+++ /dev/null
-Driver Model
-============
-
-This README contains high-level information about driver model, a unified
-way of declaring and accessing drivers in U-Boot. The original work was done
-by:
-
- Marek Vasut <marex@denx.de>
- Pavel Herrmann <morpheus.ibis@gmail.com>
- Viktor Křivák <viktor.krivak@gmail.com>
- Tomas Hlavacek <tmshlvck@gmail.com>
-
-This has been both simplified and extended into the current implementation
-by:
-
- Simon Glass <sjg@chromium.org>
-
-
-Terminology
------------
-
-Uclass - a group of devices which operate in the same way. A uclass provides
- a way of accessing individual devices within the group, but always
- using the same interface. For example a GPIO uclass provides
- operations for get/set value. An I2C uclass may have 10 I2C ports,
- 4 with one driver, and 6 with another.
-
-Driver - some code which talks to a peripheral and presents a higher-level
- interface to it.
-
-Device - an instance of a driver, tied to a particular port or peripheral.
-
-
-How to try it
--------------
-
-Build U-Boot sandbox and run it:
-
- make sandbox_defconfig
- make
- ./u-boot -d u-boot.dtb
-
- (type 'reset' to exit U-Boot)
-
-
-There is a uclass called 'demo'. This uclass handles
-saying hello, and reporting its status. There are two drivers in this
-uclass:
-
- - simple: Just prints a message for hello, doesn't implement status
- - shape: Prints shapes and reports number of characters printed as status
-
-The demo class is pretty simple, but not trivial. The intention is that it
-can be used for testing, so it will implement all driver model features and
-provide good code coverage of them. It does have multiple drivers, it
-handles parameter data and platdata (data which tells the driver how
-to operate on a particular platform) and it uses private driver data.
-
-To try it, see the example session below:
-
-=>demo hello 1
-Hello '@' from 07981110: red 4
-=>demo status 2
-Status: 0
-=>demo hello 2
-g
-r@
-e@@
-e@@@
-n@@@@
-g@@@@@
-=>demo status 2
-Status: 21
-=>demo hello 4 ^
- y^^^
- e^^^^^
-l^^^^^^^
-l^^^^^^^
- o^^^^^
- w^^^
-=>demo status 4
-Status: 36
-=>
-
-
-Running the tests
------------------
-
-The intent with driver model is that the core portion has 100% test coverage
-in sandbox, and every uclass has its own test. As a move towards this, tests
-are provided in test/dm. To run them, try:
-
- ./test/py/test.py --bd sandbox --build -k ut_dm -v
-
-You should see something like this:
-
-(venv)$ ./test/py/test.py --bd sandbox --build -k ut_dm -v
-+make O=/root/u-boot/build-sandbox -s sandbox_defconfig
-+make O=/root/u-boot/build-sandbox -s -j8
-============================= test session starts ==============================
-platform linux2 -- Python 2.7.5, pytest-2.9.0, py-1.4.31, pluggy-0.3.1 -- /root/u-boot/venv/bin/python
-cachedir: .cache
-rootdir: /root/u-boot, inifile:
-collected 199 items
-
-test/py/tests/test_ut.py::test_ut_dm_init PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_bind] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_conversion] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_shot] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_conversion] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_shot] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_supply] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_adc_wrong_channel_selection] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_autobind] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_alloc] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_valid] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_autoprobe] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind_uclass] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_pre_probe_uclass] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_children] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_funcs] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_iterators] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data_uclass] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_ops] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata_uclass] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_children] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_clk_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_clk_periph] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_device_get_uclass_id] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_eth] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_eth_act] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_eth_alias] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_eth_prime] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_eth_rotate] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_fdt] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_fdt_offset] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_fdt_pre_reloc] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_fdt_uclass_seq] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio_anon] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio_copy] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio_leak] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio_phandles] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_gpio_requestf] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_bytewise] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_find] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset_len] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_probe_empty] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_read_write] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_i2c_speed] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_leak] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_led_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_led_gpio] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_led_label] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_lifecycle] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_mmc_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_net_retry] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_operations] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_ordering] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_pci_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_pci_busnum] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_pci_swapcase] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_platdata] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_get] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_io] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset_list] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_get] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_current] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_enable] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_mode] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_voltage] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_pre_reloc] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_ram_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_regmap_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_regmap_syscon] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_remoteproc_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_remove] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_reset_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_reset_walk] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_rtc_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_rtc_dual] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_rtc_reset] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_rtc_set_get] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_spi_find] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_spi_flash] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_spi_xfer] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_syscon_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_syscon_by_driver_data] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_timer_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass_before_ready] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find_by_name] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get_by_name] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_flash] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_keyb] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_multi] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_remove] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_remove] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_reorder] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_base] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp_comp] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_chars] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_context] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation1] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation2] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation3] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_text] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_bs] PASSED
-test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_scroll] PASSED
-
-======================= 84 tests deselected by '-kut_dm' =======================
-================== 115 passed, 84 deselected in 3.77 seconds ===================
-
-What is going on?
------------------
-
-Let's start at the top. The demo command is in common/cmd_demo.c. It does
-the usual command processing and then:
-
- struct udevice *demo_dev;
-
- ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);
-
-UCLASS_DEMO means the class of devices which implement 'demo'. Other
-classes might be MMC, or GPIO, hashing or serial. The idea is that the
-devices in the class all share a particular way of working. The class
-presents a unified view of all these devices to U-Boot.
-
-This function looks up a device for the demo uclass. Given a device
-number we can find the device because all devices have registered with
-the UCLASS_DEMO uclass.
-
-The device is automatically activated ready for use by uclass_get_device().
-
-Now that we have the device we can do things like:
-
- return demo_hello(demo_dev, ch);
-
-This function is in the demo uclass. It takes care of calling the 'hello'
-method of the relevant driver. Bearing in mind that there are two drivers,
-this particular device may use one or other of them.
-
-The code for demo_hello() is in drivers/demo/demo-uclass.c:
-
-int demo_hello(struct udevice *dev, int ch)
-{
- const struct demo_ops *ops = device_get_ops(dev);
-
- if (!ops->hello)
- return -ENOSYS;
-
- return ops->hello(dev, ch);
-}
-
-As you can see it just calls the relevant driver method. One of these is
-in drivers/demo/demo-simple.c:
-
-static int simple_hello(struct udevice *dev, int ch)
-{
- const struct dm_demo_pdata *pdata = dev_get_platdata(dev);
-
- printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
- pdata->colour, pdata->sides);
-
- return 0;
-}
-
-
-So that is a trip from top (command execution) to bottom (driver action)
-but it leaves a lot of topics to address.
-
-
-Declaring Drivers
------------------
-
-A driver declaration looks something like this (see
-drivers/demo/demo-shape.c):
-
-static const struct demo_ops shape_ops = {
- .hello = shape_hello,
- .status = shape_status,
-};
-
-U_BOOT_DRIVER(demo_shape_drv) = {
- .name = "demo_shape_drv",
- .id = UCLASS_DEMO,
- .ops = &shape_ops,
- .priv_data_size = sizeof(struct shape_data),
-};
-
-
-This driver has two methods (hello and status) and requires a bit of
-private data (accessible through dev_get_priv(dev) once the driver has
-been probed). It is a member of UCLASS_DEMO so will register itself
-there.
-
-In U_BOOT_DRIVER it is also possible to specify special methods for bind
-and unbind, and these are called at appropriate times. For many drivers
-it is hoped that only 'probe' and 'remove' will be needed.
-
-The U_BOOT_DRIVER macro creates a data structure accessible from C,
-so driver model can find the drivers that are available.
-
-The methods a device can provide are documented in the device.h header.
-Briefly, they are:
-
- bind - make the driver model aware of a device (bind it to its driver)
- unbind - make the driver model forget the device
- ofdata_to_platdata - convert device tree data to platdata - see later
- probe - make a device ready for use
- remove - remove a device so it cannot be used until probed again
-
-The sequence to get a device to work is bind, ofdata_to_platdata (if using
-device tree) and probe.
-
-
-Platform Data
--------------
-
-*** Note: platform data is the old way of doing things. It is
-*** basically a C structure which is passed to drivers to tell them about
-*** platform-specific settings like the address of its registers, bus
-*** speed, etc. Device tree is now the preferred way of handling this.
-*** Unless you have a good reason not to use device tree (the main one
-*** being you need serial support in SPL and don't have enough SRAM for
-*** the cut-down device tree and libfdt libraries) you should stay away
-*** from platform data.
-
-Platform data is like Linux platform data, if you are familiar with that.
-It provides the board-specific information to start up a device.
-
-Why is this information not just stored in the device driver itself? The
-idea is that the device driver is generic, and can in principle operate on
-any board that has that type of device. For example, with modern
-highly-complex SoCs it is common for the IP to come from an IP vendor, and
-therefore (for example) the MMC controller may be the same on chips from
-different vendors. It makes no sense to write independent drivers for the
-MMC controller on each vendor's SoC, when they are all almost the same.
-Similarly, we may have 6 UARTs in an SoC, all of which are mostly the same,
-but lie at different addresses in the address space.
-
-Using the UART example, we have a single driver and it is instantiated 6
-times by supplying 6 lots of platform data. Each lot of platform data
-gives the driver name and a pointer to a structure containing information
-about this instance - e.g. the address of the register space. It may be that
-one of the UARTS supports RS-485 operation - this can be added as a flag in
-the platform data, which is set for this one port and clear for the rest.
-
-Think of your driver as a generic piece of code which knows how to talk to
-a device, but needs to know where it is, any variant/option information and
-so on. Platform data provides this link between the generic piece of code
-and the specific way it is bound on a particular board.
-
-Examples of platform data include:
-
- - The base address of the IP block's register space
- - Configuration options, like:
- - the SPI polarity and maximum speed for a SPI controller
- - the I2C speed to use for an I2C device
- - the number of GPIOs available in a GPIO device
-
-Where does the platform data come from? It is either held in a structure
-which is compiled into U-Boot, or it can be parsed from the Device Tree
-(see 'Device Tree' below).
-
-For an example of how it can be compiled in, see demo-pdata.c which
-sets up a table of driver names and their associated platform data.
-The data can be interpreted by the drivers however they like - it is
-basically a communication scheme between the board-specific code and
-the generic drivers, which are intended to work on any board.
-
-Drivers can access their data via dev->info->platdata. Here is
-the declaration for the platform data, which would normally appear
-in the board file.
-
- static const struct dm_demo_cdata red_square = {
- .colour = "red",
- .sides = 4.
- };
- static const struct driver_info info[] = {
- {
- .name = "demo_shape_drv",
- .platdata = &red_square,
- },
- };
-
- demo1 = driver_bind(root, &info[0]);
-
-
-Device Tree
------------
-
-While platdata is useful, a more flexible way of providing device data is
-by using device tree. In U-Boot you should use this where possible. Avoid
-sending patches which make use of the U_BOOT_DEVICE() macro unless strictly
-necessary.
-
-With device tree we replace the above code with the following device tree
-fragment:
-
- red-square {
- compatible = "demo-shape";
- colour = "red";
- sides = <4>;
- };
-
-This means that instead of having lots of U_BOOT_DEVICE() declarations in
-the board file, we put these in the device tree. This approach allows a lot
-more generality, since the same board file can support many types of boards
-(e,g. with the same SoC) just by using different device trees. An added
-benefit is that the Linux device tree can be used, thus further simplifying
-the task of board-bring up either for U-Boot or Linux devs (whoever gets to
-the board first!).
-
-The easiest way to make this work it to add a few members to the driver:
-
- .platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
- .ofdata_to_platdata = testfdt_ofdata_to_platdata,
-
-The 'auto_alloc' feature allowed space for the platdata to be allocated
-and zeroed before the driver's ofdata_to_platdata() method is called. The
-ofdata_to_platdata() method, which the driver write supplies, should parse
-the device tree node for this device and place it in dev->platdata. Thus
-when the probe method is called later (to set up the device ready for use)
-the platform data will be present.
-
-Note that both methods are optional. If you provide an ofdata_to_platdata
-method then it will be called first (during activation). If you provide a
-probe method it will be called next. See Driver Lifecycle below for more
-details.
-
-If you don't want to have the platdata automatically allocated then you
-can leave out platdata_auto_alloc_size. In this case you can use malloc
-in your ofdata_to_platdata (or probe) method to allocate the required memory,
-and you should free it in the remove method.
-
-The driver model tree is intended to mirror that of the device tree. The
-root driver is at device tree offset 0 (the root node, '/'), and its
-children are the children of the root node.
-
-In order for a device tree to be valid, the content must be correct with
-respect to either device tree specification
-(https://www.devicetree.org/specifications/) or the device tree bindings that
-are found in the doc/device-tree-bindings directory. When not U-Boot specific
-the bindings in this directory tend to come from the Linux Kernel. As such
-certain design decisions may have been made already for us in terms of how
-specific devices are described and bound. In most circumstances we wish to
-retain compatibility without additional changes being made to the device tree
-source files.
-
-Declaring Uclasses
-------------------
-
-The demo uclass is declared like this:
-
-U_BOOT_CLASS(demo) = {
- .id = UCLASS_DEMO,
-};
-
-It is also possible to specify special methods for probe, etc. The uclass
-numbering comes from include/dm/uclass.h. To add a new uclass, add to the
-end of the enum there, then declare your uclass as above.
-
-
-Device Sequence Numbers
------------------------
-
-U-Boot numbers devices from 0 in many situations, such as in the command
-line for I2C and SPI buses, and the device names for serial ports (serial0,
-serial1, ...). Driver model supports this numbering and permits devices
-to be locating by their 'sequence'. This numbering uniquely identifies a
-device in its uclass, so no two devices within a particular uclass can have
-the same sequence number.
-
-Sequence numbers start from 0 but gaps are permitted. For example, a board
-may have I2C buses 1, 4, 5 but no 0, 2 or 3. The choice of how devices are
-numbered is up to a particular board, and may be set by the SoC in some
-cases. While it might be tempting to automatically renumber the devices
-where there are gaps in the sequence, this can lead to confusion and is
-not the way that U-Boot works.
-
-Each device can request a sequence number. If none is required then the
-device will be automatically allocated the next available sequence number.
-
-To specify the sequence number in the device tree an alias is typically
-used. Make sure that the uclass has the DM_UC_FLAG_SEQ_ALIAS flag set.
-
-aliases {
- serial2 = "/serial@22230000";
-};
-
-This indicates that in the uclass called "serial", the named node
-("/serial@22230000") will be given sequence number 2. Any command or driver
-which requests serial device 2 will obtain this device.
-
-More commonly you can use node references, which expand to the full path:
-
-aliases {
- serial2 = &serial_2;
-};
-...
-serial_2: serial@22230000 {
-...
-};
-
-The alias resolves to the same string in this case, but this version is
-easier to read.
-
-Device sequence numbers are resolved when a device is probed. Before then
-the sequence number is only a request which may or may not be honoured,
-depending on what other devices have been probed. However the numbering is
-entirely under the control of the board author so a conflict is generally
-an error.
-
-
-Bus Drivers
------------
-
-A common use of driver model is to implement a bus, a device which provides
-access to other devices. Example of buses include SPI and I2C. Typically
-the bus provides some sort of transport or translation that makes it
-possible to talk to the devices on the bus.
-
-Driver model provides some useful features to help with implementing buses.
-Firstly, a bus can request that its children store some 'parent data' which
-can be used to keep track of child state. Secondly, the bus can define
-methods which are called when a child is probed or removed. This is similar
-to the methods the uclass driver provides. Thirdly, per-child platform data
-can be provided to specify things like the child's address on the bus. This
-persists across child probe()/remove() cycles.
-
-For consistency and ease of implementation, the bus uclass can specify the
-per-child platform data, so that it can be the same for all children of buses
-in that uclass. There are also uclass methods which can be called when
-children are bound and probed.
-
-Here an explanation of how a bus fits with a uclass may be useful. Consider
-a USB bus with several devices attached to it, each from a different (made
-up) uclass:
-
- xhci_usb (UCLASS_USB)
- eth (UCLASS_ETHERNET)
- camera (UCLASS_CAMERA)
- flash (UCLASS_FLASH_STORAGE)
-
-Each of the devices is connected to a different address on the USB bus.
-The bus device wants to store this address and some other information such
-as the bus speed for each device.
-
-To achieve this, the bus device can use dev->parent_platdata in each of its
-three children. This can be auto-allocated if the bus driver (or bus uclass)
-has a non-zero value for per_child_platdata_auto_alloc_size. If not, then
-the bus device or uclass can allocate the space itself before the child
-device is probed.
-
-Also the bus driver can define the child_pre_probe() and child_post_remove()
-methods to allow it to do some processing before the child is activated or
-after it is deactivated.
-
-Similarly the bus uclass can define the child_post_bind() method to obtain
-the per-child platform data from the device tree and set it up for the child.
-The bus uclass can also provide a child_pre_probe() method. Very often it is
-the bus uclass that controls these features, since it avoids each driver
-having to do the same processing. Of course the driver can still tweak and
-override these activities.
-
-Note that the information that controls this behaviour is in the bus's
-driver, not the child's. In fact it is possible that child has no knowledge
-that it is connected to a bus. The same child device may even be used on two
-different bus types. As an example. the 'flash' device shown above may also
-be connected on a SATA bus or standalone with no bus:
-
- xhci_usb (UCLASS_USB)
- flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by USB bus
-
- sata (UCLASS_SATA)
- flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by SATA bus
-
- flash (UCLASS_FLASH_STORAGE) - no parent data/methods (not on a bus)
-
-Above you can see that the driver for xhci_usb/sata controls the child's
-bus methods. In the third example the device is not on a bus, and therefore
-will not have these methods at all. Consider the case where the flash
-device defines child methods. These would be used for *its* children, and
-would be quite separate from the methods defined by the driver for the bus
-that the flash device is connetced to. The act of attaching a device to a
-parent device which is a bus, causes the device to start behaving like a
-bus device, regardless of its own views on the matter.
-
-The uclass for the device can also contain data private to that uclass.
-But note that each device on the bus may be a memeber of a different
-uclass, and this data has nothing to do with the child data for each child
-on the bus. It is the bus' uclass that controls the child with respect to
-the bus.
-
-
-Driver Lifecycle
-----------------
-
-Here are the stages that a device goes through in driver model. Note that all
-methods mentioned here are optional - e.g. if there is no probe() method for
-a device then it will not be called. A simple device may have very few
-methods actually defined.
-
-1. Bind stage
-
-U-Boot discovers devices using one of these two methods:
-
- - Scan the U_BOOT_DEVICE() definitions. U-Boot looks up the name specified
-by each, to find the appropriate U_BOOT_DRIVER() definition. In this case,
-there is no path by which driver_data may be provided, but the U_BOOT_DEVICE()
-may provide platdata.
-
- - Scan through the device tree definitions. U-Boot looks at top-level
-nodes in the the device tree. It looks at the compatible string in each node
-and uses the of_match table of the U_BOOT_DRIVER() structure to find the
-right driver for each node. In this case, the of_match table may provide a
-driver_data value, but platdata cannot be provided until later.
-
-For each device that is discovered, U-Boot then calls device_bind() to create a
-new device, initializes various core fields of the device object such as name,
-uclass & driver, initializes any optional fields of the device object that are
-applicable such as of_offset, driver_data & platdata, and finally calls the
-driver's bind() method if one is defined.
-
-At this point all the devices are known, and bound to their drivers. There
-is a 'struct udevice' allocated for all devices. However, nothing has been
-activated (except for the root device). Each bound device that was created
-from a U_BOOT_DEVICE() declaration will hold the platdata pointer specified
-in that declaration. For a bound device created from the device tree,
-platdata will be NULL, but of_offset will be the offset of the device tree
-node that caused the device to be created. The uclass is set correctly for
-the device.
-
-The device's bind() method is permitted to perform simple actions, but
-should not scan the device tree node, not initialise hardware, nor set up
-structures or allocate memory. All of these tasks should be left for
-the probe() method.
-
-Note that compared to Linux, U-Boot's driver model has a separate step of
-probe/remove which is independent of bind/unbind. This is partly because in
-U-Boot it may be expensive to probe devices and we don't want to do it until
-they are needed, or perhaps until after relocation.
-
-2. Activation/probe
-
-When a device needs to be used, U-Boot activates it, by following these
-steps (see device_probe()):
-
- a. If priv_auto_alloc_size is non-zero, then the device-private space
- is allocated for the device and zeroed. It will be accessible as
- dev->priv. The driver can put anything it likes in there, but should use
- it for run-time information, not platform data (which should be static
- and known before the device is probed).
-
- b. If platdata_auto_alloc_size is non-zero, then the platform data space
- is allocated. This is only useful for device tree operation, since
- otherwise you would have to specific the platform data in the
- U_BOOT_DEVICE() declaration. The space is allocated for the device and
- zeroed. It will be accessible as dev->platdata.
-
- c. If the device's uclass specifies a non-zero per_device_auto_alloc_size,
- then this space is allocated and zeroed also. It is allocated for and
- stored in the device, but it is uclass data. owned by the uclass driver.
- It is possible for the device to access it.
-
- d. If the device's immediate parent specifies a per_child_auto_alloc_size
- then this space is allocated. This is intended for use by the parent
- device to keep track of things related to the child. For example a USB
- flash stick attached to a USB host controller would likely use this
- space. The controller can hold information about the USB state of each
- of its children.
-
- e. All parent devices are probed. It is not possible to activate a device
- unless its predecessors (all the way up to the root device) are activated.
- This means (for example) that an I2C driver will require that its bus
- be activated.
-
- f. The device's sequence number is assigned, either the requested one
- (assuming no conflicts) or the next available one if there is a conflict
- or nothing particular is requested.
-
- g. If the driver provides an ofdata_to_platdata() method, then this is
- called to convert the device tree data into platform data. This should
- do various calls like fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), ...)
- to access the node and store the resulting information into dev->platdata.
- After this point, the device works the same way whether it was bound
- using a device tree node or U_BOOT_DEVICE() structure. In either case,
- the platform data is now stored in the platdata structure. Typically you
- will use the platdata_auto_alloc_size feature to specify the size of the
- platform data structure, and U-Boot will automatically allocate and zero
- it for you before entry to ofdata_to_platdata(). But if not, you can
- allocate it yourself in ofdata_to_platdata(). Note that it is preferable
- to do all the device tree decoding in ofdata_to_platdata() rather than
- in probe(). (Apart from the ugliness of mixing configuration and run-time
- data, one day it is possible that U-Boot will cache platform data for
- devices which are regularly de/activated).
-
- h. The device's probe() method is called. This should do anything that
- is required by the device to get it going. This could include checking
- that the hardware is actually present, setting up clocks for the
- hardware and setting up hardware registers to initial values. The code
- in probe() can access:
-
- - platform data in dev->platdata (for configuration)
- - private data in dev->priv (for run-time state)
- - uclass data in dev->uclass_priv (for things the uclass stores
- about this device)
-
- Note: If you don't use priv_auto_alloc_size then you will need to
- allocate the priv space here yourself. The same applies also to
- platdata_auto_alloc_size. Remember to free them in the remove() method.
-
- i. The device is marked 'activated'
-
- j. The uclass's post_probe() method is called, if one exists. This may
- cause the uclass to do some housekeeping to record the device as
- activated and 'known' by the uclass.
-
-3. Running stage
-
-The device is now activated and can be used. From now until it is removed
-all of the above structures are accessible. The device appears in the
-uclass's list of devices (so if the device is in UCLASS_GPIO it will appear
-as a device in the GPIO uclass). This is the 'running' state of the device.
-
-4. Removal stage
-
-When the device is no-longer required, you can call device_remove() to
-remove it. This performs the probe steps in reverse:
-
- a. The uclass's pre_remove() method is called, if one exists. This may
- cause the uclass to do some housekeeping to record the device as
- deactivated and no-longer 'known' by the uclass.
-
- b. All the device's children are removed. It is not permitted to have
- an active child device with a non-active parent. This means that
- device_remove() is called for all the children recursively at this point.
-
- c. The device's remove() method is called. At this stage nothing has been
- deallocated so platform data, private data and the uclass data will all
- still be present. This is where the hardware can be shut down. It is
- intended that the device be completely inactive at this point, For U-Boot
- to be sure that no hardware is running, it should be enough to remove
- all devices.
-
- d. The device memory is freed (platform data, private data, uclass data,
- parent data).
-
- Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
- static pointer, it is not de-allocated during the remove() method. For
- a device instantiated using the device tree data, the platform data will
- be dynamically allocated, and thus needs to be deallocated during the
- remove() method, either:
-
- 1. if the platdata_auto_alloc_size is non-zero, the deallocation
- happens automatically within the driver model core; or
-
- 2. when platdata_auto_alloc_size is 0, both the allocation (in probe()
- or preferably ofdata_to_platdata()) and the deallocation in remove()
- are the responsibility of the driver author.
-
- e. The device sequence number is set to -1, meaning that it no longer
- has an allocated sequence. If the device is later reactivated and that
- sequence number is still free, it may well receive the name sequence
- number again. But from this point, the sequence number previously used
- by this device will no longer exist (think of SPI bus 2 being removed
- and bus 2 is no longer available for use).
-
- f. The device is marked inactive. Note that it is still bound, so the
- device structure itself is not freed at this point. Should the device be
- activated again, then the cycle starts again at step 2 above.
-
-5. Unbind stage
-
-The device is unbound. This is the step that actually destroys the device.
-If a parent has children these will be destroyed first. After this point
-the device does not exist and its memory has be deallocated.
-
-
-Data Structures
----------------
-
-Driver model uses a doubly-linked list as the basic data structure. Some
-nodes have several lists running through them. Creating a more efficient
-data structure might be worthwhile in some rare cases, once we understand
-what the bottlenecks are.
-
-
-Changes since v1
-----------------
-
-For the record, this implementation uses a very similar approach to the
-original patches, but makes at least the following changes:
-
-- Tried to aggressively remove boilerplate, so that for most drivers there
-is little or no 'driver model' code to write.
-- Moved some data from code into data structure - e.g. store a pointer to
-the driver operations structure in the driver, rather than passing it
-to the driver bind function.
-- Rename some structures to make them more similar to Linux (struct udevice
-instead of struct instance, struct platdata, etc.)
-- Change the name 'core' to 'uclass', meaning U-Boot class. It seems that
-this concept relates to a class of drivers (or a subsystem). We shouldn't
-use 'class' since it is a C++ reserved word, so U-Boot class (uclass) seems
-better than 'core'.
-- Remove 'struct driver_instance' and just use a single 'struct udevice'.
-This removes a level of indirection that doesn't seem necessary.
-- Built in device tree support, to avoid the need for platdata
-- Removed the concept of driver relocation, and just make it possible for
-the new driver (created after relocation) to access the old driver data.
-I feel that relocation is a very special case and will only apply to a few
-drivers, many of which can/will just re-init anyway. So the overhead of
-dealing with this might not be worth it.
-- Implemented a GPIO system, trying to keep it simple
-
-
-Pre-Relocation Support
-----------------------
-
-For pre-relocation we simply call the driver model init function. Only
-drivers marked with DM_FLAG_PRE_RELOC or the device tree 'u-boot,dm-pre-reloc'
-property are initialised prior to relocation. This helps to reduce the driver
-model overhead. This flag applies to SPL and TPL as well, if device tree is
-enabled (CONFIG_OF_CONTROL) there.
-
-Note when device tree is enabled, the device tree 'u-boot,dm-pre-reloc'
-property can provide better control granularity on which device is bound
-before relocation. While with DM_FLAG_PRE_RELOC flag of the driver all
-devices with the same driver are bound, which requires allocation a large
-amount of memory. When device tree is not used, DM_FLAG_PRE_RELOC is the
-only way for statically declared devices via U_BOOT_DEVICE() to be bound
-prior to relocation.
-
-It is possible to limit this to specific relocation steps, by using
-the more specialized 'u-boot,dm-spl' and 'u-boot,dm-tpl' flags
-in the device tree node. For U-Boot proper you can use 'u-boot,dm-pre-proper'
-which means that it will be processed (and a driver bound) in U-Boot proper
-prior to relocation, but will not be available in SPL or TPL.
-
-To reduce the size of SPL and TPL, only the nodes with pre-relocation properties
-('u-boot,dm-pre-reloc', 'u-boot,dm-spl' or 'u-boot,dm-tpl') are keept in their
-device trees (see README.SPL for details); the remaining nodes are always bound.
-
-Then post relocation we throw that away and re-init driver model again.
-For drivers which require some sort of continuity between pre- and
-post-relocation devices, we can provide access to the pre-relocation
-device pointers, but this is not currently implemented (the root device
-pointer is saved but not made available through the driver model API).
-
-
-SPL Support
------------
-
-Driver model can operate in SPL. Its efficient implementation and small code
-size provide for a small overhead which is acceptable for all but the most
-constrained systems.
-
-To enable driver model in SPL, define CONFIG_SPL_DM. You might want to
-consider the following option also. See the main README for more details.
-
- - CONFIG_SYS_MALLOC_SIMPLE
- - CONFIG_DM_WARN
- - CONFIG_DM_DEVICE_REMOVE
- - CONFIG_DM_STDIO
-
-
-Enabling Driver Model
----------------------
-
-Driver model is being brought into U-Boot gradually. As each subsystems gets
-support, a uclass is created and a CONFIG to enable use of driver model for
-that subsystem.
-
-For example CONFIG_DM_SERIAL enables driver model for serial. With that
-defined, the old serial support is not enabled, and your serial driver must
-conform to driver model. With that undefined, the old serial support is
-enabled and driver model is not available for serial. This means that when
-you convert a driver, you must either convert all its boards, or provide for
-the driver to be compiled both with and without driver model (generally this
-is not very hard).
-
-See the main README for full details of the available driver model CONFIG
-options.
-
-
-Things to punt for later
-------------------------
-
-Uclasses are statically numbered at compile time. It would be possible to
-change this to dynamic numbering, but then we would require some sort of
-lookup service, perhaps searching by name. This is slightly less efficient
-so has been left out for now. One small advantage of dynamic numbering might
-be fewer merge conflicts in uclass-id.h.
-
-
-Simon Glass
-sjg@chromium.org
-April 2013
-Updated 7-May-13
-Updated 14-Jun-13
-Updated 18-Oct-13
-Updated 5-Nov-13
--- /dev/null
+.. SPDX-License-Identifier: GPL-2.0+
+.. sectionauthor:: Simon Glass <sjg@chromium.org>
+
+Design Details
+==============
+
+This README contains high-level information about driver model, a unified
+way of declaring and accessing drivers in U-Boot. The original work was done
+by:
+
+ * Marek Vasut <marex@denx.de>
+ * Pavel Herrmann <morpheus.ibis@gmail.com>
+ * Viktor Křivák <viktor.krivak@gmail.com>
+ * Tomas Hlavacek <tmshlvck@gmail.com>
+
+This has been both simplified and extended into the current implementation
+by:
+
+ * Simon Glass <sjg@chromium.org>
+
+
+Terminology
+-----------
+
+Uclass
+ a group of devices which operate in the same way. A uclass provides
+ a way of accessing individual devices within the group, but always
+ using the same interface. For example a GPIO uclass provides
+ operations for get/set value. An I2C uclass may have 10 I2C ports,
+ 4 with one driver, and 6 with another.
+
+Driver
+ some code which talks to a peripheral and presents a higher-level
+ interface to it.
+
+Device
+ an instance of a driver, tied to a particular port or peripheral.
+
+
+How to try it
+-------------
+
+Build U-Boot sandbox and run it::
+
+ make sandbox_defconfig
+ make
+ ./u-boot -d u-boot.dtb
+
+ (type 'reset' to exit U-Boot)
+
+
+There is a uclass called 'demo'. This uclass handles
+saying hello, and reporting its status. There are two drivers in this
+uclass:
+
+ - simple: Just prints a message for hello, doesn't implement status
+ - shape: Prints shapes and reports number of characters printed as status
+
+The demo class is pretty simple, but not trivial. The intention is that it
+can be used for testing, so it will implement all driver model features and
+provide good code coverage of them. It does have multiple drivers, it
+handles parameter data and platdata (data which tells the driver how
+to operate on a particular platform) and it uses private driver data.
+
+To try it, see the example session below::
+
+ =>demo hello 1
+ Hello '@' from 07981110: red 4
+ =>demo status 2
+ Status: 0
+ =>demo hello 2
+ g
+ r@
+ e@@
+ e@@@
+ n@@@@
+ g@@@@@
+ =>demo status 2
+ Status: 21
+ =>demo hello 4 ^
+ y^^^
+ e^^^^^
+ l^^^^^^^
+ l^^^^^^^
+ o^^^^^
+ w^^^
+ =>demo status 4
+ Status: 36
+ =>
+
+
+Running the tests
+-----------------
+
+The intent with driver model is that the core portion has 100% test coverage
+in sandbox, and every uclass has its own test. As a move towards this, tests
+are provided in test/dm. To run them, try::
+
+ ./test/py/test.py --bd sandbox --build -k ut_dm -v
+
+You should see something like this::
+
+ (venv)$ ./test/py/test.py --bd sandbox --build -k ut_dm -v
+ +make O=/root/u-boot/build-sandbox -s sandbox_defconfig
+ +make O=/root/u-boot/build-sandbox -s -j8
+ ============================= test session starts ==============================
+ platform linux2 -- Python 2.7.5, pytest-2.9.0, py-1.4.31, pluggy-0.3.1 -- /root/u-boot/venv/bin/python
+ cachedir: .cache
+ rootdir: /root/u-boot, inifile:
+ collected 199 items
+
+ test/py/tests/test_ut.py::test_ut_dm_init PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_bind] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_conversion] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_shot] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_conversion] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_shot] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_supply] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_adc_wrong_channel_selection] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_autobind] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_alloc] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_valid] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_autoprobe] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind_uclass] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_pre_probe_uclass] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_children] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_funcs] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_iterators] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data_uclass] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_ops] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata_uclass] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_children] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_clk_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_clk_periph] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_device_get_uclass_id] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_eth] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_eth_act] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_eth_alias] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_eth_prime] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_eth_rotate] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_fdt] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_fdt_offset] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_fdt_pre_reloc] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_fdt_uclass_seq] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio_anon] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio_copy] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio_leak] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio_phandles] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_gpio_requestf] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_bytewise] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_find] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset_len] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_probe_empty] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_read_write] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_i2c_speed] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_leak] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_led_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_led_gpio] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_led_label] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_lifecycle] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_mmc_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_net_retry] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_operations] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_ordering] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_pci_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_pci_busnum] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_pci_swapcase] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_platdata] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_get] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_io] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset_list] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_get] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_current] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_enable] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_mode] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_voltage] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_pre_reloc] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_ram_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_regmap_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_regmap_syscon] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_remoteproc_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_remove] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_reset_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_reset_walk] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_rtc_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_rtc_dual] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_rtc_reset] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_rtc_set_get] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_spi_find] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_spi_flash] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_spi_xfer] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_syscon_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_syscon_by_driver_data] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_timer_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass_before_ready] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find_by_name] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get_by_name] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_flash] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_keyb] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_multi] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_remove] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_remove] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_reorder] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_base] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp_comp] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_chars] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_context] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation1] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation2] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation3] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_text] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_bs] PASSED
+ test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_scroll] PASSED
+
+ ======================= 84 tests deselected by '-kut_dm' =======================
+ ================== 115 passed, 84 deselected in 3.77 seconds ===================
+
+What is going on?
+-----------------
+
+Let's start at the top. The demo command is in common/cmd_demo.c. It does
+the usual command processing and then:
+
+.. code-block:: c
+
+ struct udevice *demo_dev;
+
+ ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);
+
+UCLASS_DEMO means the class of devices which implement 'demo'. Other
+classes might be MMC, or GPIO, hashing or serial. The idea is that the
+devices in the class all share a particular way of working. The class
+presents a unified view of all these devices to U-Boot.
+
+This function looks up a device for the demo uclass. Given a device
+number we can find the device because all devices have registered with
+the UCLASS_DEMO uclass.
+
+The device is automatically activated ready for use by uclass_get_device().
+
+Now that we have the device we can do things like:
+
+.. code-block:: c
+
+ return demo_hello(demo_dev, ch);
+
+This function is in the demo uclass. It takes care of calling the 'hello'
+method of the relevant driver. Bearing in mind that there are two drivers,
+this particular device may use one or other of them.
+
+The code for demo_hello() is in drivers/demo/demo-uclass.c:
+
+.. code-block:: c
+
+ int demo_hello(struct udevice *dev, int ch)
+ {
+ const struct demo_ops *ops = device_get_ops(dev);
+
+ if (!ops->hello)
+ return -ENOSYS;
+
+ return ops->hello(dev, ch);
+ }
+
+As you can see it just calls the relevant driver method. One of these is
+in drivers/demo/demo-simple.c:
+
+.. code-block:: c
+
+ static int simple_hello(struct udevice *dev, int ch)
+ {
+ const struct dm_demo_pdata *pdata = dev_get_platdata(dev);
+
+ printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
+ pdata->colour, pdata->sides);
+
+ return 0;
+ }
+
+
+So that is a trip from top (command execution) to bottom (driver action)
+but it leaves a lot of topics to address.
+
+
+Declaring Drivers
+-----------------
+
+A driver declaration looks something like this (see
+drivers/demo/demo-shape.c):
+
+.. code-block:: c
+
+ static const struct demo_ops shape_ops = {
+ .hello = shape_hello,
+ .status = shape_status,
+ };
+
+ U_BOOT_DRIVER(demo_shape_drv) = {
+ .name = "demo_shape_drv",
+ .id = UCLASS_DEMO,
+ .ops = &shape_ops,
+ .priv_data_size = sizeof(struct shape_data),
+ };
+
+
+This driver has two methods (hello and status) and requires a bit of
+private data (accessible through dev_get_priv(dev) once the driver has
+been probed). It is a member of UCLASS_DEMO so will register itself
+there.
+
+In U_BOOT_DRIVER it is also possible to specify special methods for bind
+and unbind, and these are called at appropriate times. For many drivers
+it is hoped that only 'probe' and 'remove' will be needed.
+
+The U_BOOT_DRIVER macro creates a data structure accessible from C,
+so driver model can find the drivers that are available.
+
+The methods a device can provide are documented in the device.h header.
+Briefly, they are:
+
+ * bind - make the driver model aware of a device (bind it to its driver)
+ * unbind - make the driver model forget the device
+ * ofdata_to_platdata - convert device tree data to platdata - see later
+ * probe - make a device ready for use
+ * remove - remove a device so it cannot be used until probed again
+
+The sequence to get a device to work is bind, ofdata_to_platdata (if using
+device tree) and probe.
+
+
+Platform Data
+-------------
+
+Note: platform data is the old way of doing things. It is
+basically a C structure which is passed to drivers to tell them about
+platform-specific settings like the address of its registers, bus
+speed, etc. Device tree is now the preferred way of handling this.
+Unless you have a good reason not to use device tree (the main one
+being you need serial support in SPL and don't have enough SRAM for
+the cut-down device tree and libfdt libraries) you should stay away
+from platform data.
+
+Platform data is like Linux platform data, if you are familiar with that.
+It provides the board-specific information to start up a device.
+
+Why is this information not just stored in the device driver itself? The
+idea is that the device driver is generic, and can in principle operate on
+any board that has that type of device. For example, with modern
+highly-complex SoCs it is common for the IP to come from an IP vendor, and
+therefore (for example) the MMC controller may be the same on chips from
+different vendors. It makes no sense to write independent drivers for the
+MMC controller on each vendor's SoC, when they are all almost the same.
+Similarly, we may have 6 UARTs in an SoC, all of which are mostly the same,
+but lie at different addresses in the address space.
+
+Using the UART example, we have a single driver and it is instantiated 6
+times by supplying 6 lots of platform data. Each lot of platform data
+gives the driver name and a pointer to a structure containing information
+about this instance - e.g. the address of the register space. It may be that
+one of the UARTS supports RS-485 operation - this can be added as a flag in
+the platform data, which is set for this one port and clear for the rest.
+
+Think of your driver as a generic piece of code which knows how to talk to
+a device, but needs to know where it is, any variant/option information and
+so on. Platform data provides this link between the generic piece of code
+and the specific way it is bound on a particular board.
+
+Examples of platform data include:
+
+ - The base address of the IP block's register space
+ - Configuration options, like:
+ - the SPI polarity and maximum speed for a SPI controller
+ - the I2C speed to use for an I2C device
+ - the number of GPIOs available in a GPIO device
+
+Where does the platform data come from? It is either held in a structure
+which is compiled into U-Boot, or it can be parsed from the Device Tree
+(see 'Device Tree' below).
+
+For an example of how it can be compiled in, see demo-pdata.c which
+sets up a table of driver names and their associated platform data.
+The data can be interpreted by the drivers however they like - it is
+basically a communication scheme between the board-specific code and
+the generic drivers, which are intended to work on any board.
+
+Drivers can access their data via dev->info->platdata. Here is
+the declaration for the platform data, which would normally appear
+in the board file.
+
+.. code-block:: c
+
+ static const struct dm_demo_cdata red_square = {
+ .colour = "red",
+ .sides = 4.
+ };
+
+ static const struct driver_info info[] = {
+ {
+ .name = "demo_shape_drv",
+ .platdata = &red_square,
+ },
+ };
+
+ demo1 = driver_bind(root, &info[0]);
+
+
+Device Tree
+-----------
+
+While platdata is useful, a more flexible way of providing device data is
+by using device tree. In U-Boot you should use this where possible. Avoid
+sending patches which make use of the U_BOOT_DEVICE() macro unless strictly
+necessary.
+
+With device tree we replace the above code with the following device tree
+fragment:
+
+.. code-block:: c
+
+ red-square {
+ compatible = "demo-shape";
+ colour = "red";
+ sides = <4>;
+ };
+
+This means that instead of having lots of U_BOOT_DEVICE() declarations in
+the board file, we put these in the device tree. This approach allows a lot
+more generality, since the same board file can support many types of boards
+(e,g. with the same SoC) just by using different device trees. An added
+benefit is that the Linux device tree can be used, thus further simplifying
+the task of board-bring up either for U-Boot or Linux devs (whoever gets to
+the board first!).
+
+The easiest way to make this work it to add a few members to the driver:
+
+.. code-block:: c
+
+ .platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
+ .ofdata_to_platdata = testfdt_ofdata_to_platdata,
+
+The 'auto_alloc' feature allowed space for the platdata to be allocated
+and zeroed before the driver's ofdata_to_platdata() method is called. The
+ofdata_to_platdata() method, which the driver write supplies, should parse
+the device tree node for this device and place it in dev->platdata. Thus
+when the probe method is called later (to set up the device ready for use)
+the platform data will be present.
+
+Note that both methods are optional. If you provide an ofdata_to_platdata
+method then it will be called first (during activation). If you provide a
+probe method it will be called next. See Driver Lifecycle below for more
+details.
+
+If you don't want to have the platdata automatically allocated then you
+can leave out platdata_auto_alloc_size. In this case you can use malloc
+in your ofdata_to_platdata (or probe) method to allocate the required memory,
+and you should free it in the remove method.
+
+The driver model tree is intended to mirror that of the device tree. The
+root driver is at device tree offset 0 (the root node, '/'), and its
+children are the children of the root node.
+
+In order for a device tree to be valid, the content must be correct with
+respect to either device tree specification
+(https://www.devicetree.org/specifications/) or the device tree bindings that
+are found in the doc/device-tree-bindings directory. When not U-Boot specific
+the bindings in this directory tend to come from the Linux Kernel. As such
+certain design decisions may have been made already for us in terms of how
+specific devices are described and bound. In most circumstances we wish to
+retain compatibility without additional changes being made to the device tree
+source files.
+
+Declaring Uclasses
+------------------
+
+The demo uclass is declared like this:
+
+.. code-block:: c
+
+ U_BOOT_CLASS(demo) = {
+ .id = UCLASS_DEMO,
+ };
+
+It is also possible to specify special methods for probe, etc. The uclass
+numbering comes from include/dm/uclass.h. To add a new uclass, add to the
+end of the enum there, then declare your uclass as above.
+
+
+Device Sequence Numbers
+-----------------------
+
+U-Boot numbers devices from 0 in many situations, such as in the command
+line for I2C and SPI buses, and the device names for serial ports (serial0,
+serial1, ...). Driver model supports this numbering and permits devices
+to be locating by their 'sequence'. This numbering uniquely identifies a
+device in its uclass, so no two devices within a particular uclass can have
+the same sequence number.
+
+Sequence numbers start from 0 but gaps are permitted. For example, a board
+may have I2C buses 1, 4, 5 but no 0, 2 or 3. The choice of how devices are
+numbered is up to a particular board, and may be set by the SoC in some
+cases. While it might be tempting to automatically renumber the devices
+where there are gaps in the sequence, this can lead to confusion and is
+not the way that U-Boot works.
+
+Each device can request a sequence number. If none is required then the
+device will be automatically allocated the next available sequence number.
+
+To specify the sequence number in the device tree an alias is typically
+used. Make sure that the uclass has the DM_UC_FLAG_SEQ_ALIAS flag set.
+
+.. code-block:: none
+
+ aliases {
+ serial2 = "/serial@22230000";
+ };
+
+This indicates that in the uclass called "serial", the named node
+("/serial@22230000") will be given sequence number 2. Any command or driver
+which requests serial device 2 will obtain this device.
+
+More commonly you can use node references, which expand to the full path:
+
+.. code-block:: none
+
+ aliases {
+ serial2 = &serial_2;
+ };
+ ...
+ serial_2: serial@22230000 {
+ ...
+ };
+
+The alias resolves to the same string in this case, but this version is
+easier to read.
+
+Device sequence numbers are resolved when a device is probed. Before then
+the sequence number is only a request which may or may not be honoured,
+depending on what other devices have been probed. However the numbering is
+entirely under the control of the board author so a conflict is generally
+an error.
+
+
+Bus Drivers
+-----------
+
+A common use of driver model is to implement a bus, a device which provides
+access to other devices. Example of buses include SPI and I2C. Typically
+the bus provides some sort of transport or translation that makes it
+possible to talk to the devices on the bus.
+
+Driver model provides some useful features to help with implementing buses.
+Firstly, a bus can request that its children store some 'parent data' which
+can be used to keep track of child state. Secondly, the bus can define
+methods which are called when a child is probed or removed. This is similar
+to the methods the uclass driver provides. Thirdly, per-child platform data
+can be provided to specify things like the child's address on the bus. This
+persists across child probe()/remove() cycles.
+
+For consistency and ease of implementation, the bus uclass can specify the
+per-child platform data, so that it can be the same for all children of buses
+in that uclass. There are also uclass methods which can be called when
+children are bound and probed.
+
+Here an explanation of how a bus fits with a uclass may be useful. Consider
+a USB bus with several devices attached to it, each from a different (made
+up) uclass::
+
+ xhci_usb (UCLASS_USB)
+ eth (UCLASS_ETHERNET)
+ camera (UCLASS_CAMERA)
+ flash (UCLASS_FLASH_STORAGE)
+
+Each of the devices is connected to a different address on the USB bus.
+The bus device wants to store this address and some other information such
+as the bus speed for each device.
+
+To achieve this, the bus device can use dev->parent_platdata in each of its
+three children. This can be auto-allocated if the bus driver (or bus uclass)
+has a non-zero value for per_child_platdata_auto_alloc_size. If not, then
+the bus device or uclass can allocate the space itself before the child
+device is probed.
+
+Also the bus driver can define the child_pre_probe() and child_post_remove()
+methods to allow it to do some processing before the child is activated or
+after it is deactivated.
+
+Similarly the bus uclass can define the child_post_bind() method to obtain
+the per-child platform data from the device tree and set it up for the child.
+The bus uclass can also provide a child_pre_probe() method. Very often it is
+the bus uclass that controls these features, since it avoids each driver
+having to do the same processing. Of course the driver can still tweak and
+override these activities.
+
+Note that the information that controls this behaviour is in the bus's
+driver, not the child's. In fact it is possible that child has no knowledge
+that it is connected to a bus. The same child device may even be used on two
+different bus types. As an example. the 'flash' device shown above may also
+be connected on a SATA bus or standalone with no bus::
+
+ xhci_usb (UCLASS_USB)
+ flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by USB bus
+
+ sata (UCLASS_SATA)
+ flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by SATA bus
+
+ flash (UCLASS_FLASH_STORAGE) - no parent data/methods (not on a bus)
+
+Above you can see that the driver for xhci_usb/sata controls the child's
+bus methods. In the third example the device is not on a bus, and therefore
+will not have these methods at all. Consider the case where the flash
+device defines child methods. These would be used for *its* children, and
+would be quite separate from the methods defined by the driver for the bus
+that the flash device is connetced to. The act of attaching a device to a
+parent device which is a bus, causes the device to start behaving like a
+bus device, regardless of its own views on the matter.
+
+The uclass for the device can also contain data private to that uclass.
+But note that each device on the bus may be a memeber of a different
+uclass, and this data has nothing to do with the child data for each child
+on the bus. It is the bus' uclass that controls the child with respect to
+the bus.
+
+
+Driver Lifecycle
+----------------
+
+Here are the stages that a device goes through in driver model. Note that all
+methods mentioned here are optional - e.g. if there is no probe() method for
+a device then it will not be called. A simple device may have very few
+methods actually defined.
+
+Bind stage
+^^^^^^^^^^
+
+U-Boot discovers devices using one of these two methods:
+
+- Scan the U_BOOT_DEVICE() definitions. U-Boot looks up the name specified
+ by each, to find the appropriate U_BOOT_DRIVER() definition. In this case,
+ there is no path by which driver_data may be provided, but the U_BOOT_DEVICE()
+ may provide platdata.
+
+- Scan through the device tree definitions. U-Boot looks at top-level
+ nodes in the the device tree. It looks at the compatible string in each node
+ and uses the of_match table of the U_BOOT_DRIVER() structure to find the
+ right driver for each node. In this case, the of_match table may provide a
+ driver_data value, but platdata cannot be provided until later.
+
+For each device that is discovered, U-Boot then calls device_bind() to create a
+new device, initializes various core fields of the device object such as name,
+uclass & driver, initializes any optional fields of the device object that are
+applicable such as of_offset, driver_data & platdata, and finally calls the
+driver's bind() method if one is defined.
+
+At this point all the devices are known, and bound to their drivers. There
+is a 'struct udevice' allocated for all devices. However, nothing has been
+activated (except for the root device). Each bound device that was created
+from a U_BOOT_DEVICE() declaration will hold the platdata pointer specified
+in that declaration. For a bound device created from the device tree,
+platdata will be NULL, but of_offset will be the offset of the device tree
+node that caused the device to be created. The uclass is set correctly for
+the device.
+
+The device's bind() method is permitted to perform simple actions, but
+should not scan the device tree node, not initialise hardware, nor set up
+structures or allocate memory. All of these tasks should be left for
+the probe() method.
+
+Note that compared to Linux, U-Boot's driver model has a separate step of
+probe/remove which is independent of bind/unbind. This is partly because in
+U-Boot it may be expensive to probe devices and we don't want to do it until
+they are needed, or perhaps until after relocation.
+
+Activation/probe
+^^^^^^^^^^^^^^^^
+
+When a device needs to be used, U-Boot activates it, by following these
+steps (see device_probe()):
+
+ 1. If priv_auto_alloc_size is non-zero, then the device-private space
+ is allocated for the device and zeroed. It will be accessible as
+ dev->priv. The driver can put anything it likes in there, but should use
+ it for run-time information, not platform data (which should be static
+ and known before the device is probed).
+
+ 2. If platdata_auto_alloc_size is non-zero, then the platform data space
+ is allocated. This is only useful for device tree operation, since
+ otherwise you would have to specific the platform data in the
+ U_BOOT_DEVICE() declaration. The space is allocated for the device and
+ zeroed. It will be accessible as dev->platdata.
+
+ 3. If the device's uclass specifies a non-zero per_device_auto_alloc_size,
+ then this space is allocated and zeroed also. It is allocated for and
+ stored in the device, but it is uclass data. owned by the uclass driver.
+ It is possible for the device to access it.
+
+ 4. If the device's immediate parent specifies a per_child_auto_alloc_size
+ then this space is allocated. This is intended for use by the parent
+ device to keep track of things related to the child. For example a USB
+ flash stick attached to a USB host controller would likely use this
+ space. The controller can hold information about the USB state of each
+ of its children.
+
+ 5. All parent devices are probed. It is not possible to activate a device
+ unless its predecessors (all the way up to the root device) are activated.
+ This means (for example) that an I2C driver will require that its bus
+ be activated.
+
+ 6. The device's sequence number is assigned, either the requested one
+ (assuming no conflicts) or the next available one if there is a conflict
+ or nothing particular is requested.
+
+ 7. If the driver provides an ofdata_to_platdata() method, then this is
+ called to convert the device tree data into platform data. This should
+ do various calls like fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), ...)
+ to access the node and store the resulting information into dev->platdata.
+ After this point, the device works the same way whether it was bound
+ using a device tree node or U_BOOT_DEVICE() structure. In either case,
+ the platform data is now stored in the platdata structure. Typically you
+ will use the platdata_auto_alloc_size feature to specify the size of the
+ platform data structure, and U-Boot will automatically allocate and zero
+ it for you before entry to ofdata_to_platdata(). But if not, you can
+ allocate it yourself in ofdata_to_platdata(). Note that it is preferable
+ to do all the device tree decoding in ofdata_to_platdata() rather than
+ in probe(). (Apart from the ugliness of mixing configuration and run-time
+ data, one day it is possible that U-Boot will cache platform data for
+ devices which are regularly de/activated).
+
+ 8. The device's probe() method is called. This should do anything that
+ is required by the device to get it going. This could include checking
+ that the hardware is actually present, setting up clocks for the
+ hardware and setting up hardware registers to initial values. The code
+ in probe() can access:
+
+ - platform data in dev->platdata (for configuration)
+ - private data in dev->priv (for run-time state)
+ - uclass data in dev->uclass_priv (for things the uclass stores
+ about this device)
+
+ Note: If you don't use priv_auto_alloc_size then you will need to
+ allocate the priv space here yourself. The same applies also to
+ platdata_auto_alloc_size. Remember to free them in the remove() method.
+
+ 9. The device is marked 'activated'
+
+ 10. The uclass's post_probe() method is called, if one exists. This may
+ cause the uclass to do some housekeeping to record the device as
+ activated and 'known' by the uclass.
+
+Running stage
+^^^^^^^^^^^^^
+
+The device is now activated and can be used. From now until it is removed
+all of the above structures are accessible. The device appears in the
+uclass's list of devices (so if the device is in UCLASS_GPIO it will appear
+as a device in the GPIO uclass). This is the 'running' state of the device.
+
+Removal stage
+^^^^^^^^^^^^^
+
+When the device is no-longer required, you can call device_remove() to
+remove it. This performs the probe steps in reverse:
+
+ 1. The uclass's pre_remove() method is called, if one exists. This may
+ cause the uclass to do some housekeeping to record the device as
+ deactivated and no-longer 'known' by the uclass.
+
+ 2. All the device's children are removed. It is not permitted to have
+ an active child device with a non-active parent. This means that
+ device_remove() is called for all the children recursively at this point.
+
+ 3. The device's remove() method is called. At this stage nothing has been
+ deallocated so platform data, private data and the uclass data will all
+ still be present. This is where the hardware can be shut down. It is
+ intended that the device be completely inactive at this point, For U-Boot
+ to be sure that no hardware is running, it should be enough to remove
+ all devices.
+
+ 4. The device memory is freed (platform data, private data, uclass data,
+ parent data).
+
+ Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
+ static pointer, it is not de-allocated during the remove() method. For
+ a device instantiated using the device tree data, the platform data will
+ be dynamically allocated, and thus needs to be deallocated during the
+ remove() method, either:
+
+ - if the platdata_auto_alloc_size is non-zero, the deallocation
+ happens automatically within the driver model core; or
+
+ - when platdata_auto_alloc_size is 0, both the allocation (in probe()
+ or preferably ofdata_to_platdata()) and the deallocation in remove()
+ are the responsibility of the driver author.
+
+ 5. The device sequence number is set to -1, meaning that it no longer
+ has an allocated sequence. If the device is later reactivated and that
+ sequence number is still free, it may well receive the name sequence
+ number again. But from this point, the sequence number previously used
+ by this device will no longer exist (think of SPI bus 2 being removed
+ and bus 2 is no longer available for use).
+
+ 6. The device is marked inactive. Note that it is still bound, so the
+ device structure itself is not freed at this point. Should the device be
+ activated again, then the cycle starts again at step 2 above.
+
+Unbind stage
+^^^^^^^^^^^^
+
+The device is unbound. This is the step that actually destroys the device.
+If a parent has children these will be destroyed first. After this point
+the device does not exist and its memory has be deallocated.
+
+
+Data Structures
+---------------
+
+Driver model uses a doubly-linked list as the basic data structure. Some
+nodes have several lists running through them. Creating a more efficient
+data structure might be worthwhile in some rare cases, once we understand
+what the bottlenecks are.
+
+
+Changes since v1
+----------------
+
+For the record, this implementation uses a very similar approach to the
+original patches, but makes at least the following changes:
+
+- Tried to aggressively remove boilerplate, so that for most drivers there
+ is little or no 'driver model' code to write.
+- Moved some data from code into data structure - e.g. store a pointer to
+ the driver operations structure in the driver, rather than passing it
+ to the driver bind function.
+- Rename some structures to make them more similar to Linux (struct udevice
+ instead of struct instance, struct platdata, etc.)
+- Change the name 'core' to 'uclass', meaning U-Boot class. It seems that
+ this concept relates to a class of drivers (or a subsystem). We shouldn't
+ use 'class' since it is a C++ reserved word, so U-Boot class (uclass) seems
+ better than 'core'.
+- Remove 'struct driver_instance' and just use a single 'struct udevice'.
+ This removes a level of indirection that doesn't seem necessary.
+- Built in device tree support, to avoid the need for platdata
+- Removed the concept of driver relocation, and just make it possible for
+ the new driver (created after relocation) to access the old driver data.
+ I feel that relocation is a very special case and will only apply to a few
+ drivers, many of which can/will just re-init anyway. So the overhead of
+ dealing with this might not be worth it.
+- Implemented a GPIO system, trying to keep it simple
+
+
+Pre-Relocation Support
+----------------------
+
+For pre-relocation we simply call the driver model init function. Only
+drivers marked with DM_FLAG_PRE_RELOC or the device tree 'u-boot,dm-pre-reloc'
+property are initialised prior to relocation. This helps to reduce the driver
+model overhead. This flag applies to SPL and TPL as well, if device tree is
+enabled (CONFIG_OF_CONTROL) there.
+
+Note when device tree is enabled, the device tree 'u-boot,dm-pre-reloc'
+property can provide better control granularity on which device is bound
+before relocation. While with DM_FLAG_PRE_RELOC flag of the driver all
+devices with the same driver are bound, which requires allocation a large
+amount of memory. When device tree is not used, DM_FLAG_PRE_RELOC is the
+only way for statically declared devices via U_BOOT_DEVICE() to be bound
+prior to relocation.
+
+It is possible to limit this to specific relocation steps, by using
+the more specialized 'u-boot,dm-spl' and 'u-boot,dm-tpl' flags
+in the device tree node. For U-Boot proper you can use 'u-boot,dm-pre-proper'
+which means that it will be processed (and a driver bound) in U-Boot proper
+prior to relocation, but will not be available in SPL or TPL.
+
+To reduce the size of SPL and TPL, only the nodes with pre-relocation properties
+('u-boot,dm-pre-reloc', 'u-boot,dm-spl' or 'u-boot,dm-tpl') are keept in their
+device trees (see README.SPL for details); the remaining nodes are always bound.
+
+Then post relocation we throw that away and re-init driver model again.
+For drivers which require some sort of continuity between pre- and
+post-relocation devices, we can provide access to the pre-relocation
+device pointers, but this is not currently implemented (the root device
+pointer is saved but not made available through the driver model API).
+
+
+SPL Support
+-----------
+
+Driver model can operate in SPL. Its efficient implementation and small code
+size provide for a small overhead which is acceptable for all but the most
+constrained systems.
+
+To enable driver model in SPL, define CONFIG_SPL_DM. You might want to
+consider the following option also. See the main README for more details.
+
+ - CONFIG_SYS_MALLOC_SIMPLE
+ - CONFIG_DM_WARN
+ - CONFIG_DM_DEVICE_REMOVE
+ - CONFIG_DM_STDIO
+
+
+Enabling Driver Model
+---------------------
+
+Driver model is being brought into U-Boot gradually. As each subsystems gets
+support, a uclass is created and a CONFIG to enable use of driver model for
+that subsystem.
+
+For example CONFIG_DM_SERIAL enables driver model for serial. With that
+defined, the old serial support is not enabled, and your serial driver must
+conform to driver model. With that undefined, the old serial support is
+enabled and driver model is not available for serial. This means that when
+you convert a driver, you must either convert all its boards, or provide for
+the driver to be compiled both with and without driver model (generally this
+is not very hard).
+
+See the main README for full details of the available driver model CONFIG
+options.
+
+
+Things to punt for later
+------------------------
+
+Uclasses are statically numbered at compile time. It would be possible to
+change this to dynamic numbering, but then we would require some sort of
+lookup service, perhaps searching by name. This is slightly less efficient
+so has been left out for now. One small advantage of dynamic numbering might
+be fewer merge conflicts in uclass-id.h.