From: Bodo Möller Date: Sun, 18 Jun 2006 22:00:57 +0000 (+0000) Subject: Change array representation of binary polynomials to make GF2m part of X-Git-Tag: OpenSSL_0_9_8k^2~1243 X-Git-Url: https://git.librecmc.org/?a=commitdiff_plain;h=c4e7870ac1af6f629e021391b16d9671742db95f;p=oweals%2Fopenssl.git Change array representation of binary polynomials to make GF2m part of the BN library more generally useful. Submitted by: Douglas Stebila --- diff --git a/CHANGES b/CHANGES index 0d4435913c..55331b9d1d 100644 --- a/CHANGES +++ b/CHANGES @@ -4,6 +4,14 @@ Changes between 0.9.8b and 0.9.9 [xx XXX xxxx] + *) Change the array representation of binary polynomials: the list + of degrees of non-zero coefficients is now terminated with -1. + Previously it was terminated with 0, which was also part of the + value; thus, the array representation was not applicable to + polynomials where t^0 has coefficient zero. This change makes + the array representation useful in a more general context. + [Douglas Stebila] + *) Various modifications and fixes to SSL/TLS cipher string handling. For ECC, the code now distinguishes between fixed ECDH with RSA certificates on the one hand and with ECDSA certificates diff --git a/crypto/bn/bn.h b/crypto/bn/bn.h index 0a9aa78d8b..a2472b7d28 100644 --- a/crypto/bn/bn.h +++ b/crypto/bn/bn.h @@ -558,24 +558,24 @@ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]); +int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); /* r = a mod p */ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const unsigned int p[], BN_CTX *ctx); /* r = (a * b) mod p */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], + const int p[], BN_CTX *ctx); /* r = (a * b) mod p */ +int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r = (a * a) mod p */ -int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const unsigned int p[], +int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const unsigned int p[], BN_CTX *ctx); /* r = (a / b) mod p */ + const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, - const unsigned int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ + const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, - const unsigned int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ + const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, - const unsigned int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ -int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max); -int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a); + const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ +int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); +int BN_GF2m_arr2poly(const int p[], BIGNUM *a); /* faster mod functions for the 'NIST primes' * 0 <= a < p^2 */ diff --git a/crypto/bn/bn_gf2m.c b/crypto/bn/bn_gf2m.c index 3953b9890d..e962e4f799 100644 --- a/crypto/bn/bn_gf2m.c +++ b/crypto/bn/bn_gf2m.c @@ -258,7 +258,7 @@ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) /* Performs modular reduction of a and store result in r. r could be a. */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) +int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) { int j, k; int n, dN, d0, d1; @@ -355,11 +355,11 @@ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -377,7 +377,7 @@ err: /* Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r. r could be a or b; a could be b. */ -int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int zlen, i, j, k, ret = 0; BIGNUM *s; @@ -433,12 +433,12 @@ err: int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -454,7 +454,7 @@ err: /* Square a, reduce the result mod p, and store it in a. r could be a. */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int i, ret = 0; BIGNUM *s; @@ -489,12 +489,12 @@ err: int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -576,7 +576,7 @@ err: * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_inv function. */ -int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; @@ -702,7 +702,7 @@ err: * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_div function. */ -int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; @@ -727,7 +727,7 @@ err: * the result in r. r could be a. * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. */ -int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int ret = 0, i, n; BIGNUM *u; @@ -773,12 +773,12 @@ err: int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -796,7 +796,7 @@ err: * the result in r. r could be a. * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. */ -int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int ret = 0; BIGNUM *u; @@ -832,11 +832,11 @@ err: int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { @@ -853,7 +853,7 @@ err: /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. */ -int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) +int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) { int ret = 0, count = 0; unsigned int j; @@ -951,11 +951,11 @@ err: int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - const int max = BN_num_bits(p); - unsigned int *arr=NULL; + const int max = BN_num_bits(p) + 1; + int *arr=NULL; bn_check_top(a); bn_check_top(p); - if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * + if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) @@ -971,20 +971,17 @@ err: } /* Convert the bit-string representation of a polynomial - * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array - * of integers corresponding to the bits with non-zero coefficient. + * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding + * to the bits with non-zero coefficient. Array is terminated with -1. * Up to max elements of the array will be filled. Return value is total - * number of coefficients that would be extracted if array was large enough. + * number of array elements that would be filled if array was large enough. */ -int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) +int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) { int i, j, k = 0; BN_ULONG mask; - if (BN_is_zero(a) || !BN_is_bit_set(a, 0)) - /* a_0 == 0 => return error (the unsigned int array - * must be terminated by 0) - */ + if (BN_is_zero(a)) return 0; for (i = a->top - 1; i >= 0; i--) @@ -1004,24 +1001,28 @@ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) } } + if (k < max) { + p[k] = -1; + k++; + } + return k; } /* Convert the coefficient array representation of a polynomial to a - * bit-string. The array must be terminated by 0. + * bit-string. The array must be terminated by -1. */ -int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) +int BN_GF2m_arr2poly(const int p[], BIGNUM *a) { int i; bn_check_top(a); BN_zero(a); - for (i = 0; p[i] != 0; i++) + for (i = 0; p[i] != -1; i++) { if (BN_set_bit(a, p[i]) == 0) return 0; } - BN_set_bit(a, 0); bn_check_top(a); return 1; diff --git a/crypto/bn/bntest.c b/crypto/bn/bntest.c index 5a3c3d1d2e..fd5e21cbe6 100644 --- a/crypto/bn/bntest.c +++ b/crypto/bn/bntest.c @@ -1118,8 +1118,8 @@ int test_gf2m_mod(BIO *bp) { BIGNUM *a,*b[2],*c,*d,*e; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1176,8 +1176,8 @@ int test_gf2m_mod_mul(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d,*e,*f,*g,*h; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1247,8 +1247,8 @@ int test_gf2m_mod_sqr(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1306,8 +1306,8 @@ int test_gf2m_mod_inv(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1361,8 +1361,8 @@ int test_gf2m_mod_div(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d,*e,*f; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1424,8 +1424,8 @@ int test_gf2m_mod_exp(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d,*e,*f; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1495,8 +1495,8 @@ int test_gf2m_mod_sqrt(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d,*e,*f; int i, j, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); @@ -1554,8 +1554,8 @@ int test_gf2m_mod_solve_quad(BIO *bp,BN_CTX *ctx) { BIGNUM *a,*b[2],*c,*d,*e; int i, j, s = 0, t, ret = 0; - unsigned int p0[] = {163,7,6,3,0}; - unsigned int p1[] = {193,15,0}; + int p0[] = {163,7,6,3,0,-1}; + int p1[] = {193,15,0,-1}; a=BN_new(); b[0]=BN_new(); diff --git a/crypto/ec/ec2_smpl.c b/crypto/ec/ec2_smpl.c index 527e6d8147..01d8483c3a 100644 --- a/crypto/ec/ec2_smpl.c +++ b/crypto/ec/ec2_smpl.c @@ -157,6 +157,7 @@ void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) group->poly[2] = 0; group->poly[3] = 0; group->poly[4] = 0; + group->poly[5] = -1; } @@ -174,6 +175,7 @@ int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) dest->poly[2] = src->poly[2]; dest->poly[3] = src->poly[3]; dest->poly[4] = src->poly[4]; + dest->poly[5] = src->poly[5]; bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; @@ -190,7 +192,7 @@ int ec_GF2m_simple_group_set_curve(EC_GROUP *group, /* group->field */ if (!BN_copy(&group->field, p)) goto err; - i = BN_GF2m_poly2arr(&group->field, group->poly, 5); + i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; if ((i != 5) && (i != 3)) { ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); diff --git a/crypto/ec/ec_lcl.h b/crypto/ec/ec_lcl.h index fdd7aa2755..3e2c34b0bc 100644 --- a/crypto/ec/ec_lcl.h +++ b/crypto/ec/ec_lcl.h @@ -205,11 +205,14 @@ struct ec_group_st { * irreducible polynomial defining the field. */ - unsigned int poly[5]; /* Field specification for curves over GF(2^m). - * The irreducible f(t) is then of the form: - * t^poly[0] + t^poly[1] + ... + t^poly[k] - * where m = poly[0] > poly[1] > ... > poly[k] = 0. - */ + int poly[6]; /* Field specification for curves over GF(2^m). + * The irreducible f(t) is then of the form: + * t^poly[0] + t^poly[1] + ... + t^poly[k] + * where m = poly[0] > poly[1] > ... > poly[k] = 0. + * The array is terminated with poly[k+1]=-1. + * All elliptic curve irreducibles have at most 5 + * non-zero terms. + */ BIGNUM a, b; /* Curve coefficients. * (Here the assumption is that BIGNUMs can be used