From: Andy Polyakov Date: Wed, 12 Oct 2016 13:47:45 +0000 (+0200) Subject: crypto/sha: add Keccak1600 primitives to build SHA-3 upon. X-Git-Tag: OpenSSL_1_1_1-pre1~3340 X-Git-Url: https://git.librecmc.org/?a=commitdiff_plain;h=b9feae1b17b8803dc960c93bcd5cd03a6a352c81;p=oweals%2Fopenssl.git crypto/sha: add Keccak1600 primitives to build SHA-3 upon. Reviewed-by: Richard Levitte --- diff --git a/crypto/sha/keccak1600.c b/crypto/sha/keccak1600.c new file mode 100644 index 0000000000..6458a0408a --- /dev/null +++ b/crypto/sha/keccak1600.c @@ -0,0 +1,281 @@ +/* + * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include +#include +#include + +#define ROL64(a, offset) ((offset) ? (((a) << offset) | ((a) >> (64-offset))) \ + : a) + +static void Theta(uint64_t A[5][5]) +{ + uint64_t C[5], D[5]; + size_t y; + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + for (y = 0; y < 5; y++) { + A[y][0] ^= D[0]; + A[y][1] ^= D[1]; + A[y][2] ^= D[2]; + A[y][3] ^= D[3]; + A[y][4] ^= D[4]; + } +} + +static void Rho(uint64_t A[5][5]) +{ + static const unsigned char rhotates[5][5] = { + { 0, 1, 62, 28, 27 }, + { 36, 44, 6, 55, 20 }, + { 3, 10, 43, 25, 39 }, + { 41, 45, 15, 21, 8 }, + { 18, 2, 61, 56, 14 } + }; + size_t y; + + for (y = 0; y < 5; y++) { + A[y][0] = ROL64(A[y][0], rhotates[y][0]); + A[y][1] = ROL64(A[y][1], rhotates[y][1]); + A[y][2] = ROL64(A[y][2], rhotates[y][2]); + A[y][3] = ROL64(A[y][3], rhotates[y][3]); + A[y][4] = ROL64(A[y][4], rhotates[y][4]); + } +} + +static void Pi(uint64_t A[5][5]) +{ + uint64_t T[5][5]; + + /* + * T = A + * A[y][x] = T[x][(3*y+x)%5] + */ + memcpy(T, A, sizeof(T)); + + A[0][0] = T[0][0]; + A[0][1] = T[1][1]; + A[0][2] = T[2][2]; + A[0][3] = T[3][3]; + A[0][4] = T[4][4]; + + A[1][0] = T[0][3]; + A[1][1] = T[1][4]; + A[1][2] = T[2][0]; + A[1][3] = T[3][1]; + A[1][4] = T[4][2]; + + A[2][0] = T[0][1]; + A[2][1] = T[1][2]; + A[2][2] = T[2][3]; + A[2][3] = T[3][4]; + A[2][4] = T[4][0]; + + A[3][0] = T[0][4]; + A[3][1] = T[1][0]; + A[3][2] = T[2][1]; + A[3][3] = T[3][2]; + A[3][4] = T[4][3]; + + A[4][0] = T[0][2]; + A[4][1] = T[1][3]; + A[4][2] = T[2][4]; + A[4][3] = T[3][0]; + A[4][4] = T[4][1]; +} + +static void Chi(uint64_t A[5][5]) +{ + uint64_t C[5]; + size_t y; + + for (y = 0; y < 5; y++) { + C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); + C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); + C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); + C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); + C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); + + A[y][0] = C[0]; + A[y][1] = C[1]; + A[y][2] = C[2]; + A[y][3] = C[3]; + A[y][4] = C[4]; + } +} + +static void Iota(uint64_t A[5][5], size_t i) +{ + static const uint64_t iotas[] = { + 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, + 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, + 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, + 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, + 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, + 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, + 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, + 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U + }; + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + A[0][0] ^= iotas[i]; +} + +void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i++) { + Theta(A); + Rho(A); + Pi(A); + Chi(A); + Iota(A, i); + } +} + +/* + * SHA3_absorb can be called multiple times, but at each invocation + * largest multiple of |r| out of |len| bytes are processed. Then + * remaining amount of bytes are returned. This is done to spare caller + * trouble of calculating the largest multiple of |r|, effectively the + * blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, 72, + * but can also be (1600 - 448)/8 = 144. All this means that message + * padding and intermediate sub-block buffering, byte- or bitwise, is + * caller's reponsibility. + */ +size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, + size_t r) +{ + uint64_t *A_flat = (uint64_t *)A; + size_t i, w = r / 8; + + while (len >= r) { + for (i = 0; i < w; i++) { + A_flat[i] ^= (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | + (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | + (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | + (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; + inp += 8; + } + KeccakF1600(A); + len -= r; + } + + return len; +} + +/* + * SHA3_squeeze is called once at the end to generate |out| hash value + * of |len| bytes. + */ +void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) +{ + uint64_t *A_flat = (uint64_t *)A; + size_t i, rem, w = r / 8; + + while (len >= r) { + for (i = 0; i < w; i++) { + uint64_t Ai = A_flat[i]; + + out[0] = (unsigned char)(Ai); + out[1] = (unsigned char)(Ai >> 8); + out[2] = (unsigned char)(Ai >> 16); + out[3] = (unsigned char)(Ai >> 24); + out[4] = (unsigned char)(Ai >> 32); + out[5] = (unsigned char)(Ai >> 40); + out[6] = (unsigned char)(Ai >> 48); + out[7] = (unsigned char)(Ai >> 56); + out += 8; + } + len -= r; + if (len) + KeccakF1600(A); + } + + rem = len % 8; + len /= 8; + + for (i = 0; i < len; i++) { + uint64_t Ai = A_flat[i]; + + out[0] = (unsigned char)(Ai); + out[1] = (unsigned char)(Ai >> 8); + out[2] = (unsigned char)(Ai >> 16); + out[3] = (unsigned char)(Ai >> 24); + out[4] = (unsigned char)(Ai >> 32); + out[5] = (unsigned char)(Ai >> 40); + out[6] = (unsigned char)(Ai >> 48); + out[7] = (unsigned char)(Ai >> 56); + out += 8; + } + + if (rem) { + uint64_t Ai = A_flat[i]; + + for (i = 0; i < rem; i++) { + *out++ = (unsigned char)Ai; + Ai >>= 8; + } + } +} + +#ifdef SELFTEST +/* + * Post-padding one-shot implementations would look as following: + * + * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); + * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); + * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); + * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); + * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); + * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); + */ + +void SHA3_sponge(const unsigned char *inp, size_t len, + unsigned char *out, size_t d, size_t r) +{ + uint64_t A[5][5]; + + memset(A, 0, sizeof(A)); + SHA3_absorb(A, inp, len, r); + SHA3_squeeze(A, out, d, r); +} + +# include + +int main() +{ + unsigned char test[168] = { '\xf3', '\x3' }; + unsigned char out[512]; + size_t i; + + /* + * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing + */ + test[167] = '\x80'; + SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); + + for (i = 0; i < sizeof(out);) { + printf("%02X", out[i]); + printf(++i % 16 && i != sizeof(out) ? " " : "\n"); + } +} +#endif