return a;
return b;
}
-#define SQRT(x) (sqrt(x))
+static NOINLINE double my_SQRT(double X)
+{
+ union {
+ float f;
+ int32_t i;
+ } v;
+ double invsqrt;
+ double Xhalf = X * 0.5;
+
+ /* Fast and good approximation to 1/sqrt(X), black magic */
+ v.f = X;
+ /*v.i = 0x5f3759df - (v.i >> 1);*/
+ v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
+ invsqrt = v.f; /* better than 0.2% accuracy */
+
+ /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
+ * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
+ * f'(x) = -2/(x*x*x)
+ * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
+ * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
+ */
+ invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
+ /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
+ /* With 4 iterations, more than half results will be exact,
+ * at 6th iterations result stabilizes with about 72% results exact.
+ * We are well satisfied with 0.05% accuracy.
+ */
+
+ return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
+}
+static ALWAYS_INLINE double SQRT(double X)
+{
+ /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
+ if (sizeof(float) != 4)
+ return sqrt(X);
+
+ /* This avoids needing libm, saves about 1.2k on x86-32 */
+ return my_SQRT(X);
+}
static double
gettime1900d(void)