* D - data.
*/
- if (num < 11)
+ if (num < RSA_PKCS1_PADDING_SIZE)
return -1;
/* Accept inputs with and without the leading 0-byte. */
int i, j;
unsigned char *p;
- if (flen > (tlen - 11)) {
+ if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
* section 7.2.2.
*/
- if (flen > num || num < 11) {
+ if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,
RSA_R_PKCS_DECODING_ERROR);
return -1;
good &= constant_time_ge(tlen, mlen);
/*
- * Move the result in-place by |num|-11-|mlen| bytes to the left.
- * Then if |good| move |mlen| bytes from |em|+11 to |to|.
+ * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
+ * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
* Otherwise leave |to| unchanged.
* Copy the memory back in a way that does not reveal the size of
* the data being copied via a timing side channel. This requires copying
* length. Clear bits do a non-copy with identical access pattern.
* The loop below has overall complexity of O(N*log(N)).
*/
- tlen = constant_time_select_int(constant_time_lt(num - 11, tlen),
- num - 11, tlen);
- for (msg_index = 1; msg_index < num - 11; msg_index <<= 1) {
- mask = ~constant_time_eq(msg_index & (num - 11 - mlen), 0);
- for (i = 11; i < num - msg_index; i++)
+ tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
+ num - RSA_PKCS1_PADDING_SIZE, tlen);
+ for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
+ mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
+ for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
}
for (i = 0; i < tlen; i++) {
mask = good & constant_time_lt(i, mlen);
- to[i] = constant_time_select_8(mask, em[i + 11], to[i]);
+ to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
}
OPENSSL_clear_free(em, num);
int i, j;
unsigned char *p;
- if (flen > (tlen - 11)) {
+ if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
RSAerr(RSA_F_RSA_PADDING_ADD_SSLV23,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
if (tlen <= 0 || flen <= 0)
return -1;
- if (flen > num || num < 11) {
+ if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, RSA_R_DATA_TOO_SMALL);
return -1;
}
err = constant_time_select_int(mask | good, err, RSA_R_DATA_TOO_LARGE);
/*
- * Move the result in-place by |num|-11-|mlen| bytes to the left.
- * Then if |good| move |mlen| bytes from |em|+11 to |to|.
+ * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
+ * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
* Otherwise leave |to| unchanged.
* Copy the memory back in a way that does not reveal the size of
* the data being copied via a timing side channel. This requires copying
* length. Clear bits do a non-copy with identical access pattern.
* The loop below has overall complexity of O(N*log(N)).
*/
- tlen = constant_time_select_int(constant_time_lt(num - 11, tlen),
- num - 11, tlen);
- for (msg_index = 1; msg_index < num - 11; msg_index <<= 1) {
- mask = ~constant_time_eq(msg_index & (num - 11 - mlen), 0);
- for (i = 11; i < num - msg_index; i++)
+ tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
+ num - RSA_PKCS1_PADDING_SIZE, tlen);
+ for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
+ mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
+ for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
}
for (i = 0; i < tlen; i++) {
mask = good & constant_time_lt(i, mlen);
- to[i] = constant_time_select_8(mask, em[i + 11], to[i]);
+ to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
}
OPENSSL_clear_free(em, num);