#ifndef OPENSSL_NO_EC2M
-const EC_METHOD *EC_GF2m_simple_method(void)
-{
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_characteristic_two_field,
- ec_GF2m_simple_group_init,
- ec_GF2m_simple_group_finish,
- ec_GF2m_simple_group_clear_finish,
- ec_GF2m_simple_group_copy,
- ec_GF2m_simple_group_set_curve,
- ec_GF2m_simple_group_get_curve,
- ec_GF2m_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GF2m_simple_group_check_discriminant,
- ec_GF2m_simple_point_init,
- ec_GF2m_simple_point_finish,
- ec_GF2m_simple_point_clear_finish,
- ec_GF2m_simple_point_copy,
- ec_GF2m_simple_point_set_to_infinity,
- 0 /* set_Jprojective_coordinates_GFp */ ,
- 0 /* get_Jprojective_coordinates_GFp */ ,
- ec_GF2m_simple_point_set_affine_coordinates,
- ec_GF2m_simple_point_get_affine_coordinates,
- 0, 0, 0,
- ec_GF2m_simple_add,
- ec_GF2m_simple_dbl,
- ec_GF2m_simple_invert,
- ec_GF2m_simple_is_at_infinity,
- ec_GF2m_simple_is_on_curve,
- ec_GF2m_simple_cmp,
- ec_GF2m_simple_make_affine,
- ec_GF2m_simple_points_make_affine,
- 0 /* mul */,
- 0 /* precompute_mul */,
- 0 /* have_precompute_mul */,
- ec_GF2m_simple_field_mul,
- ec_GF2m_simple_field_sqr,
- ec_GF2m_simple_field_div,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- 0, /* field_inverse_mod_ord */
- 0, /* blind_coordinates */
- 0, /* ladder_pre */
- 0, /* ladder_step */
- 0 /* ladder_post */
- };
-
- return &ret;
-}
-
/*
* Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
* are handled by EC_GROUP_new.
return BN_GF2m_mod_div(r, a, b, group->field, ctx);
}
+/*-
+ * Lopez-Dahab ladder, pre step.
+ * See e.g. "Guide to ECC" Alg 3.40.
+ * Modified to blind s and r independently.
+ * s:= p, r := 2p
+ */
+static
+int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ /* if p is not affine, something is wrong */
+ if (p->Z_is_one == 0)
+ return 0;
+
+ /* s blinding: make sure lambda (s->Z here) is not zero */
+ do {
+ if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
+ BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
+ return 0;
+ }
+ } while (BN_is_zero(s->Z));
+
+ /* if field_encode defined convert between representations */
+ if ((group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, s->Z, s->Z, ctx))
+ || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
+ return 0;
+
+ /* r blinding: make sure lambda (r->Y here for storage) is not zero */
+ do {
+ if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
+ BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
+ return 0;
+ }
+ } while (BN_is_zero(r->Y));
+
+ if ((group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, r->Y, r->Y, ctx))
+ || !group->meth->field_sqr(group, r->Z, p->X, ctx)
+ || !group->meth->field_sqr(group, r->X, r->Z, ctx)
+ || !BN_GF2m_add(r->X, r->X, group->b)
+ || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
+ || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
+ return 0;
+
+ s->Z_is_one = 0;
+ r->Z_is_one = 0;
+
+ return 1;
+}
+
+/*-
+ * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
+ * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
+ * s := r + s, r := 2r
+ */
+static
+int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
+ || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
+ || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
+ || !group->meth->field_sqr(group, r->Z, r->X, ctx)
+ || !BN_GF2m_add(s->Z, r->Y, s->X)
+ || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
+ || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
+ || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
+ || !BN_GF2m_add(s->X, s->X, r->Y)
+ || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
+ || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
+ || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
+ || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
+ || !BN_GF2m_add(r->X, r->Y, s->Y))
+ return 0;
+
+ return 1;
+}
+
+/*-
+ * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
+ * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
+ * without Precomputation" (Lopez and Dahab, CHES 1999),
+ * Appendix Alg Mxy.
+ */
+static
+int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *t0, *t1, *t2 = NULL;
+
+ if (BN_is_zero(r->Z))
+ return EC_POINT_set_to_infinity(group, r);
+
+ if (BN_is_zero(s->Z)) {
+ if (!EC_POINT_copy(r, p)
+ || !EC_POINT_invert(group, r, ctx)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
+ return 0;
+ }
+ return 1;
+ }
+
+ BN_CTX_start(ctx);
+ t0 = BN_CTX_get(ctx);
+ t1 = BN_CTX_get(ctx);
+ t2 = BN_CTX_get(ctx);
+ if (t2 == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+
+ if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
+ || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
+ || !BN_GF2m_add(t1, r->X, t1)
+ || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
+ || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
+ || !BN_GF2m_add(t2, t2, s->X)
+ || !group->meth->field_mul(group, t1, t1, t2, ctx)
+ || !group->meth->field_sqr(group, t2, p->X, ctx)
+ || !BN_GF2m_add(t2, p->Y, t2)
+ || !group->meth->field_mul(group, t2, t2, t0, ctx)
+ || !BN_GF2m_add(t1, t2, t1)
+ || !group->meth->field_mul(group, t2, p->X, t0, ctx)
+ || !BN_GF2m_mod_inv(t2, t2, group->field, ctx)
+ || !group->meth->field_mul(group, t1, t1, t2, ctx)
+ || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
+ || !BN_GF2m_add(t2, p->X, r->X)
+ || !group->meth->field_mul(group, t2, t2, t1, ctx)
+ || !BN_GF2m_add(r->Y, p->Y, t2)
+ || !BN_one(r->Z))
+ goto err;
+
+ r->Z_is_one = 1;
+
+ /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
+ BN_set_negative(r->X, 0);
+ BN_set_negative(r->Y, 0);
+
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+const EC_METHOD *EC_GF2m_simple_method(void)
+{
+ static const EC_METHOD ret = {
+ EC_FLAGS_DEFAULT_OCT,
+ NID_X9_62_characteristic_two_field,
+ ec_GF2m_simple_group_init,
+ ec_GF2m_simple_group_finish,
+ ec_GF2m_simple_group_clear_finish,
+ ec_GF2m_simple_group_copy,
+ ec_GF2m_simple_group_set_curve,
+ ec_GF2m_simple_group_get_curve,
+ ec_GF2m_simple_group_get_degree,
+ ec_group_simple_order_bits,
+ ec_GF2m_simple_group_check_discriminant,
+ ec_GF2m_simple_point_init,
+ ec_GF2m_simple_point_finish,
+ ec_GF2m_simple_point_clear_finish,
+ ec_GF2m_simple_point_copy,
+ ec_GF2m_simple_point_set_to_infinity,
+ 0, /* set_Jprojective_coordinates_GFp */
+ 0, /* get_Jprojective_coordinates_GFp */
+ ec_GF2m_simple_point_set_affine_coordinates,
+ ec_GF2m_simple_point_get_affine_coordinates,
+ 0, /* point_set_compressed_coordinates */
+ 0, /* point2oct */
+ 0, /* oct2point */
+ ec_GF2m_simple_add,
+ ec_GF2m_simple_dbl,
+ ec_GF2m_simple_invert,
+ ec_GF2m_simple_is_at_infinity,
+ ec_GF2m_simple_is_on_curve,
+ ec_GF2m_simple_cmp,
+ ec_GF2m_simple_make_affine,
+ ec_GF2m_simple_points_make_affine,
+ 0, /* mul */
+ 0, /* precompute_mult */
+ 0, /* have_precompute_mult */
+ ec_GF2m_simple_field_mul,
+ ec_GF2m_simple_field_sqr,
+ ec_GF2m_simple_field_div,
+ 0, /* field_encode */
+ 0, /* field_decode */
+ 0, /* field_set_to_one */
+ ec_key_simple_priv2oct,
+ ec_key_simple_oct2priv,
+ 0, /* set private */
+ ec_key_simple_generate_key,
+ ec_key_simple_check_key,
+ ec_key_simple_generate_public_key,
+ 0, /* keycopy */
+ 0, /* keyfinish */
+ ecdh_simple_compute_key,
+ 0, /* field_inverse_mod_ord */
+ 0, /* blind_coordinates */
+ ec_GF2m_simple_ladder_pre,
+ ec_GF2m_simple_ladder_step,
+ ec_GF2m_simple_ladder_post
+ };
+
+ return &ret;
+}
+
#endif