*/
#define SMALL_MEM
-/* Compression methods (see algorithm.doc) */
-/* Only STORED and DEFLATED are supported by this BusyBox module */
-#define STORED 0
-/* methods 4 to 7 reserved */
-#define DEFLATED 8
+//// /* Compression methods (see algorithm.doc) */
+//// /* Only STORED and DEFLATED are supported by this BusyBox module */
+//// #define STORED 0
+//// /* methods 4 to 7 reserved */
+//// #define DEFLATED 8
#ifndef INBUFSIZ
# ifdef SMALL_MEM
typedef uint32_t ulg;
typedef int32_t lng;
-
-/* ===========================================================================
- */
typedef ush Pos;
typedef unsigned IPos;
-/* A Pos is an index in the character window. We use short instead of int to
- * save space in the various tables. IPos is used only for parameter passing.
- */
-
-static lng block_start;
-
-/* window position at the beginning of the current output block. Gets
- * negative when the window is moved backwards.
- */
-
-static unsigned ins_h; /* hash index of string to be inserted */
-
-#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
-/* Number of bits by which ins_h and del_h must be shifted at each
- * input step. It must be such that after MIN_MATCH steps, the oldest
- * byte no longer takes part in the hash key, that is:
- * H_SHIFT * MIN_MATCH >= HASH_BITS
- */
-
-static unsigned int prev_length;
-
-/* Length of the best match at previous step. Matches not greater than this
- * are discarded. This is used in the lazy match evaluation.
- */
-
-static unsigned strstart; /* start of string to insert */
-static unsigned match_start; /* start of matching string */
-static int eofile; /* flag set at end of input file */
-static unsigned lookahead; /* number of valid bytes ahead in window */
-
enum {
WINDOW_SIZE = 2 * WSIZE,
/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
};
+struct G1 {
+
+/* A Pos is an index in the character window. We use short instead of int to
+ * save space in the various tables. IPos is used only for parameter passing.
+ */
+ lng block_start;
+
+/* window position at the beginning of the current output block. Gets
+ * negative when the window is moved backwards.
+ */
+ unsigned ins_h; /* hash index of string to be inserted */
+
+#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
+/* Number of bits by which ins_h and del_h must be shifted at each
+ * input step. It must be such that after MIN_MATCH steps, the oldest
+ * byte no longer takes part in the hash key, that is:
+ * H_SHIFT * MIN_MATCH >= HASH_BITS
+ */
+
+ unsigned prev_length;
+
+/* Length of the best match at previous step. Matches not greater than this
+ * are discarded. This is used in the lazy match evaluation.
+ */
+
+ unsigned strstart; /* start of string to insert */
+ unsigned match_start; /* start of matching string */
+ unsigned lookahead; /* number of valid bytes ahead in window */
+ smallint eofile; /* flag set at end of input file */
+
/* ===========================================================================
*/
#define DECLARE(type, array, size) \
- static type * array
-
+ type * array
#define ALLOC(type, array, size) \
-{ \
- array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type)); \
-}
-
+ array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
#define FREE(array) \
-{ \
- free(array); \
- array = NULL; \
-}
+ do { free(array); array = NULL; } while (0)
-/* global buffers */
+ /* global buffers */
-/* buffer for literals or lengths */
-/* DECLARE(uch, l_buf, LIT_BUFSIZE); */
-DECLARE(uch, l_buf, INBUFSIZ);
+ /* buffer for literals or lengths */
+ /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
+ DECLARE(uch, l_buf, INBUFSIZ);
-DECLARE(ush, d_buf, DIST_BUFSIZE);
-DECLARE(uch, outbuf, OUTBUFSIZ);
+ DECLARE(ush, d_buf, DIST_BUFSIZE);
+ DECLARE(uch, outbuf, OUTBUFSIZ);
/* Sliding window. Input bytes are read into the second half of the window,
* and move to the first half later to keep a dictionary of at least WSIZE
* To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
* be less efficient).
*/
-DECLARE(uch, window, 2L * WSIZE);
+ DECLARE(uch, window, 2L * WSIZE);
/* Link to older string with same hash index. To limit the size of this
* array to 64K, this link is maintained only for the last 32K strings.
* An index in this array is thus a window index modulo 32K.
*/
-/* DECLARE(Pos, prev, WSIZE); */
-DECLARE(ush, prev, 1L << BITS);
+ /* DECLARE(Pos, prev, WSIZE); */
+ DECLARE(ush, prev, 1L << BITS);
/* Heads of the hash chains or 0. */
-/* DECLARE(Pos, head, 1<<HASH_BITS); */
-#define head (prev+WSIZE) /* hash head (see deflate.c) */
+ /* DECLARE(Pos, head, 1<<HASH_BITS); */
+#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
/* number of input bytes */
-static ulg isize; /* only 32 bits stored in .gz file */
+ ulg isize; /* only 32 bits stored in .gz file */
-static int foreground; /* set if program run in foreground */
-static int method = DEFLATED; /* compression method */
-static int exit_code; /* program exit code */
+//// int method = DEFLATED; /* compression method */
+//## int exit_code; /* program exit code */
/* original time stamp (modification time) */
-static ulg time_stamp; /* only 32 bits stored in .gz file */
+ ulg time_stamp; /* only 32 bits stored in .gz file */
-static int ifd; /* input file descriptor */
-static int ofd; /* output file descriptor */
+ int ifd; /* input file descriptor */
+ int ofd; /* output file descriptor */
#ifdef DEBUG
-static unsigned insize; /* valid bytes in l_buf */
+ unsigned insize; /* valid bytes in l_buf */
#endif
-static unsigned outcnt; /* bytes in output buffer */
+ unsigned outcnt; /* bytes in output buffer */
-static uint32_t *crc_32_tab;
+ uint32_t *crc_32_tab;
/* ===========================================================================
* Local data used by the "bit string" routines.
*/
-//// static int zfile; /* output gzip file */
-
-static unsigned short bi_buf;
+ unsigned short bi_buf;
/* Output buffer. bits are inserted starting at the bottom (least significant
* bits).
*/
#undef BUF_SIZE
-#define BUF_SIZE (8 * sizeof(bi_buf))
+#define BUF_SIZE (8 * sizeof(G1.bi_buf))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
* more than 16 bits on some systems.)
*/
-static int bi_valid;
+ int bi_valid;
/* Current input function. Set to mem_read for in-memory compression */
#ifdef DEBUG
-static ulg bits_sent; /* bit length of the compressed data */
+ ulg bits_sent; /* bit length of the compressed data */
#endif
+ uint32_t crc; /* shift register contents */
+};
+
+static struct G1 G1;
+
/* ===========================================================================
* Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
*/
static void flush_outbuf(void)
{
- if (outcnt == 0)
+ if (G1.outcnt == 0)
return;
- xwrite(ofd, (char *) outbuf, outcnt);
- outcnt = 0;
+ xwrite(G1.ofd, (char *) G1.outbuf, G1.outcnt);
+ G1.outcnt = 0;
}
*/
/* put_8bit is used for the compressed output */
#define put_8bit(c) \
-{ \
- outbuf[outcnt++] = (c); \
- if (outcnt == OUTBUFSIZ) flush_outbuf(); \
-}
+do { \
+ G1.outbuf[G1.outcnt++] = (c); \
+ if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
+} while (0)
/* Output a 16 bit value, lsb first */
static void put_16bit(ush w)
{
- if (outcnt < OUTBUFSIZ - 2) {
- outbuf[outcnt++] = w;
- outbuf[outcnt++] = w >> 8;
+ if (G1.outcnt < OUTBUFSIZ - 2) {
+ G1.outbuf[G1.outcnt++] = w;
+ G1.outbuf[G1.outcnt++] = w >> 8;
} else {
put_8bit(w);
put_8bit(w >> 8);
*/
static void clear_bufs(void)
{
- outcnt = 0;
+ G1.outcnt = 0;
#ifdef DEBUG
- insize = 0;
+ G1.insize = 0;
#endif
- isize = 0;
+ G1.isize = 0;
}
* pointer, then initialize the crc shift register contents instead.
* Return the current crc in either case.
*/
-static uint32_t crc; /* shift register contents */
static uint32_t updcrc(uch * s, unsigned n)
{
- uint32_t c = crc;
+ uint32_t c = G1.crc;
while (n) {
- c = crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
+ c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
n--;
}
- crc = c;
+ G1.crc = c;
return c;
}
{
unsigned len;
- Assert(insize == 0, "l_buf not empty");
+ Assert(G1.insize == 0, "l_buf not empty");
- len = safe_read(ifd, buf, size);
+ len = safe_read(G1.ifd, buf, size);
if (len == (unsigned)(-1) || len == 0)
return len;
updcrc(buf, len);
- isize += len;
+ G1.isize += len;
return len;
}
#ifdef DEBUG
Tracev((stderr, " l %2d v %4x ", length, value));
Assert(length > 0 && length <= 15, "invalid length");
- bits_sent += length;
+ G1.bits_sent += length;
#endif
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
* unused bits in value.
*/
- if (bi_valid > (int) BUF_SIZE - length) {
- bi_buf |= (value << bi_valid);
- put_16bit(bi_buf);
- bi_buf = (ush) value >> (BUF_SIZE - bi_valid);
- bi_valid += length - BUF_SIZE;
+ if (G1.bi_valid > (int) BUF_SIZE - length) {
+ G1.bi_buf |= (value << G1.bi_valid);
+ put_16bit(G1.bi_buf);
+ G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
+ G1.bi_valid += length - BUF_SIZE;
} else {
- bi_buf |= value << bi_valid;
- bi_valid += length;
+ G1.bi_buf |= value << G1.bi_valid;
+ G1.bi_valid += length;
}
}
*/
static void bi_windup(void)
{
- if (bi_valid > 8) {
- put_16bit(bi_buf);
- } else if (bi_valid > 0) {
- put_8bit(bi_buf);
+ if (G1.bi_valid > 8) {
+ put_16bit(G1.bi_buf);
+ } else if (G1.bi_valid > 0) {
+ put_8bit(G1.bi_buf);
}
- bi_buf = 0;
- bi_valid = 0;
+ G1.bi_buf = 0;
+ G1.bi_valid = 0;
#ifdef DEBUG
- bits_sent = (bits_sent + 7) & ~7;
+ G1.bits_sent = (G1.bits_sent + 7) & ~7;
#endif
}
put_16bit(len);
put_16bit(~len);
#ifdef DEBUG
- bits_sent += 2 * 16;
+ G1.bits_sent += 2 * 16;
#endif
}
#ifdef DEBUG
- bits_sent += (ulg) len << 3;
+ G1.bits_sent += (ulg) len << 3;
#endif
while (len--) {
put_8bit(*buf++);
static void fill_window(void)
{
unsigned n, m;
- unsigned more = WINDOW_SIZE - lookahead - strstart;
+ unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
/* Amount of free space at the end of the window. */
/* If the window is almost full and there is insufficient lookahead,
* and lookahead == 1 (input done one byte at time)
*/
more--;
- } else if (strstart >= WSIZE + MAX_DIST) {
+ } else if (G1.strstart >= WSIZE + MAX_DIST) {
/* By the IN assertion, the window is not empty so we can't confuse
* more == 0 with more == 64K on a 16 bit machine.
*/
Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
- memcpy(window, window + WSIZE, WSIZE);
- match_start -= WSIZE;
- strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
+ memcpy(G1.window, G1.window + WSIZE, WSIZE);
+ G1.match_start -= WSIZE;
+ G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
- block_start -= WSIZE;
+ G1.block_start -= WSIZE;
for (n = 0; n < HASH_SIZE; n++) {
m = head[n];
head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
}
for (n = 0; n < WSIZE; n++) {
- m = prev[n];
- prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
+ m = G1.prev[n];
+ G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
more += WSIZE;
}
/* At this point, more >= 2 */
- if (!eofile) {
- n = file_read(window + strstart + lookahead, more);
+ if (!G1.eofile) {
+ n = file_read(G1.window + G1.strstart + G1.lookahead, more);
if (n == 0 || n == (unsigned) -1) {
- eofile = 1;
+ G1.eofile = 1;
} else {
- lookahead += n;
+ G1.lookahead += n;
}
}
}
static int longest_match(IPos cur_match)
{
unsigned chain_length = max_chain_length; /* max hash chain length */
- uch *scan = window + strstart; /* current string */
+ uch *scan = G1.window + G1.strstart; /* current string */
uch *match; /* matched string */
int len; /* length of current match */
- int best_len = prev_length; /* best match length so far */
- IPos limit = strstart > (IPos) MAX_DIST ? strstart - (IPos) MAX_DIST : 0;
+ int best_len = G1.prev_length; /* best match length so far */
+ IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
#if HASH_BITS < 8 || MAX_MATCH != 258
# error Code too clever
#endif
- uch *strend = window + strstart + MAX_MATCH;
+ uch *strend = G1.window + G1.strstart + MAX_MATCH;
uch scan_end1 = scan[best_len - 1];
uch scan_end = scan[best_len];
/* Do not waste too much time if we already have a good match: */
- if (prev_length >= good_match) {
+ if (G1.prev_length >= good_match) {
chain_length >>= 2;
}
- Assert(strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
+ Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
do {
- Assert(cur_match < strstart, "no future");
- match = window + cur_match;
+ Assert(cur_match < G1.strstart, "no future");
+ match = G1.window + cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
scan = strend - MAX_MATCH;
if (len > best_len) {
- match_start = cur_match;
+ G1.match_start = cur_match;
best_len = len;
if (len >= nice_match)
break;
scan_end1 = scan[best_len - 1];
scan_end = scan[best_len];
}
- } while ((cur_match = prev[cur_match & WMASK]) > limit
+ } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
&& --chain_length != 0);
return best_len;
static void check_match(IPos start, IPos match, int length)
{
/* check that the match is indeed a match */
- if (memcmp(window + match, window + start, length) != 0) {
+ if (memcmp(G1.window + match, G1.window + start, length) != 0) {
bb_error_msg(" start %d, match %d, length %d", start, match, length);
bb_error_msg("invalid match");
}
if (verbose > 1) {
bb_error_msg("\\[%d,%d]", start - match, length);
do {
- putc(window[start++], stderr);
+ putc(G1.window[start++], stderr);
} while (--length != 0);
}
}
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
*
* INTERFACE
- * void ct_init(ush *attr, int *methodp)
+ * void ct_init() //// ush *attr, int *methodp)
* Allocate the match buffer, initialize the various tables and save
* the location of the internal file attribute (ascii/binary) and
* method (DEFLATE/STORE)
static const extra_bits_t extra_blbits[BL_CODES] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
+/* number of codes at each bit length for an optimal tree */
+static const uch bl_order[BL_CODES] = {
+ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
+
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
#define HEAP_SIZE (2*L_CODES + 1)
/* maximum heap size */
-////static int heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
-////let's try this
-static ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
-static int heap_len; /* number of elements in the heap */
-static int heap_max; /* element of largest frequency */
+typedef struct tree_desc {
+ ct_data *dyn_tree; /* the dynamic tree */
+ ct_data *static_tree; /* corresponding static tree or NULL */
+ const extra_bits_t *extra_bits; /* extra bits for each code or NULL */
+ int extra_base; /* base index for extra_bits */
+ int elems; /* max number of elements in the tree */
+ int max_length; /* max bit length for the codes */
+ int max_code; /* largest code with non zero frequency */
+} tree_desc;
+
+struct G2 {
+
+ ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
+ int heap_len; /* number of elements in the heap */
+ int heap_max; /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
* The same heap array is used to build all trees.
*/
-static ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
-static ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
+ ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
+ ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
-static ct_data static_ltree[L_CODES + 2];
+ ct_data static_ltree[L_CODES + 2];
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* below).
*/
-static ct_data static_dtree[D_CODES];
+ ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
-static ct_data bl_tree[2 * BL_CODES + 1];
+ ct_data bl_tree[2 * BL_CODES + 1];
/* Huffman tree for the bit lengths */
-typedef struct tree_desc {
- ct_data *dyn_tree; /* the dynamic tree */
- ct_data *static_tree; /* corresponding static tree or NULL */
- const extra_bits_t *extra_bits; /* extra bits for each code or NULL */
- int extra_base; /* base index for extra_bits */
- int elems; /* max number of elements in the tree */
- int max_length; /* max bit length for the codes */
- int max_code; /* largest code with non zero frequency */
-} tree_desc;
-
-static tree_desc l_desc = {
- dyn_ltree, static_ltree, extra_lbits,
- LITERALS + 1, L_CODES, MAX_BITS, 0
-};
+ tree_desc l_desc;
+ tree_desc d_desc;
+ tree_desc bl_desc;
-static tree_desc d_desc = {
- dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0
-};
-
-static tree_desc bl_desc = {
- bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0
-};
-
-
-static ush bl_count[MAX_BITS + 1];
-
-/* number of codes at each bit length for an optimal tree */
-
-static const uch bl_order[BL_CODES] = {
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
-};
+ ush bl_count[MAX_BITS + 1];
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
-static uch depth[2 * L_CODES + 1];
+ uch depth[2 * L_CODES + 1];
/* Depth of each subtree used as tie breaker for trees of equal frequency */
-static uch length_code[MAX_MATCH - MIN_MATCH + 1];
+ uch length_code[MAX_MATCH - MIN_MATCH + 1];
/* length code for each normalized match length (0 == MIN_MATCH) */
-static uch dist_code[512];
+ uch dist_code[512];
/* distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
-static int base_length[LENGTH_CODES];
+ int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */
-static int base_dist[D_CODES];
+ int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */
-static uch flag_buf[LIT_BUFSIZE / 8];
+ uch flag_buf[LIT_BUFSIZE / 8];
/* flag_buf is a bit array distinguishing literals from lengths in
* l_buf, thus indicating the presence or absence of a distance.
*/
-static unsigned last_lit; /* running index in l_buf */
-static unsigned last_dist; /* running index in d_buf */
-static unsigned last_flags; /* running index in flag_buf */
-static uch flags; /* current flags not yet saved in flag_buf */
-static uch flag_bit; /* current bit used in flags */
+ unsigned last_lit; /* running index in l_buf */
+ unsigned last_dist; /* running index in d_buf */
+ unsigned last_flags; /* running index in flag_buf */
+ uch flags; /* current flags not yet saved in flag_buf */
+ uch flag_bit; /* current bit used in flags */
/* bits are filled in flags starting at bit 0 (least significant).
* Note: these flags are overkill in the current code since we don't
* take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
*/
-static ulg opt_len; /* bit length of current block with optimal trees */
-static ulg static_len; /* bit length of current block with static trees */
+ ulg opt_len; /* bit length of current block with optimal trees */
+ ulg static_len; /* bit length of current block with static trees */
+
+ ulg compressed_len; /* total bit length of compressed file */
-static ulg compressed_len; /* total bit length of compressed file */
+//// ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
+//// int *file_method; /* pointer to DEFLATE or STORE */
+
+};
+
+static struct G2 *G2ptr;
+#define G2 (*G2ptr)
+/* {
+ .l_desc = {
+ G2.dyn_ltree, G2.static_ltree, extra_lbits,
+ LITERALS + 1, L_CODES, MAX_BITS, 0
+ },
+ .d_desc = {
+ G2.dyn_dtree, G2.static_dtree, extra_dbits,
+ 0, D_CODES, MAX_BITS, 0
+ },
+ .bl_desc = {
+ G2.bl_tree, NULL, extra_blbits,
+ 0, BL_CODES, MAX_BL_BITS, 0
+ }
+};
+*/
-static ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
-static int *file_method; /* pointer to DEFLATE or STORE */
/* ===========================================================================
*/
#endif
#define D_CODE(dist) \
- ((dist) < 256 ? dist_code[dist] : dist_code[256 + ((dist)>>7)])
+ ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
* must not have side effects. dist_code[256] and dist_code[257] are never
* used.
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++)
- dyn_ltree[n].Freq = 0;
+ G2.dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++)
- dyn_dtree[n].Freq = 0;
+ G2.dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++)
- bl_tree[n].Freq = 0;
+ G2.bl_tree[n].Freq = 0;
- dyn_ltree[END_BLOCK].Freq = 1;
- opt_len = static_len = 0;
- last_lit = last_dist = last_flags = 0;
- flags = 0;
- flag_bit = 1;
+ G2.dyn_ltree[END_BLOCK].Freq = 1;
+ G2.opt_len = G2.static_len = 0;
+ G2.last_lit = G2.last_dist = G2.last_flags = 0;
+ G2.flags = 0;
+ G2.flag_bit = 1;
}
* the subtrees have equal frequency. This minimizes the worst case length. */
#define SMALLER(tree, n, m) \
(tree[n].Freq < tree[m].Freq \
- || (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
+ || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
static void pqdownheap(ct_data * tree, int k)
{
- int v = heap[k];
+ int v = G2.heap[k];
int j = k << 1; /* left son of k */
- while (j <= heap_len) {
+ while (j <= G2.heap_len) {
/* Set j to the smallest of the two sons: */
- if (j < heap_len && SMALLER(tree, heap[j + 1], heap[j]))
+ if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
j++;
/* Exit if v is smaller than both sons */
- if (SMALLER(tree, v, heap[j]))
+ if (SMALLER(tree, v, G2.heap[j]))
break;
/* Exchange v with the smallest son */
- heap[k] = heap[j];
+ G2.heap[k] = G2.heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
- heap[k] = v;
+ G2.heap[k] = v;
}
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++)
- bl_count[bits] = 0;
+ G2.bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
- tree[heap[heap_max]].Len = 0; /* root of the heap */
+ tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
- for (h = heap_max + 1; h < HEAP_SIZE; h++) {
- n = heap[h];
+ for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
+ n = G2.heap[h];
bits = tree[tree[n].Dad].Len + 1;
if (bits > max_length) {
bits = max_length;
if (n > max_code)
continue; /* not a leaf node */
- bl_count[bits]++;
+ G2.bl_count[bits]++;
xbits = 0;
if (n >= base)
xbits = extra[n - base];
f = tree[n].Freq;
- opt_len += (ulg) f *(bits + xbits);
+ G2.opt_len += (ulg) f *(bits + xbits);
if (stree)
- static_len += (ulg) f * (stree[n].Len + xbits);
+ G2.static_len += (ulg) f * (stree[n].Len + xbits);
}
if (overflow == 0)
return;
/* Find the first bit length which could increase: */
do {
bits = max_length - 1;
- while (bl_count[bits] == 0)
+ while (G2.bl_count[bits] == 0)
bits--;
- bl_count[bits]--; /* move one leaf down the tree */
- bl_count[bits + 1] += 2; /* move one overflow item as its brother */
- bl_count[max_length]--;
+ G2.bl_count[bits]--; /* move one leaf down the tree */
+ G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
+ G2.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
- n = bl_count[bits];
+ n = G2.bl_count[bits];
while (n != 0) {
- m = heap[--h];
+ m = G2.heap[--h];
if (m > max_code)
continue;
if (tree[m].Len != (unsigned) bits) {
Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
- opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
+ G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
tree[m].Len = bits;
}
n--;
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
- next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
+ next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
- Assert(code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
+ Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
"inconsistent bit counts");
Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
/* Now reverse the bits */
tree[n].Code = bi_reverse(next_code[len]++, len);
- Tracec(tree != static_ltree,
+ Tracec(tree != G2.static_ltree,
(stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
(isgraph(n) ? n : ' '), len, tree[n].Code,
next_code[len] - 1));
/* Index within the heap array of least frequent node in the Huffman tree */
#define PQREMOVE(tree, top) \
-{ \
- top = heap[SMALLEST]; \
- heap[SMALLEST] = heap[heap_len--]; \
+do { \
+ top = G2.heap[SMALLEST]; \
+ G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
pqdownheap(tree, SMALLEST); \
-}
+} while (0)
static void build_tree(tree_desc * desc)
{
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
- heap_len = 0, heap_max = HEAP_SIZE;
+ G2.heap_len = 0;
+ G2.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].Freq != 0) {
- heap[++heap_len] = max_code = n;
- depth[n] = 0;
+ G2.heap[++G2.heap_len] = max_code = n;
+ G2.depth[n] = 0;
} else {
tree[n].Len = 0;
}
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
- while (heap_len < 2) {
- int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
+ while (G2.heap_len < 2) {
+ int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[new].Freq = 1;
- depth[new] = 0;
- opt_len--;
+ G2.depth[new] = 0;
+ G2.opt_len--;
if (stree)
- static_len -= stree[new].Len;
+ G2.static_len -= stree[new].Len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
- for (n = heap_len / 2; n >= 1; n--)
+ for (n = G2.heap_len / 2; n >= 1; n--)
pqdownheap(tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
*/
do {
PQREMOVE(tree, n); /* n = node of least frequency */
- m = heap[SMALLEST]; /* m = node of next least frequency */
+ m = G2.heap[SMALLEST]; /* m = node of next least frequency */
- heap[--heap_max] = n; /* keep the nodes sorted by frequency */
- heap[--heap_max] = m;
+ G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
+ G2.heap[--G2.heap_max] = m;
/* Create a new node father of n and m */
tree[node].Freq = tree[n].Freq + tree[m].Freq;
- depth[node] = MAX(depth[n], depth[m]) + 1;
+ G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
tree[n].Dad = tree[m].Dad = (ush) node;
#ifdef DUMP_BL_TREE
- if (tree == bl_tree) {
+ if (tree == G2.bl_tree) {
bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
- heap[SMALLEST] = node++;
+ G2.heap[SMALLEST] = node++;
pqdownheap(tree, SMALLEST);
- } while (heap_len >= 2);
+ } while (G2.heap_len >= 2);
- heap[--heap_max] = heap[SMALLEST];
+ G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
continue;
if (count < min_count) {
- bl_tree[curlen].Freq += count;
+ G2.bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
if (curlen != prevlen)
- bl_tree[curlen].Freq++;
- bl_tree[REP_3_6].Freq++;
+ G2.bl_tree[curlen].Freq++;
+ G2.bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
- bl_tree[REPZ_3_10].Freq++;
+ G2.bl_tree[REPZ_3_10].Freq++;
} else {
- bl_tree[REPZ_11_138].Freq++;
+ G2.bl_tree[REPZ_11_138].Freq++;
}
count = 0;
prevlen = curlen;
continue;
} else if (count < min_count) {
do {
- SEND_CODE(curlen, bl_tree);
+ SEND_CODE(curlen, G2.bl_tree);
} while (--count);
} else if (curlen != 0) {
if (curlen != prevlen) {
- SEND_CODE(curlen, bl_tree);
+ SEND_CODE(curlen, G2.bl_tree);
count--;
}
Assert(count >= 3 && count <= 6, " 3_6?");
- SEND_CODE(REP_3_6, bl_tree);
+ SEND_CODE(REP_3_6, G2.bl_tree);
send_bits(count - 3, 2);
} else if (count <= 10) {
- SEND_CODE(REPZ_3_10, bl_tree);
+ SEND_CODE(REPZ_3_10, G2.bl_tree);
send_bits(count - 3, 3);
} else {
- SEND_CODE(REPZ_11_138, bl_tree);
+ SEND_CODE(REPZ_11_138, G2.bl_tree);
send_bits(count - 11, 7);
}
count = 0;
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
- scan_tree((ct_data *) dyn_ltree, l_desc.max_code);
- scan_tree((ct_data *) dyn_dtree, d_desc.max_code);
+ scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
+ scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
/* Build the bit length tree: */
- build_tree((tree_desc *) &bl_desc);
+ build_tree(&G2.bl_desc);
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
- if (bl_tree[bl_order[max_blindex]].Len != 0)
+ if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
break;
}
/* Update opt_len to include the bit length tree and counts */
- opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
- Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
+ G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
+ Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
return max_blindex;
}
send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
- send_bits(bl_tree[bl_order[rank]].Len, 3);
+ send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
}
- Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
+ Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
- send_tree((ct_data *) dyn_ltree, lcodes - 1); /* send the literal tree */
- Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
+ send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
+ Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
- send_tree((ct_data *) dyn_dtree, dcodes - 1); /* send the distance tree */
- Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
+ send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
+ Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
}
-/* ===========================================================================
- * Set the file type to ASCII or BINARY, using a crude approximation:
- * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
- * IN assertion: the fields freq of dyn_ltree are set and the total of all
- * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
- */
-static void set_file_type(void)
-{
- int n = 0;
- unsigned ascii_freq = 0;
- unsigned bin_freq = 0;
-
- while (n < 7)
- bin_freq += dyn_ltree[n++].Freq;
- while (n < 128)
- ascii_freq += dyn_ltree[n++].Freq;
- while (n < LITERALS)
- bin_freq += dyn_ltree[n++].Freq;
- *file_type = (bin_freq > (ascii_freq >> 2)) ? BINARY : ASCII;
- if (*file_type == BINARY && translate_eol) {
- bb_error_msg("-l used on binary file");
- }
-}
+/////* ===========================================================================
+//// * Set the file type to ASCII or BINARY, using a crude approximation:
+//// * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
+//// * IN assertion: the fields freq of dyn_ltree are set and the total of all
+//// * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
+//// */
+////static void set_file_type(void)
+////{
+//// int n = 0;
+//// unsigned ascii_freq = 0;
+//// unsigned bin_freq = 0;
+////
+//// while (n < 7)
+//// bin_freq += G2.dyn_ltree[n++].Freq;
+//// while (n < 128)
+//// ascii_freq += G2.dyn_ltree[n++].Freq;
+//// while (n < LITERALS)
+//// bin_freq += G2.dyn_ltree[n++].Freq;
+//// *G2.file_type = (bin_freq > (ascii_freq >> 2)) ? BINARY : ASCII;
+//// if (*G2.file_type == BINARY && translate_eol) {
+//// bb_error_msg("-l used on binary file");
+//// }
+////}
/* ===========================================================================
*/
static int ct_tally(int dist, int lc)
{
- l_buf[last_lit++] = lc;
+ G1.l_buf[G2.last_lit++] = lc;
if (dist == 0) {
/* lc is the unmatched char */
- dyn_ltree[lc].Freq++;
+ G2.dyn_ltree[lc].Freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
&& (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
);
- dyn_ltree[length_code[lc] + LITERALS + 1].Freq++;
- dyn_dtree[D_CODE(dist)].Freq++;
+ G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
+ G2.dyn_dtree[D_CODE(dist)].Freq++;
- d_buf[last_dist++] = dist;
- flags |= flag_bit;
+ G1.d_buf[G2.last_dist++] = dist;
+ G2.flags |= G2.flag_bit;
}
- flag_bit <<= 1;
+ G2.flag_bit <<= 1;
/* Output the flags if they fill a byte: */
- if ((last_lit & 7) == 0) {
- flag_buf[last_flags++] = flags;
- flags = 0, flag_bit = 1;
+ if ((G2.last_lit & 7) == 0) {
+ G2.flag_buf[G2.last_flags++] = G2.flags;
+ G2.flags = 0;
+ G2.flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
- if ((last_lit & 0xfff) == 0) {
+ if ((G2.last_lit & 0xfff) == 0) {
/* Compute an upper bound for the compressed length */
- ulg out_length = last_lit * 8L;
- ulg in_length = (ulg) strstart - block_start;
+ ulg out_length = G2.last_lit * 8L;
+ ulg in_length = (ulg) G1.strstart - G1.block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
- out_length += dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
+ out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
}
out_length >>= 3;
Trace((stderr,
"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
- last_lit, last_dist, in_length, out_length,
+ G2.last_lit, G2.last_dist, in_length, out_length,
100L - out_length * 100L / in_length));
- if (last_dist < last_lit / 2 && out_length < in_length / 2)
+ if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
return 1;
}
- return (last_lit == LIT_BUFSIZE - 1 || last_dist == DIST_BUFSIZE);
+ return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
- if (last_lit != 0) do {
+ if (G2.last_lit != 0) do {
if ((lx & 7) == 0)
- flag = flag_buf[fx++];
- lc = l_buf[lx++];
+ flag = G2.flag_buf[fx++];
+ lc = G1.l_buf[lx++];
if ((flag & 1) == 0) {
SEND_CODE(lc, ltree); /* send a literal byte */
Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
- code = length_code[lc];
+ code = G2.length_code[lc];
SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0) {
- lc -= base_length[code];
+ lc -= G2.base_length[code];
send_bits(lc, extra); /* send the extra length bits */
}
- dist = d_buf[dx++];
+ dist = G1.d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = D_CODE(dist);
Assert(code < D_CODES, "bad d_code");
SEND_CODE(code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
- dist -= base_dist[code];
+ dist -= G2.base_dist[code];
send_bits(dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
- } while (lx < last_lit);
+ } while (lx < G2.last_lit);
SEND_CODE(END_BLOCK, ltree);
}
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
- flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
+ G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
- /* Check if the file is ascii or binary */
- if (*file_type == (ush) UNKNOWN)
- set_file_type();
+//// /* Check if the file is ascii or binary */
+//// if (*G2.file_type == (ush) UNKNOWN)
+//// set_file_type();
/* Construct the literal and distance trees */
- build_tree((tree_desc *) &l_desc);
- Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
+ build_tree(&G2.l_desc);
+ Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
- build_tree((tree_desc *) &d_desc);
- Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
+ build_tree(&G2.d_desc);
+ Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
max_blindex = build_bl_tree();
/* Determine the best encoding. Compute first the block length in bytes */
- opt_lenb = (opt_len + 3 + 7) >> 3;
- static_lenb = (static_len + 3 + 7) >> 3;
+ opt_lenb = (G2.opt_len + 3 + 7) >> 3;
+ static_lenb = (G2.static_len + 3 + 7) >> 3;
Trace((stderr,
"\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
- opt_lenb, opt_len, static_lenb, static_len, stored_len,
- last_lit, last_dist));
+ opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
+ G2.last_lit, G2.last_dist));
if (static_lenb <= opt_lenb)
opt_lenb = static_lenb;
* and if the zip file can be seeked (to rewrite the local header),
* the whole file is transformed into a stored file:
*/
- if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
+ if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
/* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
if (buf == NULL)
bb_error_msg("block vanished");
copy_block(buf, (unsigned) stored_len, 0); /* without header */
- compressed_len = stored_len << 3;
- *file_method = STORED;
+ G2.compressed_len = stored_len << 3;
+//// *file_method = STORED;
} else if (stored_len + 4 <= opt_lenb && buf != NULL) {
/* 4: two words for the lengths */
* transform a block into a stored block.
*/
send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
- compressed_len = (compressed_len + 3 + 7) & ~7L;
- compressed_len += (stored_len + 4) << 3;
+ G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
+ G2.compressed_len += (stored_len + 4) << 3;
copy_block(buf, (unsigned) stored_len, 1); /* with header */
} else if (static_lenb == opt_lenb) {
send_bits((STATIC_TREES << 1) + eof, 3);
- compress_block((ct_data *) static_ltree, (ct_data *) static_dtree);
- compressed_len += 3 + static_len;
+ compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
+ G2.compressed_len += 3 + G2.static_len;
} else {
send_bits((DYN_TREES << 1) + eof, 3);
- send_all_trees(l_desc.max_code + 1, d_desc.max_code + 1,
+ send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
max_blindex + 1);
- compress_block((ct_data *) dyn_ltree, (ct_data *) dyn_dtree);
- compressed_len += 3 + opt_len;
+ compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
+ G2.compressed_len += 3 + G2.opt_len;
}
- Assert(compressed_len == bits_sent, "bad compressed size");
+ Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
init_block();
if (eof) {
bi_windup();
- compressed_len += 7; /* align on byte boundary */
+ G2.compressed_len += 7; /* align on byte boundary */
}
- Tracev((stderr, "\ncomprlen %lu(%lu) ", compressed_len >> 3,
- compressed_len - 7 * eof));
+ Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
+ G2.compressed_len - 7 * eof));
- return compressed_len >> 3;
+ return G2.compressed_len >> 3;
}
* IN assertion: strstart is set to the end of the current match. */
#define FLUSH_BLOCK(eof) \
flush_block( \
- block_start >= 0L \
- ? (char*)&window[(unsigned)block_start] \
+ G1.block_start >= 0L \
+ ? (char*)&G1.window[(unsigned)G1.block_start] \
: (char*)NULL, \
- (ulg)strstart - block_start, \
+ (ulg)G1.strstart - G1.block_start, \
(eof) \
)
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file). */
#define INSERT_STRING(s, match_head) \
-{ \
- UPDATE_HASH(ins_h, window[(s) + MIN_MATCH-1]); \
- prev[(s) & WMASK] = match_head = head[ins_h]; \
- head[ins_h] = (s); \
-}
+do { \
+ UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
+ G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
+ head[G1.ins_h] = (s); \
+} while (0)
static ulg deflate(void)
{
unsigned match_length = MIN_MATCH - 1; /* length of best match */
/* Process the input block. */
- while (lookahead != 0) {
+ while (G1.lookahead != 0) {
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
- INSERT_STRING(strstart, hash_head);
+ INSERT_STRING(G1.strstart, hash_head);
/* Find the longest match, discarding those <= prev_length.
*/
- prev_length = match_length, prev_match = match_start;
+ G1.prev_length = match_length;
+ prev_match = G1.match_start;
match_length = MIN_MATCH - 1;
- if (hash_head != 0 && prev_length < max_lazy_match
- && strstart - hash_head <= MAX_DIST
+ if (hash_head != 0 && G1.prev_length < max_lazy_match
+ && G1.strstart - hash_head <= MAX_DIST
) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
*/
match_length = longest_match(hash_head);
/* longest_match() sets match_start */
- if (match_length > lookahead)
- match_length = lookahead;
+ if (match_length > G1.lookahead)
+ match_length = G1.lookahead;
/* Ignore a length 3 match if it is too distant: */
- if (match_length == MIN_MATCH && strstart - match_start > TOO_FAR) {
- /* If prev_match is also MIN_MATCH, match_start is garbage
+ if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
+ /* If prev_match is also MIN_MATCH, G1.match_start is garbage
* but we will ignore the current match anyway.
*/
match_length--;
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
- if (prev_length >= MIN_MATCH && match_length <= prev_length) {
- check_match(strstart - 1, prev_match, prev_length);
- flush = ct_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);
+ if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
+ check_match(G1.strstart - 1, prev_match, G1.prev_length);
+ flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted.
*/
- lookahead -= prev_length - 1;
- prev_length -= 2;
+ G1.lookahead -= G1.prev_length - 1;
+ G1.prev_length -= 2;
do {
- strstart++;
- INSERT_STRING(strstart, hash_head);
+ G1.strstart++;
+ INSERT_STRING(G1.strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
* these bytes are garbage, but it does not matter since the
* next lookahead bytes will always be emitted as literals.
*/
- } while (--prev_length != 0);
+ } while (--G1.prev_length != 0);
match_available = 0;
match_length = MIN_MATCH - 1;
- strstart++;
+ G1.strstart++;
if (flush) {
FLUSH_BLOCK(0);
- block_start = strstart;
+ G1.block_start = G1.strstart;
}
} else if (match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
- Tracevv((stderr, "%c", window[strstart - 1]));
- if (ct_tally(0, window[strstart - 1])) {
+ Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
+ if (ct_tally(0, G1.window[G1.strstart - 1])) {
FLUSH_BLOCK(0);
- block_start = strstart;
+ G1.block_start = G1.strstart;
}
- strstart++;
- lookahead--;
+ G1.strstart++;
+ G1.lookahead--;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
match_available = 1;
- strstart++;
- lookahead--;
+ G1.strstart++;
+ G1.lookahead--;
}
- Assert(strstart <= isize && lookahead <= isize, "a bit too far");
+ Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
- while (lookahead < MIN_LOOKAHEAD && !eofile)
+ while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
fill_window();
}
if (match_available)
- ct_tally(0, window[strstart - 1]);
+ ct_tally(0, G1.window[G1.strstart - 1]);
return FLUSH_BLOCK(1); /* eof */
}
/* ===========================================================================
* Initialize the bit string routines.
*/
-static void bi_init(void) //// int zipfile)
+static void bi_init(void)
{
-//// zfile = zipfile;
- bi_buf = 0;
- bi_valid = 0;
+ G1.bi_buf = 0;
+ G1.bi_valid = 0;
#ifdef DEBUG
- bits_sent = 0L;
+ G1.bits_sent = 0L;
#endif
}
*flagsp |= 2; /* FAST 4, SLOW 2 */
/* ??? reduce max_chain_length for binary files */
- strstart = 0;
- block_start = 0L;
+ G1.strstart = 0;
+ G1.block_start = 0L;
- lookahead = file_read(window,
+ G1.lookahead = file_read(G1.window,
sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
- if (lookahead == 0 || lookahead == (unsigned) -1) {
- eofile = 1;
- lookahead = 0;
+ if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
+ G1.eofile = 1;
+ G1.lookahead = 0;
return;
}
- eofile = 0;
+ G1.eofile = 0;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
- while (lookahead < MIN_LOOKAHEAD && !eofile)
+ while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
fill_window();
- ins_h = 0;
+ G1.ins_h = 0;
for (j = 0; j < MIN_MATCH - 1; j++)
- UPDATE_HASH(ins_h, window[j]);
+ UPDATE_HASH(G1.ins_h, G1.window[j]);
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
* (DEFLATE/STORE).
* One callsite in zip()
*/
-static void ct_init(ush * attr, int *methodp)
+static void ct_init(void) ////ush * attr, int *methodp)
{
int n; /* iterates over tree elements */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */
- file_type = attr;
- file_method = methodp;
- compressed_len = 0L;
+//// file_type = attr;
+//// file_method = methodp;
+ G2.compressed_len = 0L;
#ifdef NOT_NEEDED
- if (static_dtree[0].Len != 0)
+ if (G2.static_dtree[0].Len != 0)
return; /* ct_init already called */
#endif
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES - 1; code++) {
- base_length[code] = length;
+ G2.base_length[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++) {
- length_code[length++] = code;
+ G2.length_code[length++] = code;
}
}
Assert(length == 256, "ct_init: length != 256");
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
- length_code[length - 1] = code;
+ G2.length_code[length - 1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
- base_dist[code] = dist;
+ G2.base_dist[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++) {
- dist_code[dist++] = code;
+ G2.dist_code[dist++] = code;
}
}
Assert(dist == 256, "ct_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for (; code < D_CODES; code++) {
- base_dist[code] = dist << 7;
+ G2.base_dist[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
- dist_code[256 + dist++] = code;
+ G2.dist_code[256 + dist++] = code;
}
}
Assert(dist == 256, "ct_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
/* already zeroed - it's in bss
for (n = 0; n <= MAX_BITS; n++)
- bl_count[n] = 0; */
+ G2.bl_count[n] = 0; */
n = 0;
while (n <= 143) {
- static_ltree[n++].Len = 8;
- bl_count[8]++;
+ G2.static_ltree[n++].Len = 8;
+ G2.bl_count[8]++;
}
while (n <= 255) {
- static_ltree[n++].Len = 9;
- bl_count[9]++;
+ G2.static_ltree[n++].Len = 9;
+ G2.bl_count[9]++;
}
while (n <= 279) {
- static_ltree[n++].Len = 7;
- bl_count[7]++;
+ G2.static_ltree[n++].Len = 7;
+ G2.bl_count[7]++;
}
while (n <= 287) {
- static_ltree[n++].Len = 8;
- bl_count[8]++;
+ G2.static_ltree[n++].Len = 8;
+ G2.bl_count[8]++;
}
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
- gen_codes((ct_data *) static_ltree, L_CODES + 1);
+ gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
- static_dtree[n].Len = 5;
- static_dtree[n].Code = bi_reverse(n, 5);
+ G2.static_dtree[n].Len = 5;
+ G2.static_dtree[n].Code = bi_reverse(n, 5);
}
/* Initialize the first block of the first file: */
/* put_header_byte is used for the compressed output
* - for the initial 4 bytes that can't overflow the buffer. */
-#define put_header_byte(c) outbuf[outcnt++] = (c)
+#define put_header_byte(c) G1.outbuf[G1.outcnt++] = (c)
static void zip(int in, int out)
{
uch my_flags = 0; /* general purpose bit flags */
- ush attr = 0; /* ascii/binary flag */
+//// ush attr = 0; /* ascii/binary flag */
ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
+//// int method = DEFLATED; /* compression method */
- ifd = in;
- ofd = out;
- outcnt = 0;
+ G1.ifd = in;
+ G1.ofd = out;
+ G1.outcnt = 0;
/* Write the header to the gzip file. See algorithm.doc for the format */
- method = DEFLATED;
put_header_byte(0x1f); /* magic header for gzip files, 1F 8B */
put_header_byte(0x8b);
- put_header_byte(DEFLATED); /* compression method */
+ ////put_header_byte(DEFLATED); /* compression method */
+ put_header_byte(8); /* compression method */
put_header_byte(my_flags); /* general flags */
- put_32bit(time_stamp);
+ put_32bit(G1.time_stamp);
/* Write deflated file to zip file */
- crc = ~0;
+ G1.crc = ~0;
- bi_init(); //// (out);
- ct_init(&attr, &method);
+ bi_init();
+ ct_init(); //// &attr, &method);
lm_init(&deflate_flags);
put_8bit(deflate_flags); /* extra flags */
deflate();
/* Write the crc and uncompressed size */
- put_32bit(~crc);
- put_32bit(isize);
+ put_32bit(~G1.crc);
+ put_32bit(G1.isize);
flush_outbuf();
}
}
#endif
- foreground = signal(SIGINT, SIG_IGN) != SIG_IGN;
- if (foreground) {
+ /* Comment?? */
+ if (signal(SIGINT, SIG_IGN) != SIG_IGN) {
signal(SIGINT, abort_gzip);
}
#ifdef SIGTERM
}
#endif
+ G2ptr = xzalloc(sizeof(*G2ptr));
+ G2.l_desc = (tree_desc) {
+ G2.dyn_ltree, G2.static_ltree, extra_lbits,
+ LITERALS + 1, L_CODES, MAX_BITS, 0
+ };
+ G2.d_desc = (tree_desc) {
+ G2.dyn_dtree, G2.static_dtree, extra_dbits,
+ 0, D_CODES, MAX_BITS, 0
+ };
+ G2.bl_desc = (tree_desc) {
+ G2.bl_tree, NULL, extra_blbits,
+ 0, BL_CODES, MAX_BL_BITS, 0
+ };
+
/* Allocate all global buffers (for DYN_ALLOC option) */
- ALLOC(uch, l_buf, INBUFSIZ);
- ALLOC(uch, outbuf, OUTBUFSIZ);
- ALLOC(ush, d_buf, DIST_BUFSIZE);
- ALLOC(uch, window, 2L * WSIZE);
- ALLOC(ush, prev, 1L << BITS);
+ ALLOC(uch, G1.l_buf, INBUFSIZ);
+ ALLOC(uch, G1.outbuf, OUTBUFSIZ);
+ ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
+ ALLOC(uch, G1.window, 2L * WSIZE);
+ ALLOC(ush, G1.prev, 1L << BITS);
/* Initialise the CRC32 table */
- crc_32_tab = crc32_filltable(0);
+ G1.crc_32_tab = crc32_filltable(0);
clear_bufs();
if (optind == argc) {
- time_stamp = 0;
+ G1.time_stamp = 0;
zip(STDIN_FILENO, STDOUT_FILENO);
- return exit_code;
+ return 0; //## G1.exit_code;
}
for (i = optind; i < argc; i++) {
clear_bufs();
if (LONE_DASH(argv[i])) {
- time_stamp = 0;
+ G1.time_stamp = 0;
inFileNum = STDIN_FILENO;
outFileNum = STDOUT_FILENO;
} else {
inFileNum = xopen(argv[i], O_RDONLY);
if (fstat(inFileNum, &statBuf) < 0)
bb_perror_msg_and_die("%s", argv[i]);
- time_stamp = statBuf.st_ctime;
+ G1.time_stamp = statBuf.st_ctime;
if (!(opt & OPT_tostdout)) {
path = xasprintf("%s.gz", argv[i]);
free(path);
}
- return exit_code;
+ return 0; //##G1.exit_code;
}