LIBS=../../libcrypto
SOURCE[../../libcrypto]=\
- md_rand.c randfile.c rand_lib.c rand_err.c rand_egd.c \
+ ossl_rand.c randfile.c rand_lib.c rand_err.c rand_egd.c \
rand_win.c rand_unix.c rand_vms.c
+++ /dev/null
-/*
- * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include <stdio.h>
-#include <string.h>
-
-#include "e_os.h"
-
-#if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_DSPBIOS))
-# include <sys/time.h>
-#endif
-#if defined(OPENSSL_SYS_VXWORKS)
-# include <time.h>
-#endif
-
-#include <openssl/opensslconf.h>
-#include <openssl/crypto.h>
-#include <openssl/rand.h>
-#include <openssl/async.h>
-#include "rand_lcl.h"
-
-#include <openssl/err.h>
-
-#include <internal/thread_once.h>
-
-#if defined(BN_DEBUG) || defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
-# define PREDICT
-#endif
-
-/* #define PREDICT 1 */
-
-#define STATE_SIZE 1023
-static size_t state_num = 0, state_index = 0;
-static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
-static unsigned char md[MD_DIGEST_LENGTH];
-static long md_count[2] = { 0, 0 };
-
-static double entropy = 0;
-static int initialized = 0;
-
-static CRYPTO_RWLOCK *rand_lock = NULL;
-static CRYPTO_RWLOCK *rand_tmp_lock = NULL;
-static CRYPTO_ONCE rand_lock_init = CRYPTO_ONCE_STATIC_INIT;
-
-/* May be set only when a thread holds rand_lock (to prevent double locking) */
-static unsigned int crypto_lock_rand = 0;
-/* access to locking_threadid is synchronized by rand_tmp_lock */
-/* valid iff crypto_lock_rand is set */
-static CRYPTO_THREAD_ID locking_threadid;
-
-#ifdef PREDICT
-int rand_predictable = 0;
-#endif
-
-static int rand_hw_seed(EVP_MD_CTX *ctx);
-
-static void rand_cleanup(void);
-static int rand_seed(const void *buf, int num);
-static int rand_add(const void *buf, int num, double add_entropy);
-static int rand_bytes(unsigned char *buf, int num, int pseudo);
-static int rand_nopseudo_bytes(unsigned char *buf, int num);
-#if OPENSSL_API_COMPAT < 0x10100000L
-static int rand_pseudo_bytes(unsigned char *buf, int num);
-#endif
-static int rand_status(void);
-
-static RAND_METHOD rand_meth = {
- rand_seed,
- rand_nopseudo_bytes,
- rand_cleanup,
- rand_add,
-#if OPENSSL_API_COMPAT < 0x10100000L
- rand_pseudo_bytes,
-#else
- NULL,
-#endif
- rand_status
-};
-
-DEFINE_RUN_ONCE_STATIC(do_rand_lock_init)
-{
- OPENSSL_init_crypto(0, NULL);
- rand_lock = CRYPTO_THREAD_lock_new();
- rand_tmp_lock = CRYPTO_THREAD_lock_new();
- return rand_lock != NULL && rand_tmp_lock != NULL;
-}
-
-RAND_METHOD *RAND_OpenSSL(void)
-{
- return (&rand_meth);
-}
-
-static void rand_cleanup(void)
-{
- OPENSSL_cleanse(state, sizeof(state));
- state_num = 0;
- state_index = 0;
- OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
- md_count[0] = 0;
- md_count[1] = 0;
- entropy = 0;
- initialized = 0;
- CRYPTO_THREAD_lock_free(rand_lock);
- CRYPTO_THREAD_lock_free(rand_tmp_lock);
-}
-
-static int rand_add(const void *buf, int num, double add)
-{
- int i, j, k, st_idx;
- long md_c[2];
- unsigned char local_md[MD_DIGEST_LENGTH];
- EVP_MD_CTX *m;
- int do_not_lock;
- int rv = 0;
-
- if (!num)
- return 1;
-
-#ifdef PREDICT
- if (rand_predictable)
- return 1;
-#endif
-
- /*
- * (Based on the rand(3) manpage)
- *
- * The input is chopped up into units of 20 bytes (or less for
- * the last block). Each of these blocks is run through the hash
- * function as follows: The data passed to the hash function
- * is the current 'md', the same number of bytes from the 'state'
- * (the location determined by in incremented looping index) as
- * the current 'block', the new key data 'block', and 'count'
- * (which is incremented after each use).
- * The result of this is kept in 'md' and also xored into the
- * 'state' at the same locations that were used as input into the
- * hash function.
- */
-
- m = EVP_MD_CTX_new();
- if (m == NULL)
- goto err;
-
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
- goto err;
-
- /* check if we already have the lock */
- if (crypto_lock_rand) {
- CRYPTO_THREAD_ID cur = CRYPTO_THREAD_get_current_id();
- CRYPTO_THREAD_read_lock(rand_tmp_lock);
- do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
- CRYPTO_THREAD_unlock(rand_tmp_lock);
- } else
- do_not_lock = 0;
-
- if (!do_not_lock)
- CRYPTO_THREAD_write_lock(rand_lock);
- st_idx = state_index;
-
- /*
- * use our own copies of the counters so that even if a concurrent thread
- * seeds with exactly the same data and uses the same subarray there's
- * _some_ difference
- */
- md_c[0] = md_count[0];
- md_c[1] = md_count[1];
-
- memcpy(local_md, md, sizeof md);
-
- /* state_index <= state_num <= STATE_SIZE */
- state_index += num;
- if (state_index >= STATE_SIZE) {
- state_index %= STATE_SIZE;
- state_num = STATE_SIZE;
- } else if (state_num < STATE_SIZE) {
- if (state_index > state_num)
- state_num = state_index;
- }
- /* state_index <= state_num <= STATE_SIZE */
-
- /*
- * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
- * will use now, but other threads may use them as well
- */
-
- md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
-
- if (!do_not_lock)
- CRYPTO_THREAD_unlock(rand_lock);
-
- for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
- j = (num - i);
- j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;
-
- if (!MD_Init(m))
- goto err;
- if (!MD_Update(m, local_md, MD_DIGEST_LENGTH))
- goto err;
- k = (st_idx + j) - STATE_SIZE;
- if (k > 0) {
- if (!MD_Update(m, &(state[st_idx]), j - k))
- goto err;
- if (!MD_Update(m, &(state[0]), k))
- goto err;
- } else if (!MD_Update(m, &(state[st_idx]), j))
- goto err;
-
- /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
- if (!MD_Update(m, buf, j))
- goto err;
- /*
- * We know that line may cause programs such as purify and valgrind
- * to complain about use of uninitialized data. The problem is not,
- * it's with the caller. Removing that line will make sure you get
- * really bad randomness and thereby other problems such as very
- * insecure keys.
- */
-
- if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)))
- goto err;
- if (!MD_Final(m, local_md))
- goto err;
- md_c[1]++;
-
- buf = (const char *)buf + j;
-
- for (k = 0; k < j; k++) {
- /*
- * Parallel threads may interfere with this, but always each byte
- * of the new state is the XOR of some previous value of its and
- * local_md (intermediate values may be lost). Alway using locking
- * could hurt performance more than necessary given that
- * conflicts occur only when the total seeding is longer than the
- * random state.
- */
- state[st_idx++] ^= local_md[k];
- if (st_idx >= STATE_SIZE)
- st_idx = 0;
- }
- }
-
- if (!do_not_lock)
- CRYPTO_THREAD_write_lock(rand_lock);
- /*
- * Don't just copy back local_md into md -- this could mean that other
- * thread's seeding remains without effect (except for the incremented
- * counter). By XORing it we keep at least as much entropy as fits into
- * md.
- */
- for (k = 0; k < (int)sizeof(md); k++) {
- md[k] ^= local_md[k];
- }
- if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
- entropy += add;
- if (!do_not_lock)
- CRYPTO_THREAD_unlock(rand_lock);
-
- rv = 1;
- err:
- EVP_MD_CTX_free(m);
- return rv;
-}
-
-static int rand_seed(const void *buf, int num)
-{
- return rand_add(buf, num, (double)num);
-}
-
-static int rand_bytes(unsigned char *buf, int num, int pseudo)
-{
- static volatile int stirred_pool = 0;
- int i, j, k;
- size_t num_ceil, st_idx, st_num;
- int ok;
- long md_c[2];
- unsigned char local_md[MD_DIGEST_LENGTH];
- EVP_MD_CTX *m;
-#ifndef GETPID_IS_MEANINGLESS
- pid_t curr_pid = getpid();
-#endif
- time_t curr_time = time(NULL);
- int do_stir_pool = 0;
-/* time value for various platforms */
-#ifdef OPENSSL_SYS_WIN32
- FILETIME tv;
-# ifdef _WIN32_WCE
- SYSTEMTIME t;
- GetSystemTime(&t);
- SystemTimeToFileTime(&t, &tv);
-# else
- GetSystemTimeAsFileTime(&tv);
-# endif
-#elif defined(OPENSSL_SYS_VXWORKS)
- struct timespec tv;
- clock_gettime(CLOCK_REALTIME, &ts);
-#elif defined(OPENSSL_SYS_DSPBIOS)
- unsigned long long tv, OPENSSL_rdtsc();
- tv = OPENSSL_rdtsc();
-#else
- struct timeval tv;
- gettimeofday(&tv, NULL);
-#endif
-
-#ifdef PREDICT
- if (rand_predictable) {
- unsigned char val = 1;
-
- for (i = 0; i < num; i++)
- buf[i] = val++;
- return (1);
- }
-#endif
-
- if (num <= 0)
- return 1;
-
- m = EVP_MD_CTX_new();
- if (m == NULL)
- goto err_mem;
-
- /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
- num_ceil =
- (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);
-
- /*
- * (Based on the rand(3) manpage:)
- *
- * For each group of 10 bytes (or less), we do the following:
- *
- * Input into the hash function the local 'md' (which is initialized from
- * the global 'md' before any bytes are generated), the bytes that are to
- * be overwritten by the random bytes, and bytes from the 'state'
- * (incrementing looping index). From this digest output (which is kept
- * in 'md'), the top (up to) 10 bytes are returned to the caller and the
- * bottom 10 bytes are xored into the 'state'.
- *
- * Finally, after we have finished 'num' random bytes for the
- * caller, 'count' (which is incremented) and the local and global 'md'
- * are fed into the hash function and the results are kept in the
- * global 'md'.
- */
-
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
- goto err_mem;
-
- CRYPTO_THREAD_write_lock(rand_lock);
- /*
- * We could end up in an async engine while holding this lock so ensure
- * we don't pause and cause a deadlock
- */
- ASYNC_block_pause();
-
- /* prevent rand_bytes() from trying to obtain the lock again */
- CRYPTO_THREAD_write_lock(rand_tmp_lock);
- locking_threadid = CRYPTO_THREAD_get_current_id();
- CRYPTO_THREAD_unlock(rand_tmp_lock);
- crypto_lock_rand = 1;
-
- if (!initialized) {
- RAND_poll();
- initialized = 1;
- }
-
- if (!stirred_pool)
- do_stir_pool = 1;
-
- ok = (entropy >= ENTROPY_NEEDED);
- if (!ok) {
- /*
- * If the PRNG state is not yet unpredictable, then seeing the PRNG
- * output may help attackers to determine the new state; thus we have
- * to decrease the entropy estimate. Once we've had enough initial
- * seeding we don't bother to adjust the entropy count, though,
- * because we're not ambitious to provide *information-theoretic*
- * randomness. NOTE: This approach fails if the program forks before
- * we have enough entropy. Entropy should be collected in a separate
- * input pool and be transferred to the output pool only when the
- * entropy limit has been reached.
- */
- entropy -= num;
- if (entropy < 0)
- entropy = 0;
- }
-
- if (do_stir_pool) {
- /*
- * In the output function only half of 'md' remains secret, so we
- * better make sure that the required entropy gets 'evenly
- * distributed' through 'state', our randomness pool. The input
- * function (rand_add) chains all of 'md', which makes it more
- * suitable for this purpose.
- */
-
- int n = STATE_SIZE; /* so that the complete pool gets accessed */
- while (n > 0) {
-#if MD_DIGEST_LENGTH > 20
-# error "Please adjust DUMMY_SEED."
-#endif
-#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
- /*
- * Note that the seed does not matter, it's just that
- * rand_add expects to have something to hash.
- */
- rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
- n -= MD_DIGEST_LENGTH;
- }
- if (ok)
- stirred_pool = 1;
- }
-
- st_idx = state_index;
- st_num = state_num;
- md_c[0] = md_count[0];
- md_c[1] = md_count[1];
- memcpy(local_md, md, sizeof md);
-
- state_index += num_ceil;
- if (state_index > state_num)
- state_index %= state_num;
-
- /*
- * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
- * ours (but other threads may use them too)
- */
-
- md_count[0] += 1;
-
- /* before unlocking, we must clear 'crypto_lock_rand' */
- crypto_lock_rand = 0;
- ASYNC_unblock_pause();
- CRYPTO_THREAD_unlock(rand_lock);
-
- while (num > 0) {
- /* num_ceil -= MD_DIGEST_LENGTH/2 */
- j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
- num -= j;
- if (!MD_Init(m))
- goto err;
-#ifndef GETPID_IS_MEANINGLESS
- if (curr_pid) { /* just in the first iteration to save time */
- if (!MD_Update(m, (unsigned char *)&curr_pid, sizeof curr_pid))
- goto err;
- curr_pid = 0;
- }
-#endif
- if (curr_time) { /* just in the first iteration to save time */
- if (!MD_Update(m, (unsigned char *)&curr_time, sizeof curr_time))
- goto err;
- if (!MD_Update(m, (unsigned char *)&tv, sizeof tv))
- goto err;
- curr_time = 0;
- if (!rand_hw_seed(m))
- goto err;
- }
- if (!MD_Update(m, local_md, MD_DIGEST_LENGTH))
- goto err;
- if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)))
- goto err;
-
- k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
- if (k > 0) {
- if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k))
- goto err;
- if (!MD_Update(m, &(state[0]), k))
- goto err;
- } else if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2))
- goto err;
- if (!MD_Final(m, local_md))
- goto err;
-
- for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
- /* may compete with other threads */
- state[st_idx++] ^= local_md[i];
- if (st_idx >= st_num)
- st_idx = 0;
- if (i < j)
- *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
- }
- }
-
- if (!MD_Init(m)
- || !MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c))
- || !MD_Update(m, local_md, MD_DIGEST_LENGTH))
- goto err;
- CRYPTO_THREAD_write_lock(rand_lock);
- /*
- * Prevent deadlocks if we end up in an async engine
- */
- ASYNC_block_pause();
- if (!MD_Update(m, md, MD_DIGEST_LENGTH) || !MD_Final(m, md)) {
- CRYPTO_THREAD_unlock(rand_lock);
- goto err;
- }
- ASYNC_unblock_pause();
- CRYPTO_THREAD_unlock(rand_lock);
-
- EVP_MD_CTX_free(m);
- if (ok)
- return (1);
- else if (pseudo)
- return 0;
- else {
- RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
- ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
- "https://www.openssl.org/docs/faq.html");
- return (0);
- }
- err:
- RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB);
- EVP_MD_CTX_free(m);
- return 0;
- err_mem:
- RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE);
- EVP_MD_CTX_free(m);
- return 0;
-
-}
-
-static int rand_nopseudo_bytes(unsigned char *buf, int num)
-{
- return rand_bytes(buf, num, 0);
-}
-
-#if OPENSSL_API_COMPAT < 0x10100000L
-/*
- * pseudo-random bytes that are guaranteed to be unique but not unpredictable
- */
-static int rand_pseudo_bytes(unsigned char *buf, int num)
-{
- return rand_bytes(buf, num, 1);
-}
-#endif
-
-static int rand_status(void)
-{
- CRYPTO_THREAD_ID cur;
- int ret;
- int do_not_lock;
-
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
- return 0;
-
- cur = CRYPTO_THREAD_get_current_id();
- /*
- * check if we already have the lock (could happen if a RAND_poll()
- * implementation calls RAND_status())
- */
- if (crypto_lock_rand) {
- CRYPTO_THREAD_read_lock(rand_tmp_lock);
- do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
- CRYPTO_THREAD_unlock(rand_tmp_lock);
- } else
- do_not_lock = 0;
-
- if (!do_not_lock) {
- CRYPTO_THREAD_write_lock(rand_lock);
- /*
- * Prevent deadlocks in case we end up in an async engine
- */
- ASYNC_block_pause();
-
- /*
- * prevent rand_bytes() from trying to obtain the lock again
- */
- CRYPTO_THREAD_write_lock(rand_tmp_lock);
- locking_threadid = cur;
- CRYPTO_THREAD_unlock(rand_tmp_lock);
- crypto_lock_rand = 1;
- }
-
- if (!initialized) {
- RAND_poll();
- initialized = 1;
- }
-
- ret = entropy >= ENTROPY_NEEDED;
-
- if (!do_not_lock) {
- /* before unlocking, we must clear 'crypto_lock_rand' */
- crypto_lock_rand = 0;
-
- ASYNC_unblock_pause();
- CRYPTO_THREAD_unlock(rand_lock);
- }
-
- return ret;
-}
-
-/*
- * rand_hw_seed: get seed data from any available hardware RNG. only
- * currently supports rdrand.
- */
-
-/* Adapted from eng_rdrand.c */
-
-#if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
- defined(__x86_64) || defined(__x86_64__) || \
- defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) \
- && !defined(OPENSSL_NO_RDRAND)
-
-# define RDRAND_CALLS 4
-
-size_t OPENSSL_ia32_rdrand(void);
-extern unsigned int OPENSSL_ia32cap_P[];
-
-static int rand_hw_seed(EVP_MD_CTX *ctx)
-{
- int i;
- if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32))))
- return 1;
- for (i = 0; i < RDRAND_CALLS; i++) {
- size_t rnd;
- rnd = OPENSSL_ia32_rdrand();
- if (rnd == 0)
- return 1;
- if (!MD_Update(ctx, (unsigned char *)&rnd, sizeof(size_t)))
- return 0;
- }
- return 1;
-}
-
-/* XOR an existing buffer with random data */
-
-void rand_hw_xor(unsigned char *buf, size_t num)
-{
- size_t rnd;
- if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32))))
- return;
- while (num >= sizeof(size_t)) {
- rnd = OPENSSL_ia32_rdrand();
- if (rnd == 0)
- return;
- *((size_t *)buf) ^= rnd;
- buf += sizeof(size_t);
- num -= sizeof(size_t);
- }
- if (num) {
- rnd = OPENSSL_ia32_rdrand();
- if (rnd == 0)
- return;
- while (num) {
- *buf ^= rnd & 0xff;
- rnd >>= 8;
- buf++;
- num--;
- }
- }
-}
-
-#else
-
-static int rand_hw_seed(EVP_MD_CTX *ctx)
-{
- return 1;
-}
-
-void rand_hw_xor(unsigned char *buf, size_t num)
-{
- return;
-}
-
-#endif
--- /dev/null
+/*
+ * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include <string.h>
+
+#include "e_os.h"
+
+#if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_DSPBIOS))
+# include <sys/time.h>
+#endif
+#if defined(OPENSSL_SYS_VXWORKS)
+# include <time.h>
+#endif
+
+#include <openssl/opensslconf.h>
+#include <openssl/crypto.h>
+#include <openssl/rand.h>
+#include <openssl/async.h>
+#include <openssl/err.h>
+#include <internal/thread_once.h>
+#include "rand_lcl.h"
+
+#if defined(BN_DEBUG) || defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
+# define PREDICT 1
+#endif
+
+#define STATE_SIZE 1023
+
+typedef struct ossl_rand_state_st OSSL_RAND_STATE;
+
+struct ossl_rand_state_st {
+ size_t num;
+ size_t index;
+ unsigned char state[STATE_SIZE + RAND_DIGEST_LENGTH];
+ unsigned char md[RAND_DIGEST_LENGTH];
+ long md_count[2];
+};
+
+static OSSL_RAND_STATE global_state;
+static double randomness = 0;
+static int initialized = 0;
+static CRYPTO_RWLOCK *rand_lock = NULL;
+static CRYPTO_RWLOCK *rand_tmp_lock = NULL;
+static CRYPTO_ONCE ossl_rand_init = CRYPTO_ONCE_STATIC_INIT;
+static CRYPTO_THREAD_LOCAL key;
+
+/* May be set only when a thread holds rand_lock (to prevent double locking) */
+static unsigned int crypto_lock_rand = 0;
+/*
+ * access to locking_threadid is synchronized by rand_tmp_lock;
+ * valid iff crypto_lock_rand is set
+ */
+static CRYPTO_THREAD_ID locking_threadid;
+
+#ifdef PREDICT
+int rand_predictable = 0;
+#endif
+
+static int rand_hw_seed(EVP_MD_CTX *ctx);
+
+static void rand_thread_cleanup(void *arg)
+{
+ OSSL_RAND_STATE *sp = arg;
+
+ OPENSSL_clear_free(sp, sizeof(*sp));
+}
+
+DEFINE_RUN_ONCE_STATIC(do_ossl_rand_init)
+{
+ int ret = 1;
+
+ OPENSSL_init_crypto(0, NULL);
+ rand_lock = CRYPTO_THREAD_lock_new();
+ ret &= rand_lock != NULL;
+ rand_tmp_lock = CRYPTO_THREAD_lock_new();
+ ret &= rand_tmp_lock != NULL;
+ ret &= CRYPTO_THREAD_init_local(&key, rand_thread_cleanup) == 1;
+ return ret;
+}
+
+RAND_METHOD *RAND_OpenSSL(void)
+{
+ return &openssl_rand_meth;
+}
+
+static void rand_cleanup(void)
+{
+ OPENSSL_cleanse(&global_state, sizeof(global_state));
+ randomness = 0;
+ initialized = 0;
+ CRYPTO_THREAD_lock_free(rand_lock);
+ CRYPTO_THREAD_lock_free(rand_tmp_lock);
+}
+
+static int rand_add(const void *buf, int num, double add)
+{
+ int i, j, k, st_idx;
+ long md_c[2];
+ unsigned char local_md[RAND_DIGEST_LENGTH];
+ EVP_MD_CTX *m;
+ int do_not_lock;
+ int rv = 0;
+ OSSL_RAND_STATE *sp = &global_state;
+
+ if (!num)
+ return 1;
+
+#ifdef PREDICT
+ if (rand_predictable)
+ return 1;
+#endif
+
+ /*
+ * (Based on the rand(3) manpage)
+ *
+ * The input is chopped up into units of 20 bytes (or less for
+ * the last block). Each of these blocks is run through the hash
+ * function as follows: The data passed to the hash function
+ * is the current 'md', the same number of bytes from the 'state'
+ * (the location determined by in incremented looping index) as
+ * the current 'block', the new key data 'block', and 'count'
+ * (which is incremented after each use).
+ * The result of this is kept in 'md' and also xored into the
+ * 'state' at the same locations that were used as input into the
+ * hash function.
+ */
+
+ m = EVP_MD_CTX_new();
+ if (m == NULL)
+ goto err;
+
+ if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init))
+ goto err;
+
+ /* check if we already have the lock */
+ if (crypto_lock_rand) {
+ CRYPTO_THREAD_ID cur = CRYPTO_THREAD_get_current_id();
+ CRYPTO_THREAD_read_lock(rand_tmp_lock);
+ do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
+ CRYPTO_THREAD_unlock(rand_tmp_lock);
+ } else
+ do_not_lock = 0;
+
+ if (!do_not_lock)
+ CRYPTO_THREAD_write_lock(rand_lock);
+ st_idx = sp->index;
+
+ /*
+ * use our own copies of the counters so that even if a concurrent thread
+ * seeds with exactly the same data and uses the same subarray there's
+ * _some_ difference
+ */
+ md_c[0] = sp->md_count[0];
+ md_c[1] = sp->md_count[1];
+
+ memcpy(local_md, sp->md, sizeof(sp->md));
+
+ /* sp->index <= sp->num <= STATE_SIZE */
+ sp->index += num;
+ if (sp->index >= STATE_SIZE) {
+ sp->index %= STATE_SIZE;
+ sp->num = STATE_SIZE;
+ } else if (sp->num < STATE_SIZE) {
+ if (sp->index > sp->num)
+ sp->num = sp->index;
+ }
+ /* sp->index <= sp->num <= STATE_SIZE */
+
+ /*
+ * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
+ * will use now, but other threads may use them as well
+ */
+
+ sp->md_count[1] += (num / RAND_DIGEST_LENGTH) + (num % RAND_DIGEST_LENGTH > 0);
+
+ if (!do_not_lock)
+ CRYPTO_THREAD_unlock(rand_lock);
+
+ for (i = 0; i < num; i += RAND_DIGEST_LENGTH) {
+ j = (num - i);
+ j = (j > RAND_DIGEST_LENGTH) ? RAND_DIGEST_LENGTH : j;
+
+ if (!EVP_DigestInit_ex(m, RAND_DIGEST, NULL))
+ goto err;
+ if (!EVP_DigestUpdate(m, local_md, RAND_DIGEST_LENGTH))
+ goto err;
+ k = (st_idx + j) - STATE_SIZE;
+ if (k > 0) {
+ if (!EVP_DigestUpdate(m, &sp->state[st_idx], j - k))
+ goto err;
+ if (!EVP_DigestUpdate(m, &sp->state[0], k))
+ goto err;
+ } else if (!EVP_DigestUpdate(m, &sp->state[st_idx], j))
+ goto err;
+
+ /* DO NOT REMOVE THE FOLLOWING CALL TO EVP_DigestUpdate()! */
+ if (!EVP_DigestUpdate(m, buf, j))
+ goto err;
+ /*
+ * We know that line may cause programs such as purify and valgrind
+ * to complain about use of uninitialized data. The problem is not,
+ * it's with the caller. Removing that line will make sure you get
+ * really bad randomness and thereby other problems such as very
+ * insecure keys.
+ */
+
+ if (!EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c)))
+ goto err;
+ if (!EVP_DigestFinal_ex(m, local_md, NULL))
+ goto err;
+ md_c[1]++;
+
+ buf = (const char *)buf + j;
+
+ for (k = 0; k < j; k++) {
+ /*
+ * Parallel threads may interfere with this, but always each byte
+ * of the new state is the XOR of some previous value of its and
+ * local_md (intermediate values may be lost). Alway using locking
+ * could hurt performance more than necessary given that
+ * conflicts occur only when the total seeding is longer than the
+ * random state.
+ */
+ sp->state[st_idx++] ^= local_md[k];
+ if (st_idx >= STATE_SIZE)
+ st_idx = 0;
+ }
+ }
+
+ if (!do_not_lock)
+ CRYPTO_THREAD_write_lock(rand_lock);
+ /*
+ * Don't just copy back local_md into md -- this could mean that other
+ * thread's seeding remains without effect (except for the incremented
+ * counter). By XORing it we keep at least as much randomness as fits into
+ * md.
+ */
+ for (k = 0; k < (int)sizeof(sp->md); k++) {
+ sp->md[k] ^= local_md[k];
+ }
+ if (randomness < RANDOMNESS_NEEDED) /* stop counting when we have enough */
+ randomness += add;
+ if (!do_not_lock)
+ CRYPTO_THREAD_unlock(rand_lock);
+
+ rv = 1;
+ err:
+ EVP_MD_CTX_free(m);
+ return rv;
+}
+
+static int rand_seed(const void *buf, int num)
+{
+ return rand_add(buf, num, (double)num);
+}
+
+static int rand_bytes(unsigned char *buf, int num)
+{
+ static volatile int stirred_pool = 0;
+ int i, j, k;
+ size_t num_ceil, st_idx, st_num;
+ int ok;
+ long md_c[2];
+ unsigned char local_md[RAND_DIGEST_LENGTH];
+ EVP_MD_CTX *m;
+ OSSL_RAND_STATE *sp = &global_state;
+#ifndef GETPID_IS_MEANINGLESS
+ pid_t curr_pid = getpid();
+#endif
+ time_t curr_time = time(NULL);
+ int do_stir_pool = 0;
+/* time value for various platforms */
+#ifdef OPENSSL_SYS_WIN32
+ FILETIME tv;
+# ifdef _WIN32_WCE
+ SYSTEMTIME t;
+ GetSystemTime(&t);
+ SystemTimeToFileTime(&t, &tv);
+# else
+ GetSystemTimeAsFileTime(&tv);
+# endif
+#elif defined(OPENSSL_SYS_VXWORKS)
+ struct timespec tv;
+ clock_gettime(CLOCK_REALTIME, &ts);
+#elif defined(OPENSSL_SYS_DSPBIOS)
+ unsigned long long tv, OPENSSL_rdtsc();
+ tv = OPENSSL_rdtsc();
+#else
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+#endif
+
+#ifdef PREDICT
+ if (rand_predictable) {
+ unsigned char val = 1;
+
+ for (i = 0; i < num; i++)
+ buf[i] = val++;
+ return (1);
+ }
+#endif
+
+ if (num <= 0)
+ return 1;
+
+ m = EVP_MD_CTX_new();
+ if (m == NULL)
+ goto err_mem;
+
+ /* round upwards to multiple of RAND_DIGEST_LENGTH/2 */
+ num_ceil =
+ (1 + (num - 1) / (RAND_DIGEST_LENGTH / 2)) * (RAND_DIGEST_LENGTH / 2);
+
+ /*
+ * (Based on the rand(3) manpage:)
+ *
+ * For each group of 10 bytes (or less), we do the following:
+ *
+ * Input into the hash function the local 'md' (which is initialized from
+ * the global 'md' before any bytes are generated), the bytes that are to
+ * be overwritten by the random bytes, and bytes from the 'state'
+ * (incrementing looping index). From this digest output (which is kept
+ * in 'md'), the top (up to) 10 bytes are returned to the caller and the
+ * bottom 10 bytes are xored into the 'state'.
+ *
+ * Finally, after we have finished 'num' random bytes for the
+ * caller, 'count' (which is incremented) and the local and global 'md'
+ * are fed into the hash function and the results are kept in the
+ * global 'md'.
+ */
+
+ if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init))
+ goto err_mem;
+
+ CRYPTO_THREAD_write_lock(rand_lock);
+ /*
+ * We could end up in an async engine while holding this lock so ensure
+ * we don't pause and cause a deadlock
+ */
+ ASYNC_block_pause();
+
+ /* prevent rand_bytes() from trying to obtain the lock again */
+ CRYPTO_THREAD_write_lock(rand_tmp_lock);
+ locking_threadid = CRYPTO_THREAD_get_current_id();
+ CRYPTO_THREAD_unlock(rand_tmp_lock);
+ crypto_lock_rand = 1;
+
+ if (!initialized) {
+ RAND_poll();
+ initialized = 1;
+ }
+
+ if (!stirred_pool)
+ do_stir_pool = 1;
+
+ ok = (randomness >= RANDOMNESS_NEEDED);
+ if (!ok) {
+ /*
+ * If the PRNG state is not yet unpredictable, then seeing the PRNG
+ * output may help attackers to determine the new state; thus we have
+ * to decrease the randomness estimate. Once we've had enough initial
+ * seeding we don't bother to adjust the randomness count, though,
+ * because we're not ambitious to provide *information-theoretic*
+ * randomness. NOTE: This approach fails if the program forks before
+ * we have enough randomness. Randomness should be collected in a
+ * separate input pool and be transferred to the output pool only
+ * when the randomness limit has been reached.
+ */
+ randomness -= num;
+ if (randomness < 0)
+ randomness = 0;
+ }
+
+ if (do_stir_pool) {
+ /*
+ * In the output function only half of 'md' remains secret, so we
+ * better make sure that the required randomness gets 'evenly
+ * distributed' through 'state', our randomness pool. The input
+ * function (rand_add) chains all of 'md', which makes it more
+ * suitable for this purpose.
+ */
+
+ int n = STATE_SIZE; /* so that the complete pool gets accessed */
+ while (n > 0) {
+#if RAND_DIGEST_LENGTH > 20
+# error "Please adjust DUMMY_SEED."
+#endif
+#define DUMMY_SEED "...................." /* at least RAND_DIGEST_LENGTH */
+ /*
+ * Note that the seed does not matter, it's just that
+ * rand_add expects to have something to hash.
+ */
+ rand_add(DUMMY_SEED, RAND_DIGEST_LENGTH, 0.0);
+ n -= RAND_DIGEST_LENGTH;
+ }
+ if (ok)
+ stirred_pool = 1;
+ }
+
+ st_idx = sp->index;
+ st_num = sp->num;
+ md_c[0] = sp->md_count[0];
+ md_c[1] = sp->md_count[1];
+ memcpy(local_md, sp->md, sizeof sp->md);
+
+ sp->index += num_ceil;
+ if (sp->index > sp->num)
+ sp->index %= sp->num;
+
+ /*
+ * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
+ * ours (but other threads may use them too)
+ */
+
+ sp->md_count[0] += 1;
+
+ /* before unlocking, we must clear 'crypto_lock_rand' */
+ crypto_lock_rand = 0;
+ ASYNC_unblock_pause();
+ CRYPTO_THREAD_unlock(rand_lock);
+
+ while (num > 0) {
+ /* num_ceil -= RAND_DIGEST_LENGTH / 2 */
+ j = (num >= RAND_DIGEST_LENGTH / 2) ? RAND_DIGEST_LENGTH / 2 : num;
+ num -= j;
+ if (!EVP_DigestInit_ex(m, RAND_DIGEST, NULL))
+ goto err;
+#ifndef GETPID_IS_MEANINGLESS
+ if (curr_pid) { /* just in the first iteration to save time */
+ if (!EVP_DigestUpdate(m, (unsigned char *)&curr_pid, sizeof curr_pid))
+ goto err;
+ curr_pid = 0;
+ }
+#endif
+ if (curr_time) { /* just in the first iteration to save time */
+ if (!EVP_DigestUpdate(m, (unsigned char *)&curr_time, sizeof curr_time))
+ goto err;
+ if (!EVP_DigestUpdate(m, (unsigned char *)&tv, sizeof tv))
+ goto err;
+ curr_time = 0;
+ if (!rand_hw_seed(m))
+ goto err;
+ }
+ if (!EVP_DigestUpdate(m, local_md, RAND_DIGEST_LENGTH))
+ goto err;
+ if (!EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c)))
+ goto err;
+
+ k = (st_idx + RAND_DIGEST_LENGTH / 2) - st_num;
+ if (k > 0) {
+ if (!EVP_DigestUpdate(m, &sp->state[st_idx], RAND_DIGEST_LENGTH / 2 - k))
+ goto err;
+ if (!EVP_DigestUpdate(m, &sp->state[0], k))
+ goto err;
+ } else if (!EVP_DigestUpdate(m, &sp->state[st_idx], RAND_DIGEST_LENGTH / 2))
+ goto err;
+ if (!EVP_DigestFinal_ex(m, local_md, NULL))
+ goto err;
+
+ for (i = 0; i < RAND_DIGEST_LENGTH / 2; i++) {
+ /* may compete with other threads */
+ sp->state[st_idx++] ^= local_md[i];
+ if (st_idx >= st_num)
+ st_idx = 0;
+ if (i < j)
+ *(buf++) = local_md[i + RAND_DIGEST_LENGTH / 2];
+ }
+ }
+
+ if (!EVP_DigestInit_ex(m, RAND_DIGEST, NULL)
+ || !EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c))
+ || !EVP_DigestUpdate(m, local_md, RAND_DIGEST_LENGTH))
+ goto err;
+ CRYPTO_THREAD_write_lock(rand_lock);
+ /*
+ * Prevent deadlocks if we end up in an async engine
+ */
+ ASYNC_block_pause();
+ if (!EVP_DigestUpdate(m, sp->md, sizeof(sp->md))
+ || !EVP_DigestFinal_ex(m, sp->md, NULL)) {
+ CRYPTO_THREAD_unlock(rand_lock);
+ goto err;
+ }
+ ASYNC_unblock_pause();
+ CRYPTO_THREAD_unlock(rand_lock);
+
+ EVP_MD_CTX_free(m);
+ if (ok)
+ return (1);
+ RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
+ ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
+ "https://www.openssl.org/docs/faq.html");
+ return (0);
+ err:
+ RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB);
+ EVP_MD_CTX_free(m);
+ return 0;
+ err_mem:
+ RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE);
+ EVP_MD_CTX_free(m);
+ return 0;
+
+}
+
+static int rand_status(void)
+{
+ CRYPTO_THREAD_ID cur;
+ int ret;
+ int do_not_lock;
+
+ if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init))
+ return 0;
+
+ cur = CRYPTO_THREAD_get_current_id();
+ /*
+ * check if we already have the lock (could happen if a RAND_poll()
+ * implementation calls RAND_status())
+ */
+ if (crypto_lock_rand) {
+ CRYPTO_THREAD_read_lock(rand_tmp_lock);
+ do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
+ CRYPTO_THREAD_unlock(rand_tmp_lock);
+ } else
+ do_not_lock = 0;
+
+ if (!do_not_lock) {
+ CRYPTO_THREAD_write_lock(rand_lock);
+ /*
+ * Prevent deadlocks in case we end up in an async engine
+ */
+ ASYNC_block_pause();
+
+ /*
+ * prevent rand_bytes() from trying to obtain the lock again
+ */
+ CRYPTO_THREAD_write_lock(rand_tmp_lock);
+ locking_threadid = cur;
+ CRYPTO_THREAD_unlock(rand_tmp_lock);
+ crypto_lock_rand = 1;
+ }
+
+ if (!initialized) {
+ RAND_poll();
+ initialized = 1;
+ }
+
+ ret = randomness >= RANDOMNESS_NEEDED;
+
+ if (!do_not_lock) {
+ /* before unlocking, we must clear 'crypto_lock_rand' */
+ crypto_lock_rand = 0;
+
+ ASYNC_unblock_pause();
+ CRYPTO_THREAD_unlock(rand_lock);
+ }
+
+ return ret;
+}
+
+/*
+ * rand_hw_seed: get seed data from any available hardware RNG. only
+ * currently supports rdrand.
+ */
+#if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64) || defined(__x86_64__) || \
+ defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) \
+ && !defined(OPENSSL_NO_RDRAND)
+
+# define RDRAND_CALLS 4
+
+size_t OPENSSL_ia32_rdrand(void);
+extern unsigned int OPENSSL_ia32cap_P[];
+
+static int rand_hw_seed(EVP_MD_CTX *ctx)
+{
+ int i;
+ if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32))))
+ return 1;
+ for (i = 0; i < RDRAND_CALLS; i++) {
+ size_t rnd;
+ rnd = OPENSSL_ia32_rdrand();
+ if (rnd == 0)
+ return 1;
+ if (!EVP_DigestUpdate(ctx, (unsigned char *)&rnd, sizeof(size_t)))
+ return 0;
+ }
+ return 1;
+}
+
+#else
+
+static int rand_hw_seed(EVP_MD_CTX *ctx)
+{
+ return 1;
+}
+
+#endif
+
+
+RAND_METHOD openssl_rand_meth = {
+ rand_seed,
+ rand_bytes,
+ rand_cleanup,
+ rand_add,
+ rand_bytes,
+ rand_status
+};
#ifndef HEADER_RAND_LCL_H
# define HEADER_RAND_LCL_H
-# define ENTROPY_NEEDED 32 /* require 256 bits = 32 bytes of randomness */
-
-# if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND) && !defined(USE_MD2_RAND)
-# define USE_SHA1_RAND
-# endif
+/* we require 256 bits of randomness */
+# define RANDOMNESS_NEEDED (256 / 8)
# include <openssl/evp.h>
-# define MD_Update(a,b,c) EVP_DigestUpdate(a,b,c)
-# define MD_Final(a,b) EVP_DigestFinal_ex(a,b,NULL)
-# if defined(USE_MD5_RAND)
-# include <openssl/md5.h>
-# define MD_DIGEST_LENGTH MD5_DIGEST_LENGTH
-# define MD_Init(a) EVP_DigestInit_ex(a,EVP_md5(), NULL)
-# define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_md5(), NULL)
-# elif defined(USE_SHA1_RAND)
-# include <openssl/sha.h>
-# define MD_DIGEST_LENGTH SHA_DIGEST_LENGTH
-# define MD_Init(a) EVP_DigestInit_ex(a,EVP_sha1(), NULL)
-# define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_sha1(), NULL)
-# elif defined(USE_MDC2_RAND)
-# include <openssl/mdc2.h>
-# define MD_DIGEST_LENGTH MDC2_DIGEST_LENGTH
-# define MD_Init(a) EVP_DigestInit_ex(a,EVP_mdc2(), NULL)
-# define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_mdc2(), NULL)
-# elif defined(USE_MD2_RAND)
-# include <openssl/md2.h>
-# define MD_DIGEST_LENGTH MD2_DIGEST_LENGTH
-# define MD_Init(a) EVP_DigestInit_ex(a,EVP_md2(), NULL)
-# define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_md2(), NULL)
-# endif
+# include <openssl/sha.h>
+
+# define RAND_DIGEST EVP_sha1()
+# define RAND_DIGEST_LENGTH SHA_DIGEST_LENGTH
-void rand_hw_xor(unsigned char *buf, size_t num);
+extern RAND_METHOD openssl_rand_meth;
#endif
#include "internal/rand.h"
#include <openssl/engine.h>
#include "internal/thread_once.h"
+#include "rand_lcl.h"
#ifndef OPENSSL_NO_ENGINE
/* non-NULL if default_RAND_meth is ENGINE-provided */
-static ENGINE *funct_ref = NULL;
-static CRYPTO_RWLOCK *rand_engine_lock = NULL;
+static ENGINE *funct_ref;
+static CRYPTO_RWLOCK *rand_engine_lock;
#endif
-static const RAND_METHOD *default_RAND_meth = NULL;
-static CRYPTO_RWLOCK *rand_meth_lock = NULL;
-static CRYPTO_ONCE rand_lock_init = CRYPTO_ONCE_STATIC_INIT;
+static CRYPTO_RWLOCK *rand_meth_lock;
+static const RAND_METHOD *default_RAND_meth;
+static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
-DEFINE_RUN_ONCE_STATIC(do_rand_lock_init)
+
+DEFINE_RUN_ONCE_STATIC(do_rand_init)
{
int ret = 1;
#ifndef OPENSSL_NO_ENGINE
return ret;
}
+void rand_cleanup_int(void)
+{
+ const RAND_METHOD *meth = default_RAND_meth;
+
+ if (meth != NULL && meth->cleanup != NULL)
+ meth->cleanup();
+ RAND_set_rand_method(NULL);
+#ifndef OPENSSL_NO_ENGINE
+ CRYPTO_THREAD_lock_free(rand_engine_lock);
+#endif
+ CRYPTO_THREAD_lock_free(rand_meth_lock);
+}
+
int RAND_set_rand_method(const RAND_METHOD *meth)
{
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
+ if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
CRYPTO_THREAD_write_lock(rand_meth_lock);
{
const RAND_METHOD *tmp_meth = NULL;
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
+ if (!RUN_ONCE(&rand_init, do_rand_init))
return NULL;
CRYPTO_THREAD_write_lock(rand_meth_lock);
- if (!default_RAND_meth) {
+ if (default_RAND_meth == NULL) {
#ifndef OPENSSL_NO_ENGINE
- ENGINE *e = ENGINE_get_default_RAND();
- if (e) {
- default_RAND_meth = ENGINE_get_RAND(e);
- if (default_RAND_meth == NULL) {
- ENGINE_finish(e);
- e = NULL;
- }
- }
- if (e)
+ ENGINE *e;
+
+ /* If we have an engine that can do RAND, use it. */
+ if ((e = ENGINE_get_default_RAND()) != NULL
+ && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
funct_ref = e;
- else
+ default_RAND_meth = tmp_meth;
+ } else {
+ ENGINE_finish(e);
+ default_RAND_meth = &openssl_rand_meth;
+ }
+#else
+ default_RAND_meth = &openssl_rand_meth;
#endif
- default_RAND_meth = RAND_OpenSSL();
}
tmp_meth = default_RAND_meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
{
const RAND_METHOD *tmp_meth = NULL;
- if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
+ if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
- if (engine) {
+ if (engine != NULL) {
if (!ENGINE_init(engine))
return 0;
tmp_meth = ENGINE_get_RAND(engine);
}
#endif
-void rand_cleanup_int(void)
-{
- const RAND_METHOD *meth = default_RAND_meth;
- if (meth && meth->cleanup)
- meth->cleanup();
- RAND_set_rand_method(NULL);
- CRYPTO_THREAD_lock_free(rand_meth_lock);
-#ifndef OPENSSL_NO_ENGINE
- CRYPTO_THREAD_lock_free(rand_engine_lock);
-#endif
-}
-
void RAND_seed(const void *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
- if (meth && meth->seed)
+
+ if (meth->seed != NULL)
meth->seed(buf, num);
}
-void RAND_add(const void *buf, int num, double entropy)
+void RAND_add(const void *buf, int num, double randomness)
{
const RAND_METHOD *meth = RAND_get_rand_method();
- if (meth && meth->add)
- meth->add(buf, num, entropy);
+
+ if (meth->add != NULL)
+ meth->add(buf, num, randomness);
}
int RAND_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
- if (meth && meth->bytes)
+
+ if (meth->bytes != NULL)
return meth->bytes(buf, num);
RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
- return (-1);
+ return -1;
}
#if OPENSSL_API_COMPAT < 0x10100000L
int RAND_pseudo_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
- if (meth && meth->pseudorand)
+
+ if (meth->pseudorand != NULL)
return meth->pseudorand(buf, num);
- return (-1);
+ return -1;
}
#endif
int RAND_status(void)
{
const RAND_METHOD *meth = RAND_get_rand_method();
- if (meth && meth->status)
+
+ if (meth->status != NULL)
return meth->status();
return 0;
}
RAND_add(&curr_uid, sizeof curr_uid, 1);
curr_uid = 0;
- for (i = 0; i < (ENTROPY_NEEDED * 4); i++) {
+ for (i = 0; i < (RANDOMNESS_NEEDED * 4); i++) {
/*
* burn some cpu; hope for interrupts, cache collisions, bus
* interference, etc.
unsigned long l;
pid_t curr_pid = getpid();
# if defined(DEVRANDOM) || (!defined(OPENSS_NO_EGD) && defined(DEVRANDOM_EGD))
- unsigned char tmpbuf[ENTROPY_NEEDED];
+ unsigned char tmpbuf[RANDOMNESS_NEEDED];
int n = 0;
# endif
# ifdef DEVRANDOM
# ifdef DEVRANDOM
memset(randomstats, 0, sizeof(randomstats));
/*
- * Use a random entropy pool device. Linux, FreeBSD and OpenBSD have
+ * Use a randomness device. Linux, FreeBSD and OpenBSD have
* this. Use /dev/urandom if you can as /dev/random may block if it runs
* out of random entries.
*/
- for (i = 0; (i < OSSL_NELEM(randomfiles)) && (n < ENTROPY_NEEDED); i++) {
+ for (i = 0; (i < OSSL_NELEM(randomfiles)) && (n < RANDOMNESS_NEEDED); i++) {
if ((fd = open(randomfiles[i], O_RDONLY
# ifdef O_NONBLOCK
| O_NONBLOCK
if (try_read) {
r = read(fd, (unsigned char *)tmpbuf + n,
- ENTROPY_NEEDED - n);
+ RANDOMNESS_NEEDED - n);
if (r > 0)
n += r;
} else
}
while ((r > 0 ||
(errno == EINTR || errno == EAGAIN)) && usec != 0
- && n < ENTROPY_NEEDED);
+ && n < RANDOMNESS_NEEDED);
close(fd);
}
# if !defined(OPENSSL_NO_EGD) && defined(DEVRANDOM_EGD)
/*
- * Use an EGD socket to read entropy from an EGD or PRNGD entropy
- * collecting daemon.
+ * Use an EGD socket to read randomness from the daemon.
*/
- for (egdsocket = egdsockets; *egdsocket && n < ENTROPY_NEEDED;
+ for (egdsocket = egdsockets; *egdsocket && n < RANDOMNESS_NEEDED;
egdsocket++) {
int r;
r = RAND_query_egd_bytes(*egdsocket, (unsigned char *)tmpbuf + n,
- ENTROPY_NEEDED - n);
+ RANDOMNESS_NEEDED - n);
if (r > 0)
n += r;
}
* https://www.openssl.org/source/license.html
*/
-/*
- * Modified by VMS Software, Inc (2016)
- * Eliminate looping through all processes (performance)
- * Add additional randomizations using rand() function
- */
-
-#include <openssl/rand.h>
-#include "rand_lcl.h"
+#include "e_os.h"
#if defined(OPENSSL_SYS_VMS)
+# include <openssl/rand.h>
+# include "rand_lcl.h"
# include <descrip.h>
# include <jpidef.h>
# include <ssdef.h>
# define PTR_T __void_ptr64
# pragma pointer_size save
# pragma pointer_size 32
-# else /* __INITIAL_POINTER_SIZE == 64 */
+# else
# define PTR_T void *
-# endif /* __INITIAL_POINTER_SIZE == 64 [else] */
+# endif
static struct items_data_st {
short length, code; /* length is number of bytes */
{4, JPI$_PPGCNT},
{4, JPI$_WSPEAK},
{4, JPI$_FINALEXC},
- {0, 0} /* zero terminated */
+ {0, 0}
};
int RAND_poll(void)
{
-
/* determine the number of items in the JPI array */
-
struct items_data_st item_entry;
- int item_entry_count = sizeof(items_data)/sizeof(item_entry);
-
+ int item_entry_count = OSSL_NELEM(items_data);
/* Create the JPI itemlist array to hold item_data content */
-
struct {
short length, code;
int *buffer;
int *retlen;
- } item[item_entry_count], *pitem; /* number of entries in items_data */
-
+ } item[item_entry_count], *pitem;
struct items_data_st *pitems_data;
- int data_buffer[(item_entry_count*2)+4]; /* 8 bytes per entry max */
+ int data_buffer[(item_entry_count * 2) + 4]; /* 8 bytes per entry max */
int iosb[2];
int sys_time[2];
int *ptr;
int tmp_length = 0;
int total_length = 0;
- pitems_data = items_data;
- pitem = item;
-
-
/* Setup itemlist for GETJPI */
- while (pitems_data->length) {
+ pitems_data = items_data;
+ for (pitem = item; pitems_data->length != 0; pitem++) {
pitem->length = pitems_data->length;
pitem->code = pitems_data->code;
pitem->buffer = &data_buffer[total_length];
pitem->retlen = 0;
/* total_length is in longwords */
- total_length += pitems_data->length/4;
+ total_length += pitems_data->length / 4;
pitems_data++;
- pitem ++;
}
pitem->length = pitem->code = 0;
/* Fill data_buffer with various info bits from this process */
- /* and twist that data to seed the SSL random number init */
+ if (sys$getjpiw(EFN$C_ENF, NULL, NULL, item, &iosb, 0, 0) != SS$_NORMAL)
+ return 0;
- if (sys$getjpiw(EFN$C_ENF, NULL, NULL, item, &iosb, 0, 0) == SS$_NORMAL) {
- for (i = 0; i < total_length; i++) {
- sys$gettim((struct _generic_64 *)&sys_time[0]);
- srand(sys_time[0] * data_buffer[0] * data_buffer[1] + i);
+ /* Now twist that data to seed the SSL random number init */
+ for (i = 0; i < total_length; i++) {
+ sys$gettim((struct _generic_64 *)&sys_time[0]);
+ srand(sys_time[0] * data_buffer[0] * data_buffer[1] + i);
- if (i == (total_length - 1)) { /* for JPI$_FINALEXC */
- ptr = &data_buffer[i];
- for (j = 0; j < 4; j++) {
- data_buffer[i + j] = ptr[j];
- /* OK to use rand() just to scramble the seed */
- data_buffer[i + j] ^= (sys_time[0] ^ rand());
- tmp_length++;
- }
- } else {
+ if (i == (total_length - 1)) { /* for JPI$_FINALEXC */
+ ptr = &data_buffer[i];
+ for (j = 0; j < 4; j++) {
+ data_buffer[i + j] = ptr[j];
/* OK to use rand() just to scramble the seed */
- data_buffer[i] ^= (sys_time[0] ^ rand());
+ data_buffer[i + j] ^= (sys_time[0] ^ rand());
+ tmp_length++;
}
+ } else {
+ /* OK to use rand() just to scramble the seed */
+ data_buffer[i] ^= (sys_time[0] ^ rand());
}
-
- total_length += (tmp_length - 1);
-
- /* size of seed is total_length*4 bytes (64bytes) */
- RAND_add((PTR_T) data_buffer, total_length*4, total_length * 2);
- } else {
- return 0;
}
+ total_length += (tmp_length - 1);
+
+ /* size of seed is total_length*4 bytes (64bytes) */
+ RAND_add((PTR_T)data_buffer, total_length * 4, total_length * 2);
return 1;
}