end
function vector.direction(pos1, pos2)
- local x_raw = pos2.x - pos1.x
- local y_raw = pos2.y - pos1.y
- local z_raw = pos2.z - pos1.z
- local x_abs = math.abs(x_raw)
- local y_abs = math.abs(y_raw)
- local z_abs = math.abs(z_raw)
- if x_abs >= y_abs and
- x_abs >= z_abs then
- y_raw = y_raw * (1 / x_abs)
- z_raw = z_raw * (1 / x_abs)
- x_raw = x_raw / x_abs
- end
- if y_abs >= x_abs and
- y_abs >= z_abs then
- x_raw = x_raw * (1 / y_abs)
- z_raw = z_raw * (1 / y_abs)
- y_raw = y_raw / y_abs
- end
- if z_abs >= y_abs and
- z_abs >= x_abs then
- x_raw = x_raw * (1 / z_abs)
- y_raw = y_raw * (1 / z_abs)
- z_raw = z_raw / z_abs
- end
- return {x=x_raw, y=y_raw, z=z_raw}
+ return vector.normalize({
+ x = pos2.x - pos1.x,
+ y = pos2.y - pos1.y,
+ z = pos2.z - pos1.z
+ })
end
-
function vector.add(a, b)
if type(b) == "table" then
return {x = a.x + b.x,
Spatial Vectors
---------------
-* `vector.new(a[, b, c])`: returns a vector:
+For the following functions, `v`, `v1`, `v2` are vectors, `p1`, `p2` are positions:
+
+* `vector.new(a[, b, c])`:
+ * Returns a vector.
* A copy of `a` if `a` is a vector.
- * `{x = a, y = b, z = c}`, if all `a, b, c` are defined
-* `vector.direction(p1, p2)`: returns a vector
-* `vector.distance(p1, p2)`: returns a number
-* `vector.length(v)`: returns a number
-* `vector.normalize(v)`: returns a vector
-* `vector.floor(v)`: returns a vector, each dimension rounded down
-* `vector.round(v)`: returns a vector, each dimension rounded to nearest int
-* `vector.apply(v, func)`: returns a vector
-* `vector.equals(v1, v2)`: returns a boolean
-* `vector.sort(v1, v2)`: returns minp, maxp vectors of the cuboid defined by v1 and v2
+ * `{x = a, y = b, z = c}`, if all of `a`, `b`, `c` are defined numbers.
+* `vector.direction(p1, p2)`:
+ * Returns a vector of length 1 with direction `p1` to `p2`.
+ * If `p1` and `p2` are identical, returns `{x = 0, y = 0, z = 0}`.
+* `vector.distance(p1, p2)`:
+ * Returns zero or a positive number, the distance between `p1` and `p2`.
+* `vector.length(v)`:
+ * Returns zero or a positive number, the length of vector `v`.
+* `vector.normalize(v)`:
+ * Returns a vector of length 1 with direction of vector `v`.
+ * If `v` has zero length, returns `{x = 0, y = 0, z = 0}`.
+* `vector.floor(v)`:
+ * Returns a vector, each dimension rounded down.
+* `vector.round(v)`:
+ * Returns a vector, each dimension rounded to nearest integer.
+* `vector.apply(v, func)`:
+ * Returns a vector where the function `func` has been applied to each component.
+* `vector.equals(v1, v2)`:
+ * Returns a boolean, `true` if the vectors are identical.
+* `vector.sort(v1, v2)`:
+ * Returns in order minp, maxp vectors of the cuboid defined by `v1`, `v2`.
For the following functions `x` can be either a vector or a number:
-* `vector.add(v, x)`: returns a vector
-* `vector.subtract(v, x)`: returns a vector
-* `vector.multiply(v, x)`: returns a scaled vector or Schur product
-* `vector.divide(v, x)`: returns a scaled vector or Schur quotient
+* `vector.add(v, x)`:
+ * Returns a vector.
+* `vector.subtract(v, x)`:
+ * Returns a vector.
+* `vector.multiply(v, x)`:
+ * Returns a scaled vector or Schur product.
+* `vector.divide(v, x)`:
+ * Returns a scaled vector or Schur quotient.
Helper functions
----------------