int EC_POINT_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *);
int EC_POINT_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
+int EC_POINT_is_at_infinity(const EC_GROUP *, EC_POINT *, BN_CTX *);
+int EC_POINT_is_on_curve(const EC_GROUP *, EC_POINT *, BN_CTX *);
+
+int EC_POINT_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
+
/* TODO: scalar multiplication */
int (*add)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *);
int (*dbl)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
+ /* used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_make_affine */
+ int (*is_at_infinity)(const EC_GROUP *, EC_POINT *, BN_CTX *);
+ int (*is_on_curve)(const EC_GROUP *, EC_POINT *, BN_CTX *);
+ int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *);
+
/* internal functions */
BIGNUM a, b; /* Curve coefficients.
* (Here the assumption is that BIGNUMs can be used
- * or abused for all kinds of fields, not just GF(p).) */
+ * or abused for all kinds of fields, not just GF(p).)
+ * For characteristic > 3, the curve is defined
+ * by a Weierstrass equation of the form
+ * Y^2 = X^3 + a*X + b.
+ */
int a_is_minus3; /* enable optimized point arithmetics for special case */
EC_POINT *generator; /* optional */
struct ec_point_st {
EC_METHOD *meth;
- BIGNUM x;
- BIGNUM y;
- BIGNUM z; /* Jacobian projective coordinates */
- int z_is_one; /* enable optimized point arithmetics for special case */
+ BIGNUM X;
+ BIGNUM Y;
+ BIGNUM Z; /* Jacobian projective coordinates:
+ * (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0 */
+ int Z_is_one; /* enable optimized point arithmetics for special case */
} /* EC_POINT */;