CAMELLIA_KEY camellia_ks[3];
#endif
#ifndef OPENSSL_NO_RSA
- static const unsigned int rsa_bits[RSA_NUM] = {
- 512, 1024, 2048, 3072, 4096, 7680, 15360
- };
- static const unsigned char *rsa_data[RSA_NUM] = {
- test512, test1024, test2048, test3072, test4096, test7680, test15360
- };
- static const int rsa_data_length[RSA_NUM] = {
- sizeof(test512), sizeof(test1024),
- sizeof(test2048), sizeof(test3072),
- sizeof(test4096), sizeof(test7680),
- sizeof(test15360)
+ static const struct {
+ const unsigned char *data;
+ unsigned int length;
+ unsigned int bits;
+ } rsa_keys[] = {
+ { test512, sizeof(test512), 512 },
+ { test1024, sizeof(test1024), 1024 },
+ { test2048, sizeof(test2048), 2048 },
+ { test3072, sizeof(test3072), 3072 },
+ { test4096, sizeof(test4096), 4092 },
+ { test7680, sizeof(test7680), 7680 },
+ { test15360, sizeof(test15360), 15360 }
};
uint8_t rsa_doit[RSA_NUM] = { 0 };
int primes = RSA_DEFAULT_PRIME_NUM;
uint8_t dsa_doit[DSA_NUM] = { 0 };
#endif
#ifndef OPENSSL_NO_EC
+ typedef struct ec_curve_st {
+ const char *name;
+ unsigned int nid;
+ unsigned int bits;
+ size_t sigsize; /* only used for EdDSA curves */
+ } EC_CURVE;
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the |ecdh_choices| list accordingly.
*/
- static const struct {
- const char *name;
- unsigned int nid;
- unsigned int bits;
- } test_curves[] = {
+ static const EC_CURVE ec_curves[EC_NUM] = {
/* Prime Curves */
{"secp160r1", NID_secp160r1, 160},
{"nistp192", NID_X9_62_prime192v1, 192},
{"X25519", NID_X25519, 253},
{"X448", NID_X448, 448}
};
- static const struct {
- const char *name;
- unsigned int nid;
- unsigned int bits;
- size_t sigsize;
- } test_ed_curves[] = {
+ static const EC_CURVE ed_curves[EdDSA_NUM] = {
/* EdDSA */
{"Ed25519", NID_ED25519, 253, 64},
{"Ed448", NID_ED448, 456, 114}
};
# ifndef OPENSSL_NO_SM2
- static const struct {
- const char *name;
- unsigned int nid;
- unsigned int bits;
- } test_sm2_curves[] = {
+ static const EC_CURVE sm2_curves[SM2_NUM] = {
/* SM2 */
{"CurveSM2", NID_sm2, 256}
};
uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
uint8_t ecdh_doit[EC_NUM] = { 0 };
uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
- OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM);
- OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM);
+ OPENSSL_assert(OSSL_NELEM(ec_curves) >= EC_NUM);
+ OPENSSL_assert(OSSL_NELEM(ed_curves) >= EdDSA_NUM);
# ifndef OPENSSL_NO_SM2
- OPENSSL_assert(OSSL_NELEM(test_sm2_curves) >= SM2_NUM);
+ OPENSSL_assert(OSSL_NELEM(sm2_curves) >= SM2_NUM);
# endif
#endif /* ndef OPENSSL_NO_EC */
break;
}
for (k = 0; k < RSA_NUM; k++) {
- const unsigned char *p;
+ const unsigned char *p = rsa_keys[k].data;
- p = rsa_data[k];
loopargs[i].rsa_key[k] =
- d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
+ d2i_RSAPrivateKey(NULL, &p, rsa_keys[k].length);
if (loopargs[i].rsa_key[k] == NULL) {
BIO_printf(bio_err,
"internal error loading RSA key number %d\n", k);
}
if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
- rsa_bits[testnum],
+ rsa_keys[testnum].bits,
primes, bn, NULL)) {
BN_free(bn);
goto end;
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
- rsa_c[testnum][0], rsa_bits[testnum],
+ rsa_c[testnum][0], rsa_keys[testnum].bits,
seconds.rsa);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %u bits private RSA's in %.2fs\n",
- count, rsa_bits[testnum], d);
+ count, rsa_keys[testnum].bits, d);
rsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
- rsa_c[testnum][1], rsa_bits[testnum],
+ rsa_c[testnum][1], rsa_keys[testnum].bits,
seconds.rsa);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %u bits public RSA's in %.2fs\n",
- count, rsa_bits[testnum], d);
+ count, rsa_keys[testnum].bits, d);
rsa_results[testnum][1] = (double)count / d;
}
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].ecdsa[testnum] =
- EC_KEY_new_by_curve_name(test_curves[testnum].nid);
+ EC_KEY_new_by_curve_name(ec_curves[testnum].nid);
if (loopargs[i].ecdsa[testnum] == NULL) {
st = 0;
break;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[testnum][0],
- test_curves[testnum].bits, seconds.ecdsa);
+ ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%u:%.2f\n" :
"%ld %u bits ECDSA signs in %.2fs \n",
- count, test_curves[testnum].bits, d);
+ count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[testnum][1],
- test_curves[testnum].bits, seconds.ecdsa);
+ ec_curves[testnum].bits, seconds.ecdsa);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%u:%.2f\n"
: "%ld %u bits ECDSA verify in %.2fs\n",
- count, test_curves[testnum].bits, d);
+ count, ec_curves[testnum].bits, d);
ecdsa_results[testnum][1] = (double)count / d;
}
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
* then we set the curve by NID before deriving the actual keygen
* ctx for that specific curve. */
- kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */
+ kctx = EVP_PKEY_CTX_new_id(ec_curves[testnum].nid, NULL); /* keygen ctx from NID */
if (!kctx) {
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *params = NULL;
break;
}
- if ( /* Create the context for parameter generation */
- !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
+ /* Create the context for parameter generation */
+ if (!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
/* Initialise the parameter generation */
!EVP_PKEY_paramgen_init(pctx) ||
/* Set the curve by NID */
!EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
- test_curves
+ ec_curves
[testnum].nid) ||
/* Create the parameter object params */
!EVP_PKEY_paramgen(pctx, ¶ms)) {
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
ecdh_c[testnum][0],
- test_curves[testnum].bits, seconds.ecdh);
+ ec_curves[testnum].bits, seconds.ecdh);
Time_F(START);
count =
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %u-bits ECDH ops in %.2fs\n", count,
- test_curves[testnum].bits, d);
+ ec_curves[testnum].bits, d);
ecdh_results[testnum][0] = (double)count / d;
rsa_count = count;
}
break;
}
- if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL))
+ if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid, NULL))
== NULL
|| EVP_PKEY_keygen_init(ed_pctx) <= 0
|| EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
} else {
for (i = 0; i < loopargs_len; i++) {
/* Perform EdDSA signature test */
- loopargs[i].sigsize = test_ed_curves[testnum].sigsize;
+ loopargs[i].sigsize = ed_curves[testnum].sigsize;
st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
loopargs[i].buf2, &loopargs[i].sigsize,
loopargs[i].buf, 20);
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
- pkey_print_message("sign", test_ed_curves[testnum].name,
+ pkey_print_message("sign", ed_curves[testnum].name,
eddsa_c[testnum][0],
- test_ed_curves[testnum].bits, seconds.eddsa);
+ ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R8:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s signs in %.2fs \n",
- count, test_ed_curves[testnum].bits,
- test_ed_curves[testnum].name, d);
+ count, ed_curves[testnum].bits,
+ ed_curves[testnum].name, d);
eddsa_results[testnum][0] = (double)count / d;
rsa_count = count;
}
ERR_print_errors(bio_err);
eddsa_doit[testnum] = 0;
} else {
- pkey_print_message("verify", test_ed_curves[testnum].name,
+ pkey_print_message("verify", ed_curves[testnum].name,
eddsa_c[testnum][1],
- test_ed_curves[testnum].bits, seconds.eddsa);
+ ed_curves[testnum].bits, seconds.eddsa);
Time_F(START);
count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R9:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify in %.2fs\n",
- count, test_ed_curves[testnum].bits,
- test_ed_curves[testnum].name, d);
+ count, ed_curves[testnum].bits,
+ ed_curves[testnum].name, d);
eddsa_results[testnum][1] = (double)count / d;
}
st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) == NULL
|| EVP_PKEY_keygen_init(pctx) <= 0
|| EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
- test_sm2_curves[testnum].nid) <= 0
+ sm2_curves[testnum].nid) <= 0
|| EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
EVP_PKEY_CTX_free(pctx);
if (st == 0)
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
- pkey_print_message("sign", test_sm2_curves[testnum].name,
+ pkey_print_message("sign", sm2_curves[testnum].name,
sm2_c[testnum][0],
- test_sm2_curves[testnum].bits, seconds.sm2);
+ sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R8:%ld:%u:%s:%.2f\n" :
"%ld %u bits %s signs in %.2fs \n",
- count, test_sm2_curves[testnum].bits,
- test_sm2_curves[testnum].name, d);
+ count, sm2_curves[testnum].bits,
+ sm2_curves[testnum].name, d);
sm2_results[testnum][0] = (double)count / d;
rsa_count = count;
}
ERR_print_errors(bio_err);
sm2_doit[testnum] = 0;
} else {
- pkey_print_message("verify", test_sm2_curves[testnum].name,
+ pkey_print_message("verify", sm2_curves[testnum].name,
sm2_c[testnum][1],
- test_sm2_curves[testnum].bits, seconds.sm2);
+ sm2_curves[testnum].bits, seconds.sm2);
Time_F(START);
count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R9:%ld:%u:%s:%.2f\n"
: "%ld %u bits %s verify in %.2fs\n",
- count, test_sm2_curves[testnum].bits,
- test_sm2_curves[testnum].name, d);
+ count, sm2_curves[testnum].bits,
+ sm2_curves[testnum].name, d);
sm2_results[testnum][1] = (double)count / d;
}
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
- k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
+ k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
- rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
+ rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
rsa_results[k][0], rsa_results[k][1]);
}
#endif
if (mr)
printf("+F4:%u:%u:%f:%f\n",
- k, test_curves[k].bits,
+ k, ec_curves[k].bits,
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
- test_curves[k].bits, test_curves[k].name,
+ ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
ecdsa_results[k][0], ecdsa_results[k][1]);
}
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
- k, test_curves[k].bits,
+ k, ec_curves[k].bits,
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
- test_curves[k].bits, test_curves[k].name,
+ ec_curves[k].bits, ec_curves[k].name,
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
}
if (mr)
printf("+F6:%u:%u:%s:%f:%f\n",
- k, test_ed_curves[k].bits, test_ed_curves[k].name,
+ k, ed_curves[k].bits, ed_curves[k].name,
eddsa_results[k][0], eddsa_results[k][1]);
else
printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
- test_ed_curves[k].bits, test_ed_curves[k].name,
+ ed_curves[k].bits, ed_curves[k].name,
1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
eddsa_results[k][0], eddsa_results[k][1]);
}
if (mr)
printf("+F6:%u:%u:%s:%f:%f\n",
- k, test_sm2_curves[k].bits, test_sm2_curves[k].name,
+ k, sm2_curves[k].bits, sm2_curves[k].name,
sm2_results[k][0], sm2_results[k][1]);
else
printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
- test_sm2_curves[k].bits, test_sm2_curves[k].name,
+ sm2_curves[k].bits, sm2_curves[k].name,
1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
sm2_results[k][0], sm2_results[k][1]);
}