From: Shinya Kuribayashi Date: Sat, 16 May 2009 00:12:09 +0000 (+0900) Subject: MIPS: Make all extern-ed functions in bitops.h static X-Git-Tag: v2009.06-rc3~32 X-Git-Url: https://git.librecmc.org/?a=commitdiff_plain;h=47f6a36cc3f3427cc8e4f1d0f3e6678be6f33769;p=oweals%2Fu-boot.git MIPS: Make all extern-ed functions in bitops.h static All these functions are expected to be static inline-ed. This patch also fixes the following build warnings on MIPS targets: include/asm/bitops.h: In function 'ext2_find_next_zero_bit': include/asm/bitops.h:862: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static include/asm/bitops.h:885: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static include/asm/bitops.h:887: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static Signed-off-by: Shinya Kuribayashi --- diff --git a/include/asm-mips/bitops.h b/include/asm-mips/bitops.h index 56d7225bb7..659ac9d320 100644 --- a/include/asm-mips/bitops.h +++ b/include/asm-mips/bitops.h @@ -60,7 +60,7 @@ * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -extern __inline__ void +static __inline__ void set_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -84,7 +84,7 @@ set_bit(int nr, volatile void *addr) * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -extern __inline__ void __set_bit(int nr, volatile void * addr) +static __inline__ void __set_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); @@ -101,7 +101,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr) * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ -extern __inline__ void +static __inline__ void clear_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -125,7 +125,7 @@ clear_bit(int nr, volatile void *addr) * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -extern __inline__ void +static __inline__ void change_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -149,7 +149,7 @@ change_bit(int nr, volatile void *addr) * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -extern __inline__ void __change_bit(int nr, volatile void * addr) +static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); @@ -164,7 +164,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int +static __inline__ int test_and_set_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -194,7 +194,7 @@ test_and_set_bit(int nr, volatile void *addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_set_bit(int nr, volatile void * addr) +static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -215,7 +215,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int +static __inline__ int test_and_clear_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -246,7 +246,7 @@ test_and_clear_bit(int nr, volatile void *addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr) +static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -267,7 +267,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int +static __inline__ int test_and_change_bit(int nr, volatile void *addr) { unsigned long *m = ((unsigned long *) addr) + (nr >> 5); @@ -297,7 +297,7 @@ test_and_change_bit(int nr, volatile void *addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_change_bit(int nr, volatile void * addr) +static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -322,7 +322,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr) * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -extern __inline__ void set_bit(int nr, volatile void * addr) +static __inline__ void set_bit(int nr, volatile void * addr) { int mask; volatile int *a = addr; @@ -344,7 +344,7 @@ extern __inline__ void set_bit(int nr, volatile void * addr) * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -extern __inline__ void __set_bit(int nr, volatile void * addr) +static __inline__ void __set_bit(int nr, volatile void * addr) { int mask; volatile int *a = addr; @@ -364,7 +364,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr) * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ -extern __inline__ void clear_bit(int nr, volatile void * addr) +static __inline__ void clear_bit(int nr, volatile void * addr) { int mask; volatile int *a = addr; @@ -386,7 +386,7 @@ extern __inline__ void clear_bit(int nr, volatile void * addr) * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ -extern __inline__ void change_bit(int nr, volatile void * addr) +static __inline__ void change_bit(int nr, volatile void * addr) { int mask; volatile int *a = addr; @@ -408,7 +408,7 @@ extern __inline__ void change_bit(int nr, volatile void * addr) * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ -extern __inline__ void __change_bit(int nr, volatile void * addr) +static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long * m = ((unsigned long *) addr) + (nr >> 5); @@ -423,7 +423,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int test_and_set_bit(int nr, volatile void * addr) +static __inline__ int test_and_set_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -448,7 +448,7 @@ extern __inline__ int test_and_set_bit(int nr, volatile void * addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_set_bit(int nr, volatile void * addr) +static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -469,7 +469,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int test_and_clear_bit(int nr, volatile void * addr) +static __inline__ int test_and_clear_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -494,7 +494,7 @@ extern __inline__ int test_and_clear_bit(int nr, volatile void * addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr) +static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -515,7 +515,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr) * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ -extern __inline__ int test_and_change_bit(int nr, volatile void * addr) +static __inline__ int test_and_change_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -540,7 +540,7 @@ extern __inline__ int test_and_change_bit(int nr, volatile void * addr) * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ -extern __inline__ int __test_and_change_bit(int nr, volatile void * addr) +static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { int mask, retval; volatile int *a = addr; @@ -565,7 +565,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr) * @nr: bit number to test * @addr: Address to start counting from */ -extern __inline__ int test_bit(int nr, volatile void *addr) +static __inline__ int test_bit(int nr, volatile void *addr) { return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; } @@ -582,7 +582,7 @@ extern __inline__ int test_bit(int nr, volatile void *addr) * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ -extern __inline__ int find_first_zero_bit (void *addr, unsigned size) +static __inline__ int find_first_zero_bit (void *addr, unsigned size) { unsigned long dummy; int res; @@ -633,7 +633,7 @@ extern __inline__ int find_first_zero_bit (void *addr, unsigned size) * @offset: The bitnumber to start searching at * @size: The maximum size to search */ -extern __inline__ int find_next_zero_bit (void * addr, int size, int offset) +static __inline__ int find_next_zero_bit (void * addr, int size, int offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); int set = 0, bit = offset & 31, res; @@ -679,7 +679,7 @@ extern __inline__ int find_next_zero_bit (void * addr, int size, int offset) * * Undefined if no zero exists, so code should check against ~0UL first. */ -extern __inline__ unsigned long ffz(unsigned long word) +static __inline__ unsigned long ffz(unsigned long word) { unsigned int __res; unsigned int mask = 1; @@ -736,7 +736,7 @@ extern __inline__ unsigned long ffz(unsigned long word) * @offset: The bitnumber to start searching at * @size: The maximum size to search */ -extern __inline__ int find_next_zero_bit(void *addr, int size, int offset) +static __inline__ int find_next_zero_bit(void *addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; @@ -785,7 +785,7 @@ found_middle: * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ -extern int find_first_zero_bit (void *addr, unsigned size); +static int find_first_zero_bit (void *addr, unsigned size); #endif #define find_first_zero_bit(addr, size) \ @@ -796,7 +796,7 @@ extern int find_first_zero_bit (void *addr, unsigned size); /* Now for the ext2 filesystem bit operations and helper routines. */ #ifdef __MIPSEB__ -extern __inline__ int ext2_set_bit(int nr, void * addr) +static __inline__ int ext2_set_bit(int nr, void * addr) { int mask, retval, flags; unsigned char *ADDR = (unsigned char *) addr; @@ -810,7 +810,7 @@ extern __inline__ int ext2_set_bit(int nr, void * addr) return retval; } -extern __inline__ int ext2_clear_bit(int nr, void * addr) +static __inline__ int ext2_clear_bit(int nr, void * addr) { int mask, retval, flags; unsigned char *ADDR = (unsigned char *) addr; @@ -824,7 +824,7 @@ extern __inline__ int ext2_clear_bit(int nr, void * addr) return retval; } -extern __inline__ int ext2_test_bit(int nr, const void * addr) +static __inline__ int ext2_test_bit(int nr, const void * addr) { int mask; const unsigned char *ADDR = (const unsigned char *) addr; @@ -837,7 +837,7 @@ extern __inline__ int ext2_test_bit(int nr, const void * addr) #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) -extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) +static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL;