'y_min' and 'y_max' are still accepted for compatibility.
if (is_stone_surface || is_water_surface) {
// (Re)calculate biome
- biome = biomegen->getBiomeAtIndex(index, y);
+ biome = biomegen->getBiomeAtIndex(index, v3s16(x, y, z));
if (biomemap[index] == BIOME_NONE && is_stone_surface)
biomemap[index] = biome->index;
noise_filler_depth->result[index], 0.0f);
depth_water_top = biome->depth_water_top;
depth_riverbed = biome->depth_riverbed;
- biome_y_min = biome->y_min;
+ biome_y_min = biome->min_pos.Y;
// Detect stone type for dungeons during every biome calculation.
// If none detected the last selected biome stone is chosen.
b->depth_filler = -MAX_MAP_GENERATION_LIMIT;
b->depth_water_top = 0;
b->depth_riverbed = 0;
- b->y_min = -MAX_MAP_GENERATION_LIMIT;
- b->y_max = MAX_MAP_GENERATION_LIMIT;
+ b->min_pos = v3s16(-MAX_MAP_GENERATION_LIMIT,
+ -MAX_MAP_GENERATION_LIMIT, -MAX_MAP_GENERATION_LIMIT);
+ b->max_pos = v3s16(MAX_MAP_GENERATION_LIMIT,
+ MAX_MAP_GENERATION_LIMIT, MAX_MAP_GENERATION_LIMIT);
b->heat_point = 0.0;
b->humidity_point = 0.0;
b->vertical_blend = 0;
// For BiomeGen type 'BiomeGenOriginal'
-Biome *BiomeManager::getBiomeFromNoiseOriginal(float heat, float humidity, s16 y)
+Biome *BiomeManager::getBiomeFromNoiseOriginal(float heat, float humidity, v3s16 pos)
{
Biome *biome_closest = nullptr;
Biome *biome_closest_blend = nullptr;
for (size_t i = 1; i < getNumObjects(); i++) {
Biome *b = (Biome *)getRaw(i);
- if (!b || y > b->y_max + b->vertical_blend || y < b->y_min)
+ if (!b ||
+ pos.Y < b->min_pos.Y || pos.Y > b->max_pos.Y + b->vertical_blend ||
+ pos.X < b->min_pos.X || pos.X > b->max_pos.X ||
+ pos.Z < b->min_pos.Z || pos.Z > b->max_pos.Z)
continue;
float d_heat = heat - b->heat_point;
float d_humidity = humidity - b->humidity_point;
float dist = (d_heat * d_heat) + (d_humidity * d_humidity);
- if (y <= b->y_max) { // Within y limits of biome b
+ if (pos.Y <= b->max_pos.Y) { // Within y limits of biome b
if (dist < dist_min) {
dist_min = dist;
biome_closest = b;
}
}
- mysrand(y + (heat + humidity) / 2);
+ mysrand(pos.Y + (heat + humidity) / 2);
if (biome_closest_blend &&
myrand_range(0, biome_closest_blend->vertical_blend) >=
- y - biome_closest_blend->y_max)
+ pos.Y - biome_closest_blend->max_pos.Y)
return biome_closest_blend;
return (biome_closest) ? biome_closest : (Biome *)getRaw(BIOME_NONE);
NoisePerlin2D(&m_params->np_humidity, pos.X, pos.Z, m_params->seed) +
NoisePerlin2D(&m_params->np_humidity_blend, pos.X, pos.Z, m_params->seed);
- return calcBiomeFromNoise(heat, humidity, pos.Y);
+ return calcBiomeFromNoise(heat, humidity, pos);
}
}
-biome_t *BiomeGenOriginal::getBiomes(s16 *heightmap)
+biome_t *BiomeGenOriginal::getBiomes(s16 *heightmap, v3s16 pmin)
{
- for (s32 i = 0; i != m_csize.X * m_csize.Z; i++) {
+ for (s16 zr = 0; zr < m_csize.Z; zr++)
+ for (s16 xr = 0; xr < m_csize.X; xr++) {
+ s32 i = zr * m_csize.X + xr;
Biome *biome = calcBiomeFromNoise(
noise_heat->result[i],
noise_humidity->result[i],
- heightmap[i]);
+ v3s16(pmin.X + xr, heightmap[i], pmin.Z + zr));
biomemap[i] = biome->index;
}
{
return getBiomeAtIndex(
(pos.Z - m_pmin.Z) * m_csize.X + (pos.X - m_pmin.X),
- pos.Y);
+ pos);
}
-Biome *BiomeGenOriginal::getBiomeAtIndex(size_t index, s16 y) const
+Biome *BiomeGenOriginal::getBiomeAtIndex(size_t index, v3s16 pos) const
{
return calcBiomeFromNoise(
noise_heat->result[index],
noise_humidity->result[index],
- y);
+ pos);
}
-Biome *BiomeGenOriginal::calcBiomeFromNoise(float heat, float humidity, s16 y) const
+Biome *BiomeGenOriginal::calcBiomeFromNoise(float heat, float humidity, v3s16 pos) const
{
Biome *biome_closest = nullptr;
Biome *biome_closest_blend = nullptr;
for (size_t i = 1; i < m_bmgr->getNumObjects(); i++) {
Biome *b = (Biome *)m_bmgr->getRaw(i);
- if (!b || y > b->y_max + b->vertical_blend || y < b->y_min)
+ if (!b ||
+ pos.Y < b->min_pos.Y || pos.Y > b->max_pos.Y + b->vertical_blend ||
+ pos.X < b->min_pos.X || pos.X > b->max_pos.X ||
+ pos.Z < b->min_pos.Z || pos.Z > b->max_pos.Z)
continue;
float d_heat = heat - b->heat_point;
float d_humidity = humidity - b->humidity_point;
float dist = (d_heat * d_heat) + (d_humidity * d_humidity);
- if (y <= b->y_max) { // Within y limits of biome b
+ if (pos.Y <= b->max_pos.Y) { // Within y limits of biome b
if (dist < dist_min) {
dist_min = dist;
biome_closest = b;
// Carefully tune pseudorandom seed variation to avoid single node dither
// and create larger scale blending patterns similar to horizontal biome
// blend.
- mysrand(y + (heat + humidity) / 2);
+ mysrand(pos.Y + (heat + humidity) / 2);
if (biome_closest_blend &&
myrand_range(0, biome_closest_blend->vertical_blend) >=
- y - biome_closest_blend->y_max)
+ pos.Y - biome_closest_blend->max_pos.Y)
return biome_closest_blend;
return (biome_closest) ? biome_closest : (Biome *)m_bmgr->getRaw(BIOME_NONE);
s16 depth_water_top;
s16 depth_riverbed;
- s16 y_min;
- s16 y_max;
+ v3s16 min_pos;
+ v3s16 max_pos;
float heat_point;
float humidity_point;
s16 vertical_blend;
// Gets all biomes in current chunk using each corresponding element of
// heightmap as the y position, then stores the results by biome index in
// biomemap (also returned)
- virtual biome_t *getBiomes(s16 *heightmap) = 0;
+ virtual biome_t *getBiomes(s16 *heightmap, v3s16 pmin) = 0;
// Gets a single biome at the specified position, which must be contained
// in the region formed by m_pmin and (m_pmin + m_csize - 1).
virtual Biome *getBiomeAtPoint(v3s16 pos) const = 0;
// Same as above, but uses a raw numeric index correlating to the (x,z) position.
- virtual Biome *getBiomeAtIndex(size_t index, s16 y) const = 0;
+ virtual Biome *getBiomeAtIndex(size_t index, v3s16 pos) const = 0;
// Result of calcBiomes bulk computation.
biome_t *biomemap = nullptr;
Biome *calcBiomeAtPoint(v3s16 pos) const;
void calcBiomeNoise(v3s16 pmin);
- biome_t *getBiomes(s16 *heightmap);
+ biome_t *getBiomes(s16 *heightmap, v3s16 pmin);
Biome *getBiomeAtPoint(v3s16 pos) const;
- Biome *getBiomeAtIndex(size_t index, s16 y) const;
+ Biome *getBiomeAtIndex(size_t index, v3s16 pos) const;
- Biome *calcBiomeFromNoise(float heat, float humidity, s16 y) const;
+ Biome *calcBiomeFromNoise(float heat, float humidity, v3s16 pos) const;
float *heatmap;
float *humidmap;
NoiseParams &np_heat_blend, u64 seed);
float getHumidityAtPosOriginal(v3s16 pos, NoiseParams &np_humidity,
NoiseParams &np_humidity_blend, u64 seed);
- Biome *getBiomeFromNoiseOriginal(float heat, float humidity, s16 y);
+ Biome *getBiomeFromNoiseOriginal(float heat, float humidity, v3s16 pos);
private:
Server *m_server;
b->depth_filler = getintfield_default(L, index, "depth_filler", -31000);
b->depth_water_top = getintfield_default(L, index, "depth_water_top", 0);
b->depth_riverbed = getintfield_default(L, index, "depth_riverbed", 0);
- b->y_min = getintfield_default(L, index, "y_min", -31000);
- b->y_max = getintfield_default(L, index, "y_max", 31000);
b->heat_point = getfloatfield_default(L, index, "heat_point", 0.f);
b->humidity_point = getfloatfield_default(L, index, "humidity_point", 0.f);
b->vertical_blend = getintfield_default(L, index, "vertical_blend", 0);
- b->flags = 0; //reserved
+ b->flags = 0; // reserved
+
+ b->min_pos = getv3s16field_default(L, index, "min_pos", v3s16(-31000, -31000, -31000));
+ getintfield(L, index, "y_min", b->min_pos.Y);
+ b->max_pos = getv3s16field_default(L, index, "max_pos", v3s16(31000, 31000, 31000));
+ getintfield(L, index, "y_max", b->max_pos.Y);
std::vector<std::string> &nn = b->m_nodenames;
nn.push_back(getstringfield_default(L, index, "node_top", ""));
if (!humidity)
return 0;
- Biome *biome = (Biome *)bmgr->getBiomeFromNoiseOriginal(heat, humidity, pos.Y);
+ Biome *biome = (Biome *)bmgr->getBiomeFromNoiseOriginal(heat, humidity, pos);
if (!biome || biome->index == OBJDEF_INVALID_INDEX)
return 0;
luaL_checktype(L, index, LUA_TTABLE);
const NodeDefManager *ndef = getServer(L)->getNodeDefManager();
- BiomeManager *bmgr = getServer(L)->getEmergeManager()->biomemgr;
+ BiomeManager *bmgr = getServer(L)->getEmergeManager()->biomemgr;
Biome *biome = read_biome_def(L, index, ndef);
if (!biome)