 {
63         u32 pllm, plld, bwadj;
64
65         pllm = data->pll_m - 1;
66         plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
67
68         /* Program Multiplier */
69         if (data->pll == MAIN_PLL)
70                 pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
71
72         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
73                         CFG_PLLCTL0_PLLM_MASK,
74                         pllm << CFG_PLLCTL0_PLLM_SHIFT);
75
76         /* Program BWADJ */
77         bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
78         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
79                         CFG_PLLCTL0_BWADJ_MASK,
80                         (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
81                         CFG_PLLCTL0_BWADJ_MASK);
82         bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
83         clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
84                         CFG_PLLCTL1_BWADJ_MASK, bwadj);
85
86         /* Program Divider */
87         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
88                         CFG_PLLCTL0_PLLD_MASK, plld);
89 }
90
91 void configure_main_pll(const struct pll_init_data *data)
92 {
93         u32 tmp, pllod, i, alnctl_val = 0;
94         u32 *offset;
95
96         pllod = data->pll_od - 1;
97
98         /* 100 micro sec for stabilization */
99         sdelay(210000);
100
101         tmp = pllctl_reg_read(data->pll, secctl);
102
103         /* Check for Bypass */
104         if (tmp & SECCTL_BYPASS_MASK) {
105                 setbits_le32(keystone_pll_regs[data->pll].reg1,
106                              CFG_PLLCTL1_ENSAT_MASK);
107
108                 bypass_main_pll(data);
109
110                 /* Powerdown and powerup Main Pll */
111                 pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
112                 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
113                 /* 5 micro sec */
114                 sdelay(21000);
115
116                 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
117         } else {
118                 bypass_main_pll(data);
119         }
120
121         configure_mult_div(data);
122
123         /* Program Output Divider */
124         pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
125                        ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
126
127         /* Program PLLDIVn */
128         wait_for_completion(data);
129         for (i = 0; i < PLLDIV_MAX; i++) {
130                 if (i < 3)
131                         offset = pllctl_reg(data->pll, div1) + i;
132                 else
133                         offset = pllctl_reg(data->pll, div4) + (i - 3);
134
135                 if (divn_val[i] != -1) {
136                         __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
137                         alnctl_val |= BIT(i);
138                 }
139         }
140
141         if (alnctl_val) {
142                 pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
143                 /*
144                  * Set GOSET bit in PLLCMD to initiate the GO operation
145                  * to change the divide
146                  */
147                 pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
148                 wait_for_completion(data);
149         }
150
151         /* Reset PLL */
152         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
153         sdelay(21000);  /* Wait for a minimum of 7 us*/
154         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
155         sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
156
157         /* Enable PLL */
158         pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
159         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
160 }
161
162 void configure_secondary_pll(const struct pll_init_data *data)
163 {
164         int pllod = data->pll_od - 1;
165
166         /* Enable Glitch free bypass for ARM PLL */
167         if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
168                 clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
169
170         /* Enable Bypass mode */
171         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
172         setbits_le32(keystone_pll_regs[data->pll].reg0,
173                      CFG_PLLCTL0_BYPASS_MASK);
174
175         configure_mult_div(data);
176
177         /* Program Output Divider */
178         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
179                         CFG_PLLCTL0_CLKOD_MASK,
180                         (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
181                         CFG_PLLCTL0_CLKOD_MASK);
182
183         /* Reset PLL */
184         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
185         /* Wait for 5 micro seconds */
186         sdelay(21000);
187
188         /* Select the Output of PASS PLL as input to PASS */
189         if (data->pll == PASS_PLL && cpu_is_k2hk())
190                 pll_pa_clk_sel();
191
192         clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
193         /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
194         sdelay(105000);
195
196         /* Switch to PLL mode */
197         clrbits_le32(keystone_pll_regs[data->pll].reg0,
198                      CFG_PLLCTL0_BYPASS_MASK);
199
200         /* Select the Output of ARM PLL as input to ARM */
201         if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
202                 setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
203 }
204
205 void init_pll(const struct pll_init_data *data)
206 {
207         if (data->pll == MAIN_PLL)
208                 configure_main_pll(data);
209         else
210                 configure_secondary_pll(data);
211
212         /*
213          * This is required to provide a delay between multiple
214          * consequent PPL configurations
215          */
216         sdelay(210000);
217 }
218
219 void init_plls(void)
220 {
221         struct pll_init_data *data;
222         int pll;
223
224         for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
225                 data = get_pll_init_data(pll);
226                 if (data)
227                         init_pll(data);
228         }
229 }
230
231 static int get_max_speed(u32 val, u32 speed_supported, int *spds)
232 {
233         int speed;
234
235         /* Left most setbit gives the speed */
236         for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
237                 if ((val & BIT(speed)) & speed_supported)
238                         return spds[speed];
239         }
240
241         /* If no bit is set, return minimum speed */
242         if (cpu_is_k2g())
243                 return SPD200;
244         else
245                 return SPD800;
246 }
247
248 static inline u32 read_efuse_bootrom(void)
249 {
250         if (cpu_is_k2hk() && (cpu_revision() <= 1))
251                 return __raw_readl(KS2_REV1_DEVSPEED);
252         else
253                 return __raw_readl(KS2_EFUSE_BOOTROM);
254 }
255
256 int get_max_arm_speed(int *spds)
257 {
258         u32 armspeed = read_efuse_bootrom();
259
260         armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
261                     DEVSPEED_ARMSPEED_SHIFT;
262
263         return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
264 }
265
266 int get_max_dev_speed(int *spds)
267 {
268         u32 devspeed = read_efuse_bootrom();
269
270         devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
271                     DEVSPEED_DEVSPEED_SHIFT;
272
273         return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
274 }
275
276 /**
277  * pll_freq_get - get pll frequency
278  * @pll:        pll identifier
279  */
280 static unsigned long pll_freq_get(int pll)
281 {
282         unsigned long mult = 1, prediv = 1, output_div = 2;
283         unsigned long ret;
284         u32 tmp, reg;
285
286         if (pll == MAIN_PLL) {
287                 ret = get_external_clk(sys_clk);
288                 if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
289                         /* PLL mode */
290                         tmp = __raw_readl(KS2_MAINPLLCTL0);
291                         prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
292                         mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
293                                 CFG_PLLCTL0_PLLM_SHIFT |
294                                 (pllctl_reg_read(pll, mult) &
295                                  PLLM_MULT_LO_MASK)) + 1;
296                         output_div = ((pllctl_reg_read(pll, secctl) &
297                                        SECCTL_OP_DIV_MASK) >>
298                                        SECCTL_OP_DIV_SHIFT) + 1;
299
300                         ret = ret / prediv / output_div * mult;
301                 }
302         } else {
303                 switch (pll) {
304                 case PASS_PLL:
305                         ret = get_external_clk(pa_clk);
306                         reg = KS2_PASSPLLCTL0;
307                         break;
308                 case TETRIS_PLL:
309                         ret = get_external_clk(tetris_clk);
310                         reg = KS2_ARMPLLCTL0;
311                         break;
312                 case DDR3A_PLL:
313                         ret = get_external_clk(ddr3a_clk);
314                         reg = KS2_DDR3APLLCTL0;
315                         break;
316                 case DDR3B_PLL:
317                         ret = get_external_clk(ddr3b_clk);
318                         reg = KS2_DDR3BPLLCTL0;
319                         break;
320                 case UART_PLL:
321                         ret = get_external_clk(uart_clk);
322                         reg = KS2_UARTPLLCTL0;
323                         break;
324                 default:
325                         return 0;
326                 }
327
328                 tmp = __raw_readl(reg);
329
330                 if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
331                         /* Bypass disabled */
332                         prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
333                         mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
334                                 CFG_PLLCTL0_PLLM_SHIFT) + 1;
335                         output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
336                                       CFG_PLLCTL0_CLKOD_SHIFT) + 1;
337                         ret = ((ret / prediv) * mult) / output_div;
338                 }
339         }
340
341         return ret;
342 }
343
344 unsigned long ks_clk_get_rate(unsigned int clk)
345 {
346         unsigned long freq = 0;
347
348         switch (clk) {
349         case core_pll_clk:
350                 freq = pll_freq_get(CORE_PLL);
351                 break;
352         case pass_pll_clk:
353                 freq = pll_freq_get(PASS_PLL);
354                 break;
355         case tetris_pll_clk:
356                 if (!cpu_is_k2e())
357                         freq = pll_freq_get(TETRIS_PLL);
358                 break;
359         case ddr3a_pll_clk:
360                 freq = pll_freq_get(DDR3A_PLL);
361                 break;
362         case ddr3b_pll_clk:
363                 if (cpu_is_k2hk())
364                         freq = pll_freq_get(DDR3B_PLL);
365                 break;
366         case uart_pll_clk:
367                 if (cpu_is_k2g())
368                         freq = pll_freq_get(UART_PLL);
369                 break;
370         case sys_clk0_1_clk:
371         case sys_clk0_clk:
372                 freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
373                 break;
374         case sys_clk1_clk:
375         return pll_freq_get(CORE_PLL) / pll0div_read(2);
376                 break;
377         case sys_clk2_clk:
378                 freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
379                 break;
380         case sys_clk3_clk:
381                 freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
382                 break;
383         case sys_clk0_2_clk:
384                 freq = ks_clk_get_rate(sys_clk0_clk) / 2;
385                 break;
386         case sys_clk0_3_clk:
387                 freq = ks_clk_get_rate(sys_clk0_clk) / 3;
388                 break;
389         case sys_clk0_4_clk:
390                 freq = ks_clk_get_rate(sys_clk0_clk) / 4;
391                 break;
392         case sys_clk0_6_clk:
393                 freq = ks_clk_get_rate(sys_clk0_clk) / 6;
394                 break;
395         case sys_clk0_8_clk:
396                 freq = ks_clk_get_rate(sys_clk0_clk) / 8;
397                 break;
398         case sys_clk0_12_clk:
399                 freq = ks_clk_get_rate(sys_clk0_clk) / 12;
400                 break;
401         case sys_clk0_24_clk:
402                 freq = ks_clk_get_rate(sys_clk0_clk) / 24;
403                 break;
404         case sys_clk1_3_clk:
405                 freq = ks_clk_get_rate(sys_clk1_clk) / 3;
406                 break;
407         case sys_clk1_4_clk:
408                 freq = ks_clk_get_rate(sys_clk1_clk) / 4;
409                 break;
410         case sys_clk1_6_clk:
411                 freq = ks_clk_get_rate(sys_clk1_clk) / 6;
412                 break;
413         case sys_clk1_12_clk:
414                 freq = ks_clk_get_rate(sys_clk1_clk) / 12;
415                 break;
416         default:
417                 break;
418         }
419
420         return freq;
421 }