redundant as result.
/* crypto/md32_common.h */
/* ====================================================================
- * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
+ * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
*/
/*
* typedef struct {
* ...
* HASH_LONG Nl,Nh;
+ * either {
* HASH_LONG data[HASH_LBLOCK];
+ * unsigned char data[HASH_CBLOCK];
+ * };
* unsigned int num;
* ...
* } HASH_CTX;
+ * data[] vector is expected to be zeroed upon first call to
+ * HASH_UPDATE.
* HASH_UPDATE
* name of "Update" function, implemented here.
* HASH_TRANSFORM
* name of "Transform" function, implemented here.
* HASH_FINAL
* name of "Final" function, implemented here.
- * HASH_BLOCK_HOST_ORDER
- * name of "block" function treating *aligned* input message
- * in host byte order, implemented externally.
* HASH_BLOCK_DATA_ORDER
- * name of "block" function treating *unaligned* input message
- * in original (data) byte order, implemented externally (it
- * actually is optional if data and host are of the same
- * "endianess").
+ * name of "block" function capable of treating *unaligned* input
+ * message in original (data) byte order, implemented externally.
* HASH_MAKE_STRING
* macro convering context variables to an ASCII hash string.
*
- * Optional macros:
- *
- * B_ENDIAN or L_ENDIAN
- * defines host byte-order.
- * HASH_LONG_LOG2
- * defaults to 2 if not states otherwise.
- * HASH_LBLOCK
- * assumed to be HASH_CBLOCK/4 if not stated otherwise.
- * HASH_BLOCK_DATA_ORDER_ALIGNED
- * alternative "block" function capable of treating
- * aligned input message in original (data) order,
- * implemented externally.
- *
* MD5 example:
*
* #define DATA_ORDER_IS_LITTLE_ENDIAN
* #define HASH_LONG_LOG2 MD5_LONG_LOG2
* #define HASH_CTX MD5_CTX
* #define HASH_CBLOCK MD5_CBLOCK
- * #define HASH_LBLOCK MD5_LBLOCK
* #define HASH_UPDATE MD5_Update
* #define HASH_TRANSFORM MD5_Transform
* #define HASH_FINAL MD5_Final
- * #define HASH_BLOCK_HOST_ORDER md5_block_host_order
* #define HASH_BLOCK_DATA_ORDER md5_block_data_order
*
* <appro@fy.chalmers.se>
#error "HASH_FINAL must be defined!"
#endif
-#ifndef HASH_BLOCK_HOST_ORDER
-#error "HASH_BLOCK_HOST_ORDER must be defined!"
-#endif
-
-#if 0
-/*
- * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
- * isn't defined.
- */
#ifndef HASH_BLOCK_DATA_ORDER
#error "HASH_BLOCK_DATA_ORDER must be defined!"
#endif
-#endif
-
-#ifndef HASH_LBLOCK
-#define HASH_LBLOCK (HASH_CBLOCK/4)
-#endif
-
-#ifndef HASH_LONG_LOG2
-#define HASH_LONG_LOG2 2
-#endif
/*
* Engage compiler specific rotate intrinsic function if available.
# endif
#endif /* PEDANTIC */
-#if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */
-/* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
-#ifdef ROTATE
-/* 5 instructions with rotate instruction, else 9 */
-#define REVERSE_FETCH32(a,l) ( \
- l=*(const HASH_LONG *)(a), \
- ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \
- )
-#else
-/* 6 instructions with rotate instruction, else 8 */
-#define REVERSE_FETCH32(a,l) ( \
- l=*(const HASH_LONG *)(a), \
- l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \
- ROTATE(l,16) \
- )
-/*
- * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
- * It's rewritten as above for two reasons:
- * - RISCs aren't good at long constants and have to explicitely
- * compose 'em with several (well, usually 2) instructions in a
- * register before performing the actual operation and (as you
- * already realized:-) having same constant should inspire the
- * compiler to permanently allocate the only register for it;
- * - most modern CPUs have two ALUs, but usually only one has
- * circuitry for shifts:-( this minor tweak inspires compiler
- * to schedule shift instructions in a better way...
- *
- * <appro@fy.chalmers.se>
- */
-#endif
-#endif
-
#ifndef ROTATE
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
#endif
-/*
- * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
- * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
- * and host are of the same "endianess". It's possible to mask
- * this with blank #define HASH_BLOCK_DATA_ORDER though...
- *
- * <appro@fy.chalmers.se>
- */
-#if defined(B_ENDIAN)
-# if defined(DATA_ORDER_IS_BIG_ENDIAN)
-# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
-# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
-# endif
-# endif
-#elif defined(L_ENDIAN)
-# if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
-# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
-# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
-# endif
-# endif
-#endif
-
-#if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
-#ifndef HASH_BLOCK_DATA_ORDER
-#error "HASH_BLOCK_DATA_ORDER must be defined!"
-#endif
-#endif
-
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
#ifndef PEDANTIC
l|=(((unsigned long)(*((c)++))) ), \
l)
#endif
-#define HOST_p_c2l(c,l,n) { \
- switch (n) { \
- case 0: l =((unsigned long)(*((c)++)))<<24; \
- case 1: l|=((unsigned long)(*((c)++)))<<16; \
- case 2: l|=((unsigned long)(*((c)++)))<< 8; \
- case 3: l|=((unsigned long)(*((c)++))); \
- } }
-#define HOST_p_c2l_p(c,l,sc,len) { \
- switch (sc) { \
- case 0: l =((unsigned long)(*((c)++)))<<24; \
- if (--len == 0) break; \
- case 1: l|=((unsigned long)(*((c)++)))<<16; \
- if (--len == 0) break; \
- case 2: l|=((unsigned long)(*((c)++)))<< 8; \
- } }
-/* NOTE the pointer is not incremented at the end of this */
-#define HOST_c2l_p(c,l,n) { \
- l=0; (c)+=n; \
- switch (n) { \
- case 3: l =((unsigned long)(*(--(c))))<< 8; \
- case 2: l|=((unsigned long)(*(--(c))))<<16; \
- case 1: l|=((unsigned long)(*(--(c))))<<24; \
- } }
#ifndef HOST_l2c
#define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
l|=(((unsigned long)(*((c)++)))<<24), \
l)
#endif
-#define HOST_p_c2l(c,l,n) { \
- switch (n) { \
- case 0: l =((unsigned long)(*((c)++))); \
- case 1: l|=((unsigned long)(*((c)++)))<< 8; \
- case 2: l|=((unsigned long)(*((c)++)))<<16; \
- case 3: l|=((unsigned long)(*((c)++)))<<24; \
- } }
-#define HOST_p_c2l_p(c,l,sc,len) { \
- switch (sc) { \
- case 0: l =((unsigned long)(*((c)++))); \
- if (--len == 0) break; \
- case 1: l|=((unsigned long)(*((c)++)))<< 8; \
- if (--len == 0) break; \
- case 2: l|=((unsigned long)(*((c)++)))<<16; \
- } }
-/* NOTE the pointer is not incremented at the end of this */
-#define HOST_c2l_p(c,l,n) { \
- l=0; (c)+=n; \
- switch (n) { \
- case 3: l =((unsigned long)(*(--(c))))<<16; \
- case 2: l|=((unsigned long)(*(--(c))))<< 8; \
- case 1: l|=((unsigned long)(*(--(c)))); \
- } }
#ifndef HOST_l2c
#define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
int HASH_UPDATE (HASH_CTX *c, const void *data_, size_t len)
{
const unsigned char *data=data_;
- register HASH_LONG * p;
- register HASH_LONG l;
- size_t sw,sc,ew,ec;
+ unsigned char *p;
+ HASH_LONG l;
+ size_t n;
if (len==0) return 1;
c->Nh+=(len>>29); /* might cause compiler warning on 16-bit */
c->Nl=l;
- if (c->num != 0)
+ n = c->num;
+ if (n != 0)
{
- p=c->data;
- sw=c->num>>2;
- sc=c->num&0x03;
+ p=(unsigned char *)c->data;
- if ((c->num+len) >= HASH_CBLOCK)
+ if ((n+len) >= HASH_CBLOCK)
{
- l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
- for (; sw<HASH_LBLOCK; sw++)
- {
- HOST_c2l(data,l); p[sw]=l;
- }
- HASH_BLOCK_HOST_ORDER (c,p,1);
- len-=(HASH_CBLOCK-c->num);
- c->num=0;
- /* drop through and do the rest */
+ memcpy (p+n,data,HASH_CBLOCK-n);
+ HASH_BLOCK_DATA_ORDER (c,p,1);
+ n = HASH_CBLOCK-n;
+ data += n;
+ len -= n;
+ c->num = 0;
+ memset (p,0,HASH_CBLOCK); /* keep it zeroed */
}
else
{
- c->num+=(unsigned int)len;
- if ((sc+len) < 4) /* ugly, add char's to a word */
- {
- l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
- }
- else
- {
- ew=(c->num>>2);
- ec=(c->num&0x03);
- if (sc)
- l=p[sw];
- HOST_p_c2l(data,l,sc);
- p[sw++]=l;
- for (; sw < ew; sw++)
- {
- HOST_c2l(data,l); p[sw]=l;
- }
- if (ec)
- {
- HOST_c2l_p(data,l,ec); p[sw]=l;
- }
- }
+ memcpy (p+n,data,len);
+ c->num += (unsigned int)len;
return 1;
}
}
- sw=len/HASH_CBLOCK;
- if (sw > 0)
+ n = len/HASH_CBLOCK;
+ if (n > 0)
{
-#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
- /*
- * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
- * only if sizeof(HASH_LONG)==4.
- */
- if ((((size_t)data)%4) == 0)
- {
- /* data is properly aligned so that we can cast it: */
- HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,sw);
- sw*=HASH_CBLOCK;
- data+=sw;
- len-=sw;
- }
- else
-#if !defined(HASH_BLOCK_DATA_ORDER)
- while (sw--)
- {
- memcpy (p=c->data,data,HASH_CBLOCK);
- HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
- data+=HASH_CBLOCK;
- len-=HASH_CBLOCK;
- }
-#endif
-#endif
-#if defined(HASH_BLOCK_DATA_ORDER)
- {
- HASH_BLOCK_DATA_ORDER(c,data,sw);
- sw*=HASH_CBLOCK;
- data+=sw;
- len-=sw;
- }
-#endif
+ HASH_BLOCK_DATA_ORDER (c,data,n);
+ n *= HASH_CBLOCK;
+ data += n;
+ len -= n;
}
- if (len!=0)
+ if (len != 0)
{
- p = c->data;
+ p = (unsigned char *)c->data;
c->num = len;
- ew=len>>2; /* words to copy */
- ec=len&0x03;
- for (; ew; ew--,p++)
- {
- HOST_c2l(data,l); *p=l;
- }
- HOST_c2l_p(data,l,ec);
- *p=l;
+ memcpy (p,data,len);
}
return 1;
}
void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
{
-#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
- if ((((size_t)data)%4) == 0)
- /* data is properly aligned so that we can cast it: */
- HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,1);
- else
-#if !defined(HASH_BLOCK_DATA_ORDER)
- {
- memcpy (c->data,data,HASH_CBLOCK);
- HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
- }
-#endif
-#endif
-#if defined(HASH_BLOCK_DATA_ORDER)
HASH_BLOCK_DATA_ORDER (c,data,1);
-#endif
}
int HASH_FINAL (unsigned char *md, HASH_CTX *c)
{
- register HASH_LONG *p;
- register unsigned long l;
- register int i,j;
- static const unsigned char end[4]={0x80,0x00,0x00,0x00};
- const unsigned char *cp=end;
-
- /* c->num should definitly have room for at least one more byte. */
- p=c->data;
- i=c->num>>2;
- j=c->num&0x03;
-
-#if 0
- /* purify often complains about the following line as an
- * Uninitialized Memory Read. While this can be true, the
- * following p_c2l macro will reset l when that case is true.
- * This is because j&0x03 contains the number of 'valid' bytes
- * already in p[i]. If and only if j&0x03 == 0, the UMR will
- * occur but this is also the only time p_c2l will do
- * l= *(cp++) instead of l|= *(cp++)
- * Many thanks to Alex Tang <altitude@cic.net> for pickup this
- * 'potential bug' */
-#ifdef PURIFY
- if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
-#endif
- l=p[i];
-#else
- l = (j==0) ? 0 : p[i];
-#endif
- HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
+ unsigned char *p = (unsigned char *)c->data;
+ size_t n = c->num;
- if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
+ p[n] = 0x80; /* there is always room for one */
+ n++;
+
+ if (n > (HASH_CBLOCK-8))
{
- if (i<HASH_LBLOCK) p[i]=0;
- HASH_BLOCK_HOST_ORDER (c,p,1);
- i=0;
+ HASH_BLOCK_DATA_ORDER (c,p,1);
+ memset (p,0,HASH_CBLOCK);
}
- for (; i<(HASH_LBLOCK-2); i++)
- p[i]=0;
+ p += HASH_CBLOCK-8;
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
- p[HASH_LBLOCK-2]=c->Nh;
- p[HASH_LBLOCK-1]=c->Nl;
+ (void)HOST_l2c(c->Nh,p);
+ (void)HOST_l2c(c->Nl,p);
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
- p[HASH_LBLOCK-2]=c->Nl;
- p[HASH_LBLOCK-1]=c->Nh;
+ (void)HOST_l2c(c->Nl,p);
+ (void)HOST_l2c(c->Nh,p);
#endif
- HASH_BLOCK_HOST_ORDER (c,p,1);
+ p -= HASH_CBLOCK;
+ HASH_BLOCK_DATA_ORDER (c,p,1);
+ c->num=0;
+ memset (p,0,HASH_CBLOCK);
#ifndef HASH_MAKE_STRING
#error "HASH_MAKE_STRING must be defined!"
HASH_MAKE_STRING(c,md);
#endif
- c->num=0;
- /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
- * but I'm not worried :-)
- OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
- */
return 1;
}
int MD4_Init(MD4_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->A=INIT_DATA_A;
c->B=INIT_DATA_B;
c->C=INIT_DATA_C;
c->D=INIT_DATA_D;
- c->Nl=0;
- c->Nh=0;
- c->num=0;
return 1;
}
-#ifndef md4_block_host_order
-void md4_block_host_order (MD4_CTX *c, const void *data, size_t num)
- {
- const MD4_LONG *X=data;
- register unsigned MD32_REG_T A,B,C,D;
-
- A=c->A;
- B=c->B;
- C=c->C;
- D=c->D;
-
- for (;num--;X+=HASH_LBLOCK)
- {
- /* Round 0 */
- R0(A,B,C,D,X[ 0], 3,0);
- R0(D,A,B,C,X[ 1], 7,0);
- R0(C,D,A,B,X[ 2],11,0);
- R0(B,C,D,A,X[ 3],19,0);
- R0(A,B,C,D,X[ 4], 3,0);
- R0(D,A,B,C,X[ 5], 7,0);
- R0(C,D,A,B,X[ 6],11,0);
- R0(B,C,D,A,X[ 7],19,0);
- R0(A,B,C,D,X[ 8], 3,0);
- R0(D,A,B,C,X[ 9], 7,0);
- R0(C,D,A,B,X[10],11,0);
- R0(B,C,D,A,X[11],19,0);
- R0(A,B,C,D,X[12], 3,0);
- R0(D,A,B,C,X[13], 7,0);
- R0(C,D,A,B,X[14],11,0);
- R0(B,C,D,A,X[15],19,0);
- /* Round 1 */
- R1(A,B,C,D,X[ 0], 3,0x5A827999L);
- R1(D,A,B,C,X[ 4], 5,0x5A827999L);
- R1(C,D,A,B,X[ 8], 9,0x5A827999L);
- R1(B,C,D,A,X[12],13,0x5A827999L);
- R1(A,B,C,D,X[ 1], 3,0x5A827999L);
- R1(D,A,B,C,X[ 5], 5,0x5A827999L);
- R1(C,D,A,B,X[ 9], 9,0x5A827999L);
- R1(B,C,D,A,X[13],13,0x5A827999L);
- R1(A,B,C,D,X[ 2], 3,0x5A827999L);
- R1(D,A,B,C,X[ 6], 5,0x5A827999L);
- R1(C,D,A,B,X[10], 9,0x5A827999L);
- R1(B,C,D,A,X[14],13,0x5A827999L);
- R1(A,B,C,D,X[ 3], 3,0x5A827999L);
- R1(D,A,B,C,X[ 7], 5,0x5A827999L);
- R1(C,D,A,B,X[11], 9,0x5A827999L);
- R1(B,C,D,A,X[15],13,0x5A827999L);
- /* Round 2 */
- R2(A,B,C,D,X[ 0], 3,0x6ED9EBA1);
- R2(D,A,B,C,X[ 8], 9,0x6ED9EBA1);
- R2(C,D,A,B,X[ 4],11,0x6ED9EBA1);
- R2(B,C,D,A,X[12],15,0x6ED9EBA1);
- R2(A,B,C,D,X[ 2], 3,0x6ED9EBA1);
- R2(D,A,B,C,X[10], 9,0x6ED9EBA1);
- R2(C,D,A,B,X[ 6],11,0x6ED9EBA1);
- R2(B,C,D,A,X[14],15,0x6ED9EBA1);
- R2(A,B,C,D,X[ 1], 3,0x6ED9EBA1);
- R2(D,A,B,C,X[ 9], 9,0x6ED9EBA1);
- R2(C,D,A,B,X[ 5],11,0x6ED9EBA1);
- R2(B,C,D,A,X[13],15,0x6ED9EBA1);
- R2(A,B,C,D,X[ 3], 3,0x6ED9EBA1);
- R2(D,A,B,C,X[11], 9,0x6ED9EBA1);
- R2(C,D,A,B,X[ 7],11,0x6ED9EBA1);
- R2(B,C,D,A,X[15],15,0x6ED9EBA1);
-
- A = c->A += A;
- B = c->B += B;
- C = c->C += C;
- D = c->D += D;
- }
- }
-#endif
-
#ifndef md4_block_data_order
#ifdef X
#undef X
}
}
#endif
-
-#ifdef undef
-int printit(unsigned long *l)
- {
- int i,ii;
-
- for (i=0; i<2; i++)
- {
- for (ii=0; ii<8; ii++)
- {
- fprintf(stderr,"%08lx ",l[i*8+ii]);
- }
- fprintf(stderr,"\n");
- }
- }
-#endif
#define MD4_LONG_LOG2 2 /* default to 32 bits */
#endif
-void md4_block_host_order (MD4_CTX *c, const void *p,size_t num);
void md4_block_data_order (MD4_CTX *c, const void *p,size_t num);
-#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) || \
- defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
-# if !defined(B_ENDIAN)
-/*
- * *_block_host_order is expected to handle aligned data while
- * *_block_data_order - unaligned. As algorithm and host (x86)
- * are in this case of the same "endianness" these two are
- * otherwise indistinguishable. But normally you don't want to
- * call the same function because unaligned access in places
- * where alignment is expected is usually a "Bad Thing". Indeed,
- * on RISCs you get punished with BUS ERROR signal or *severe*
- * performance degradation. Intel CPUs are in turn perfectly
- * capable of loading unaligned data without such drastic side
- * effect. Yes, they say it's slower than aligned load, but no
- * exception is generated and therefore performance degradation
- * is *incomparable* with RISCs. What we should weight here is
- * costs of unaligned access against costs of aligning data.
- * According to my measurements allowing unaligned access results
- * in ~9% performance improvement on Pentium II operating at
- * 266MHz. I won't be surprised if the difference will be higher
- * on faster systems:-)
- *
- * <appro@fy.chalmers.se>
- */
-# define md4_block_data_order md4_block_host_order
-# endif
-#endif
-
#define DATA_ORDER_IS_LITTLE_ENDIAN
#define HASH_LONG MD4_LONG
-#define HASH_LONG_LOG2 MD4_LONG_LOG2
#define HASH_CTX MD4_CTX
#define HASH_CBLOCK MD4_CBLOCK
-#define HASH_LBLOCK MD4_LBLOCK
#define HASH_UPDATE MD4_Update
#define HASH_TRANSFORM MD4_Transform
#define HASH_FINAL MD4_Final
ll=(c)->C; HOST_l2c(ll,(s)); \
ll=(c)->D; HOST_l2c(ll,(s)); \
} while (0)
-#define HASH_BLOCK_HOST_ORDER md4_block_host_order
-#if !defined(L_ENDIAN) || defined(md4_block_data_order)
#define HASH_BLOCK_DATA_ORDER md4_block_data_order
-/*
- * Little-endians (Intel and Alpha) feel better without this.
- * It looks like memcpy does better job than generic
- * md4_block_data_order on copying-n-aligning input data.
- * But frankly speaking I didn't expect such result on Alpha.
- * On the other hand I've got this with egcs-1.0.2 and if
- * program is compiled with another (better?) compiler it
- * might turn out other way around.
- *
- * <appro@fy.chalmers.se>
- */
-#endif
#include "md32_common.h"
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9, # R3
);
-&md5_block("md5_block_asm_host_order");
+&md5_block("md5_block_asm_data_order");
&asm_finish();
sub Np
.text
.align 16
-.globl md5_block_asm_host_order
-.type md5_block_asm_host_order,\@function,3
-md5_block_asm_host_order:
+.globl md5_block_asm_data_order
+.type md5_block_asm_data_order,\@function,3
+md5_block_asm_data_order:
push %rbp
push %rbx
push %r12
pop %rbx
pop %rbp
ret
-.size md5_block_asm_host_order,.-md5_block_asm_host_order
+.size md5_block_asm_data_order,.-md5_block_asm_data_order
EOF
print $code;
int MD5_Init(MD5_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->A=INIT_DATA_A;
c->B=INIT_DATA_B;
c->C=INIT_DATA_C;
c->D=INIT_DATA_D;
- c->Nl=0;
- c->Nh=0;
- c->num=0;
return 1;
}
-#ifndef md5_block_host_order
-void md5_block_host_order (MD5_CTX *c, const void *data, size_t num)
- {
- const MD5_LONG *X=data;
- register unsigned MD32_REG_T A,B,C,D;
-
- A=c->A;
- B=c->B;
- C=c->C;
- D=c->D;
-
- for (;num--;X+=HASH_LBLOCK)
- {
- /* Round 0 */
- R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
- R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
- R0(C,D,A,B,X[ 2],17,0x242070dbL);
- R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
- R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
- R0(D,A,B,C,X[ 5],12,0x4787c62aL);
- R0(C,D,A,B,X[ 6],17,0xa8304613L);
- R0(B,C,D,A,X[ 7],22,0xfd469501L);
- R0(A,B,C,D,X[ 8], 7,0x698098d8L);
- R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
- R0(C,D,A,B,X[10],17,0xffff5bb1L);
- R0(B,C,D,A,X[11],22,0x895cd7beL);
- R0(A,B,C,D,X[12], 7,0x6b901122L);
- R0(D,A,B,C,X[13],12,0xfd987193L);
- R0(C,D,A,B,X[14],17,0xa679438eL);
- R0(B,C,D,A,X[15],22,0x49b40821L);
- /* Round 1 */
- R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
- R1(D,A,B,C,X[ 6], 9,0xc040b340L);
- R1(C,D,A,B,X[11],14,0x265e5a51L);
- R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
- R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
- R1(D,A,B,C,X[10], 9,0x02441453L);
- R1(C,D,A,B,X[15],14,0xd8a1e681L);
- R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
- R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
- R1(D,A,B,C,X[14], 9,0xc33707d6L);
- R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
- R1(B,C,D,A,X[ 8],20,0x455a14edL);
- R1(A,B,C,D,X[13], 5,0xa9e3e905L);
- R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
- R1(C,D,A,B,X[ 7],14,0x676f02d9L);
- R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
- /* Round 2 */
- R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
- R2(D,A,B,C,X[ 8],11,0x8771f681L);
- R2(C,D,A,B,X[11],16,0x6d9d6122L);
- R2(B,C,D,A,X[14],23,0xfde5380cL);
- R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
- R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
- R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
- R2(B,C,D,A,X[10],23,0xbebfbc70L);
- R2(A,B,C,D,X[13], 4,0x289b7ec6L);
- R2(D,A,B,C,X[ 0],11,0xeaa127faL);
- R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
- R2(B,C,D,A,X[ 6],23,0x04881d05L);
- R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
- R2(D,A,B,C,X[12],11,0xe6db99e5L);
- R2(C,D,A,B,X[15],16,0x1fa27cf8L);
- R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
- /* Round 3 */
- R3(A,B,C,D,X[ 0], 6,0xf4292244L);
- R3(D,A,B,C,X[ 7],10,0x432aff97L);
- R3(C,D,A,B,X[14],15,0xab9423a7L);
- R3(B,C,D,A,X[ 5],21,0xfc93a039L);
- R3(A,B,C,D,X[12], 6,0x655b59c3L);
- R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
- R3(C,D,A,B,X[10],15,0xffeff47dL);
- R3(B,C,D,A,X[ 1],21,0x85845dd1L);
- R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
- R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
- R3(C,D,A,B,X[ 6],15,0xa3014314L);
- R3(B,C,D,A,X[13],21,0x4e0811a1L);
- R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
- R3(D,A,B,C,X[11],10,0xbd3af235L);
- R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
- R3(B,C,D,A,X[ 9],21,0xeb86d391L);
-
- A = c->A += A;
- B = c->B += B;
- C = c->C += C;
- D = c->D += D;
- }
- }
-#endif
-
#ifndef md5_block_data_order
#ifdef X
#undef X
}
}
#endif
-
-#ifdef undef
-int printit(unsigned long *l)
- {
- int i,ii;
-
- for (i=0; i<2; i++)
- {
- for (ii=0; ii<8; ii++)
- {
- fprintf(stderr,"%08lx ",l[i*8+ii]);
- }
- fprintf(stderr,"\n");
- }
- }
-#endif
#ifdef MD5_ASM
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
-# define md5_block_host_order md5_block_asm_host_order
-# elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
- void md5_block_asm_data_order_aligned (MD5_CTX *c, const MD5_LONG *p,size_t num);
-# define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
+# define md5_block_data_order md5_block_asm_data_order
# elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
-# define md5_block_host_order md5_block_asm_host_order
# define md5_block_data_order md5_block_asm_data_order
# endif
#endif
-void md5_block_host_order (MD5_CTX *c, const void *p,size_t num);
void md5_block_data_order (MD5_CTX *c, const void *p,size_t num);
-#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) || \
- defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
-# if !defined(B_ENDIAN)
-/*
- * *_block_host_order is expected to handle aligned data while
- * *_block_data_order - unaligned. As algorithm and host (x86)
- * are in this case of the same "endianness" these two are
- * otherwise indistinguishable. But normally you don't want to
- * call the same function because unaligned access in places
- * where alignment is expected is usually a "Bad Thing". Indeed,
- * on RISCs you get punished with BUS ERROR signal or *severe*
- * performance degradation. Intel CPUs are in turn perfectly
- * capable of loading unaligned data without such drastic side
- * effect. Yes, they say it's slower than aligned load, but no
- * exception is generated and therefore performance degradation
- * is *incomparable* with RISCs. What we should weight here is
- * costs of unaligned access against costs of aligning data.
- * According to my measurements allowing unaligned access results
- * in ~9% performance improvement on Pentium II operating at
- * 266MHz. I won't be surprised if the difference will be higher
- * on faster systems:-)
- *
- * <appro@fy.chalmers.se>
- */
-# define md5_block_data_order md5_block_host_order
-# endif
-#endif
-
#define DATA_ORDER_IS_LITTLE_ENDIAN
#define HASH_LONG MD5_LONG
-#define HASH_LONG_LOG2 MD5_LONG_LOG2
#define HASH_CTX MD5_CTX
#define HASH_CBLOCK MD5_CBLOCK
-#define HASH_LBLOCK MD5_LBLOCK
#define HASH_UPDATE MD5_Update
#define HASH_TRANSFORM MD5_Transform
#define HASH_FINAL MD5_Final
ll=(c)->C; HOST_l2c(ll,(s)); \
ll=(c)->D; HOST_l2c(ll,(s)); \
} while (0)
-#define HASH_BLOCK_HOST_ORDER md5_block_host_order
-#if !defined(L_ENDIAN) || defined(md5_block_data_order)
#define HASH_BLOCK_DATA_ORDER md5_block_data_order
-/*
- * Little-endians (Intel and Alpha) feel better without this.
- * It looks like memcpy does better job than generic
- * md5_block_data_order on copying-n-aligning input data.
- * But frankly speaking I didn't expect such result on Alpha.
- * On the other hand I've got this with egcs-1.0.2 and if
- * program is compiled with another (better?) compiler it
- * might turn out other way around.
- *
- * <appro@fy.chalmers.se>
- */
-#endif
#include "md32_common.h"
#!/usr/local/bin/perl
# Normal is the
-# ripemd160_block_asm_host_order(RIPEMD160_CTX *c, ULONG *X,int blocks);
+# ripemd160_block_asm_data_order(RIPEMD160_CTX *c, ULONG *X,int blocks);
$normal=0;
8, 5,12, 9,12, 5,14, 6, 8,13, 6, 5,15,13,11,11,
);
-&ripemd160_block("ripemd160_block_asm_host_order");
+&ripemd160_block("ripemd160_block_asm_data_order");
&asm_finish();
sub Xv
int RIPEMD160_Init(RIPEMD160_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->A=RIPEMD160_A;
c->B=RIPEMD160_B;
c->C=RIPEMD160_C;
c->D=RIPEMD160_D;
c->E=RIPEMD160_E;
- c->Nl=0;
- c->Nh=0;
- c->num=0;
return 1;
}
-#ifndef ripemd160_block_host_order
-#ifdef X
-#undef X
-#endif
-#define X(i) XX[i]
-void ripemd160_block_host_order (RIPEMD160_CTX *ctx, const void *p, size_t num)
- {
- const RIPEMD160_LONG *XX=p;
- register unsigned MD32_REG_T A,B,C,D,E;
- register unsigned MD32_REG_T a,b,c,d,e;
-
- for (;num--;XX+=HASH_LBLOCK)
- {
-
- A=ctx->A; B=ctx->B; C=ctx->C; D=ctx->D; E=ctx->E;
-
- RIP1(A,B,C,D,E,WL00,SL00);
- RIP1(E,A,B,C,D,WL01,SL01);
- RIP1(D,E,A,B,C,WL02,SL02);
- RIP1(C,D,E,A,B,WL03,SL03);
- RIP1(B,C,D,E,A,WL04,SL04);
- RIP1(A,B,C,D,E,WL05,SL05);
- RIP1(E,A,B,C,D,WL06,SL06);
- RIP1(D,E,A,B,C,WL07,SL07);
- RIP1(C,D,E,A,B,WL08,SL08);
- RIP1(B,C,D,E,A,WL09,SL09);
- RIP1(A,B,C,D,E,WL10,SL10);
- RIP1(E,A,B,C,D,WL11,SL11);
- RIP1(D,E,A,B,C,WL12,SL12);
- RIP1(C,D,E,A,B,WL13,SL13);
- RIP1(B,C,D,E,A,WL14,SL14);
- RIP1(A,B,C,D,E,WL15,SL15);
-
- RIP2(E,A,B,C,D,WL16,SL16,KL1);
- RIP2(D,E,A,B,C,WL17,SL17,KL1);
- RIP2(C,D,E,A,B,WL18,SL18,KL1);
- RIP2(B,C,D,E,A,WL19,SL19,KL1);
- RIP2(A,B,C,D,E,WL20,SL20,KL1);
- RIP2(E,A,B,C,D,WL21,SL21,KL1);
- RIP2(D,E,A,B,C,WL22,SL22,KL1);
- RIP2(C,D,E,A,B,WL23,SL23,KL1);
- RIP2(B,C,D,E,A,WL24,SL24,KL1);
- RIP2(A,B,C,D,E,WL25,SL25,KL1);
- RIP2(E,A,B,C,D,WL26,SL26,KL1);
- RIP2(D,E,A,B,C,WL27,SL27,KL1);
- RIP2(C,D,E,A,B,WL28,SL28,KL1);
- RIP2(B,C,D,E,A,WL29,SL29,KL1);
- RIP2(A,B,C,D,E,WL30,SL30,KL1);
- RIP2(E,A,B,C,D,WL31,SL31,KL1);
-
- RIP3(D,E,A,B,C,WL32,SL32,KL2);
- RIP3(C,D,E,A,B,WL33,SL33,KL2);
- RIP3(B,C,D,E,A,WL34,SL34,KL2);
- RIP3(A,B,C,D,E,WL35,SL35,KL2);
- RIP3(E,A,B,C,D,WL36,SL36,KL2);
- RIP3(D,E,A,B,C,WL37,SL37,KL2);
- RIP3(C,D,E,A,B,WL38,SL38,KL2);
- RIP3(B,C,D,E,A,WL39,SL39,KL2);
- RIP3(A,B,C,D,E,WL40,SL40,KL2);
- RIP3(E,A,B,C,D,WL41,SL41,KL2);
- RIP3(D,E,A,B,C,WL42,SL42,KL2);
- RIP3(C,D,E,A,B,WL43,SL43,KL2);
- RIP3(B,C,D,E,A,WL44,SL44,KL2);
- RIP3(A,B,C,D,E,WL45,SL45,KL2);
- RIP3(E,A,B,C,D,WL46,SL46,KL2);
- RIP3(D,E,A,B,C,WL47,SL47,KL2);
-
- RIP4(C,D,E,A,B,WL48,SL48,KL3);
- RIP4(B,C,D,E,A,WL49,SL49,KL3);
- RIP4(A,B,C,D,E,WL50,SL50,KL3);
- RIP4(E,A,B,C,D,WL51,SL51,KL3);
- RIP4(D,E,A,B,C,WL52,SL52,KL3);
- RIP4(C,D,E,A,B,WL53,SL53,KL3);
- RIP4(B,C,D,E,A,WL54,SL54,KL3);
- RIP4(A,B,C,D,E,WL55,SL55,KL3);
- RIP4(E,A,B,C,D,WL56,SL56,KL3);
- RIP4(D,E,A,B,C,WL57,SL57,KL3);
- RIP4(C,D,E,A,B,WL58,SL58,KL3);
- RIP4(B,C,D,E,A,WL59,SL59,KL3);
- RIP4(A,B,C,D,E,WL60,SL60,KL3);
- RIP4(E,A,B,C,D,WL61,SL61,KL3);
- RIP4(D,E,A,B,C,WL62,SL62,KL3);
- RIP4(C,D,E,A,B,WL63,SL63,KL3);
-
- RIP5(B,C,D,E,A,WL64,SL64,KL4);
- RIP5(A,B,C,D,E,WL65,SL65,KL4);
- RIP5(E,A,B,C,D,WL66,SL66,KL4);
- RIP5(D,E,A,B,C,WL67,SL67,KL4);
- RIP5(C,D,E,A,B,WL68,SL68,KL4);
- RIP5(B,C,D,E,A,WL69,SL69,KL4);
- RIP5(A,B,C,D,E,WL70,SL70,KL4);
- RIP5(E,A,B,C,D,WL71,SL71,KL4);
- RIP5(D,E,A,B,C,WL72,SL72,KL4);
- RIP5(C,D,E,A,B,WL73,SL73,KL4);
- RIP5(B,C,D,E,A,WL74,SL74,KL4);
- RIP5(A,B,C,D,E,WL75,SL75,KL4);
- RIP5(E,A,B,C,D,WL76,SL76,KL4);
- RIP5(D,E,A,B,C,WL77,SL77,KL4);
- RIP5(C,D,E,A,B,WL78,SL78,KL4);
- RIP5(B,C,D,E,A,WL79,SL79,KL4);
-
- a=A; b=B; c=C; d=D; e=E;
- /* Do other half */
- A=ctx->A; B=ctx->B; C=ctx->C; D=ctx->D; E=ctx->E;
-
- RIP5(A,B,C,D,E,WR00,SR00,KR0);
- RIP5(E,A,B,C,D,WR01,SR01,KR0);
- RIP5(D,E,A,B,C,WR02,SR02,KR0);
- RIP5(C,D,E,A,B,WR03,SR03,KR0);
- RIP5(B,C,D,E,A,WR04,SR04,KR0);
- RIP5(A,B,C,D,E,WR05,SR05,KR0);
- RIP5(E,A,B,C,D,WR06,SR06,KR0);
- RIP5(D,E,A,B,C,WR07,SR07,KR0);
- RIP5(C,D,E,A,B,WR08,SR08,KR0);
- RIP5(B,C,D,E,A,WR09,SR09,KR0);
- RIP5(A,B,C,D,E,WR10,SR10,KR0);
- RIP5(E,A,B,C,D,WR11,SR11,KR0);
- RIP5(D,E,A,B,C,WR12,SR12,KR0);
- RIP5(C,D,E,A,B,WR13,SR13,KR0);
- RIP5(B,C,D,E,A,WR14,SR14,KR0);
- RIP5(A,B,C,D,E,WR15,SR15,KR0);
-
- RIP4(E,A,B,C,D,WR16,SR16,KR1);
- RIP4(D,E,A,B,C,WR17,SR17,KR1);
- RIP4(C,D,E,A,B,WR18,SR18,KR1);
- RIP4(B,C,D,E,A,WR19,SR19,KR1);
- RIP4(A,B,C,D,E,WR20,SR20,KR1);
- RIP4(E,A,B,C,D,WR21,SR21,KR1);
- RIP4(D,E,A,B,C,WR22,SR22,KR1);
- RIP4(C,D,E,A,B,WR23,SR23,KR1);
- RIP4(B,C,D,E,A,WR24,SR24,KR1);
- RIP4(A,B,C,D,E,WR25,SR25,KR1);
- RIP4(E,A,B,C,D,WR26,SR26,KR1);
- RIP4(D,E,A,B,C,WR27,SR27,KR1);
- RIP4(C,D,E,A,B,WR28,SR28,KR1);
- RIP4(B,C,D,E,A,WR29,SR29,KR1);
- RIP4(A,B,C,D,E,WR30,SR30,KR1);
- RIP4(E,A,B,C,D,WR31,SR31,KR1);
-
- RIP3(D,E,A,B,C,WR32,SR32,KR2);
- RIP3(C,D,E,A,B,WR33,SR33,KR2);
- RIP3(B,C,D,E,A,WR34,SR34,KR2);
- RIP3(A,B,C,D,E,WR35,SR35,KR2);
- RIP3(E,A,B,C,D,WR36,SR36,KR2);
- RIP3(D,E,A,B,C,WR37,SR37,KR2);
- RIP3(C,D,E,A,B,WR38,SR38,KR2);
- RIP3(B,C,D,E,A,WR39,SR39,KR2);
- RIP3(A,B,C,D,E,WR40,SR40,KR2);
- RIP3(E,A,B,C,D,WR41,SR41,KR2);
- RIP3(D,E,A,B,C,WR42,SR42,KR2);
- RIP3(C,D,E,A,B,WR43,SR43,KR2);
- RIP3(B,C,D,E,A,WR44,SR44,KR2);
- RIP3(A,B,C,D,E,WR45,SR45,KR2);
- RIP3(E,A,B,C,D,WR46,SR46,KR2);
- RIP3(D,E,A,B,C,WR47,SR47,KR2);
-
- RIP2(C,D,E,A,B,WR48,SR48,KR3);
- RIP2(B,C,D,E,A,WR49,SR49,KR3);
- RIP2(A,B,C,D,E,WR50,SR50,KR3);
- RIP2(E,A,B,C,D,WR51,SR51,KR3);
- RIP2(D,E,A,B,C,WR52,SR52,KR3);
- RIP2(C,D,E,A,B,WR53,SR53,KR3);
- RIP2(B,C,D,E,A,WR54,SR54,KR3);
- RIP2(A,B,C,D,E,WR55,SR55,KR3);
- RIP2(E,A,B,C,D,WR56,SR56,KR3);
- RIP2(D,E,A,B,C,WR57,SR57,KR3);
- RIP2(C,D,E,A,B,WR58,SR58,KR3);
- RIP2(B,C,D,E,A,WR59,SR59,KR3);
- RIP2(A,B,C,D,E,WR60,SR60,KR3);
- RIP2(E,A,B,C,D,WR61,SR61,KR3);
- RIP2(D,E,A,B,C,WR62,SR62,KR3);
- RIP2(C,D,E,A,B,WR63,SR63,KR3);
-
- RIP1(B,C,D,E,A,WR64,SR64);
- RIP1(A,B,C,D,E,WR65,SR65);
- RIP1(E,A,B,C,D,WR66,SR66);
- RIP1(D,E,A,B,C,WR67,SR67);
- RIP1(C,D,E,A,B,WR68,SR68);
- RIP1(B,C,D,E,A,WR69,SR69);
- RIP1(A,B,C,D,E,WR70,SR70);
- RIP1(E,A,B,C,D,WR71,SR71);
- RIP1(D,E,A,B,C,WR72,SR72);
- RIP1(C,D,E,A,B,WR73,SR73);
- RIP1(B,C,D,E,A,WR74,SR74);
- RIP1(A,B,C,D,E,WR75,SR75);
- RIP1(E,A,B,C,D,WR76,SR76);
- RIP1(D,E,A,B,C,WR77,SR77);
- RIP1(C,D,E,A,B,WR78,SR78);
- RIP1(B,C,D,E,A,WR79,SR79);
-
- D =ctx->B+c+D;
- ctx->B=ctx->C+d+E;
- ctx->C=ctx->D+e+A;
- ctx->D=ctx->E+a+B;
- ctx->E=ctx->A+b+C;
- ctx->A=D;
-
- }
- }
-#endif
-
#ifndef ripemd160_block_data_order
#ifdef X
#undef X
*/
#ifdef RMD160_ASM
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
-# define ripemd160_block_host_order ripemd160_block_asm_host_order
+# define ripemd160_block_data_order ripemd160_block_asm_data_order
# endif
#endif
-void ripemd160_block_host_order (RIPEMD160_CTX *c, const void *p,size_t num);
void ripemd160_block_data_order (RIPEMD160_CTX *c, const void *p,size_t num);
-#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) || \
- defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
-# if !defined(B_ENDIAN)
-# define ripemd160_block_data_order ripemd160_block_host_order
-# endif
-#endif
-
#define DATA_ORDER_IS_LITTLE_ENDIAN
#define HASH_LONG RIPEMD160_LONG
-#define HASH_LONG_LOG2 RIPEMD160_LONG_LOG2
#define HASH_CTX RIPEMD160_CTX
#define HASH_CBLOCK RIPEMD160_CBLOCK
-#define HASH_LBLOCK RIPEMD160_LBLOCK
#define HASH_UPDATE RIPEMD160_Update
#define HASH_TRANSFORM RIPEMD160_Transform
#define HASH_FINAL RIPEMD160_Final
-#define HASH_BLOCK_HOST_ORDER ripemd160_block_host_order
#define HASH_MAKE_STRING(c,s) do { \
unsigned long ll; \
ll=(c)->A; HOST_l2c(ll,(s)); \
ll=(c)->D; HOST_l2c(ll,(s)); \
ll=(c)->E; HOST_l2c(ll,(s)); \
} while (0)
-#if !defined(L_ENDIAN) || defined(ripemd160_block_data_order)
#define HASH_BLOCK_DATA_ORDER ripemd160_block_data_order
-#endif
#include "md32_common.h"
int SHA224_Init (SHA256_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
- c->Nl=0; c->Nh=0;
- c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
+ c->md_len=SHA224_DIGEST_LENGTH;
return 1;
}
int SHA256_Init (SHA256_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
- c->Nl=0; c->Nh=0;
- c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
+ c->md_len=SHA256_DIGEST_LENGTH;
return 1;
}
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
{ return SHA256_Final (md,c); }
-#ifndef SHA_LONG_LOG2
-#define SHA_LONG_LOG2 2 /* default to 32 bits */
-#endif
-
#define DATA_ORDER_IS_BIG_ENDIAN
#define HASH_LONG SHA_LONG
-#define HASH_LONG_LOG2 SHA_LONG_LOG2
#define HASH_CTX SHA256_CTX
#define HASH_CBLOCK SHA_CBLOCK
-#define HASH_LBLOCK SHA_LBLOCK
/*
* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
* default: case below covers for it. It's not clear however if it's
#define HASH_UPDATE SHA256_Update
#define HASH_TRANSFORM SHA256_Transform
#define HASH_FINAL SHA256_Final
-#define HASH_BLOCK_HOST_ORDER sha256_block_host_order
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
-void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
#include "md32_common.h"
static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
{
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
- SHA_LONG X[16];
+ SHA_LONG X[16],l;
int i;
const unsigned char *data=in;
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
- if (host)
- {
- const SHA_LONG *W=(const SHA_LONG *)data;
-
- for (i=0;i<16;i++)
- {
- T1 = X[i] = W[i];
- T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
- T2 = Sigma0(a) + Maj(a,b,c);
- h = g; g = f; f = e; e = d + T1;
- d = c; c = b; b = a; a = T1 + T2;
- }
-
- data += SHA256_CBLOCK;
- }
- else
+ for (i=0;i<16;i++)
{
- SHA_LONG l;
-
- for (i=0;i<16;i++)
- {
- HOST_c2l(data,l); T1 = X[i] = l;
- T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
- T2 = Sigma0(a) + Maj(a,b,c);
- h = g; g = f; f = e; e = d + T1;
- d = c; c = b; b = a; a = T1 + T2;
- }
+ HOST_c2l(data,l); T1 = X[i] = l;
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
+ T2 = Sigma0(a) + Maj(a,b,c);
+ h = g; g = f; f = e; e = d + T1;
+ d = c; c = b; b = a; a = T1 + T2;
}
for (;i<64;i++)
SHA_LONG X[16];
int i;
const unsigned char *data=in;
+ const union { long one; char little; } is_endian = {1};
while (num--) {
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
- if (host)
+ if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
{
const SHA_LONG *W=(const SHA_LONG *)data;
#endif
#endif /* SHA256_ASM */
-/*
- * Idea is to trade couple of cycles for some space. On IA-32 we save
- * about 4K in "big footprint" case. In "small footprint" case any gain
- * is appreciated:-)
- */
-void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
-{ sha256_block (ctx,in,num,1); }
-
void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
{ sha256_block (ctx,in,num,0); }
#include <openssl/opensslconf.h>
#include <openssl/sha.h>
-#ifndef SHA_LONG_LOG2
-#define SHA_LONG_LOG2 2 /* default to 32 bits */
-#endif
-
#define DATA_ORDER_IS_BIG_ENDIAN
#define HASH_LONG SHA_LONG
-#define HASH_LONG_LOG2 SHA_LONG_LOG2
#define HASH_CTX SHA_CTX
#define HASH_CBLOCK SHA_CBLOCK
-#define HASH_LBLOCK SHA_LBLOCK
#define HASH_MAKE_STRING(c,s) do { \
unsigned long ll; \
ll=(c)->h0; HOST_l2c(ll,(s)); \
# define HASH_TRANSFORM SHA_Transform
# define HASH_FINAL SHA_Final
# define HASH_INIT SHA_Init
-# define HASH_BLOCK_HOST_ORDER sha_block_host_order
# define HASH_BLOCK_DATA_ORDER sha_block_data_order
# define Xupdate(a,ix,ia,ib,ic,id) (ix=(a)=(ia^ib^ic^id))
- void sha_block_host_order (SHA_CTX *c, const void *p,size_t num);
void sha_block_data_order (SHA_CTX *c, const void *p,size_t num);
#elif defined(SHA_1)
# define HASH_TRANSFORM SHA1_Transform
# define HASH_FINAL SHA1_Final
# define HASH_INIT SHA1_Init
-# define HASH_BLOCK_HOST_ORDER sha1_block_host_order
# define HASH_BLOCK_DATA_ORDER sha1_block_data_order
# if defined(__MWERKS__) && defined(__MC68K__)
/* Metrowerks for Motorola fails otherwise:-( <appro@fy.chalmers.se> */
# ifdef SHA1_ASM
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) \
|| defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
-# define sha1_block_host_order sha1_block_asm_host_order
-# define DONT_IMPLEMENT_BLOCK_HOST_ORDER
# define sha1_block_data_order sha1_block_asm_data_order
# define DONT_IMPLEMENT_BLOCK_DATA_ORDER
-# define HASH_BLOCK_DATA_ORDER_ALIGNED sha1_block_asm_data_order
# elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
-# define sha1_block_host_order sha1_block_asm_host_order
-# define DONT_IMPLEMENT_BLOCK_HOST_ORDER
# define sha1_block_data_order sha1_block_asm_data_order
# define DONT_IMPLEMENT_BLOCK_DATA_ORDER
# elif defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
defined(__ppc) || defined(__ppc__) || defined(__powerpc) || \
defined(__ppc64) || defined(__ppc64__) || defined(__powerpc64)
-# define sha1_block_host_order sha1_block_asm_data_order
-# define DONT_IMPLEMENT_BLOCK_HOST_ORDER
# define sha1_block_data_order sha1_block_asm_data_order
# define DONT_IMPLEMENT_BLOCK_DATA_ORDER
# endif
# endif
- void sha1_block_host_order (SHA_CTX *c, const void *p,size_t num);
void sha1_block_data_order (SHA_CTX *c, const void *p,size_t num);
#else
int HASH_INIT (SHA_CTX *c)
{
+ memset (c,0,sizeof(*c));
c->h0=INIT_DATA_h0;
c->h1=INIT_DATA_h1;
c->h2=INIT_DATA_h2;
c->h3=INIT_DATA_h3;
c->h4=INIT_DATA_h4;
- c->Nl=0;
- c->Nh=0;
- c->num=0;
return 1;
}
# define X(i) XX[i]
#endif
-#ifndef DONT_IMPLEMENT_BLOCK_HOST_ORDER
-void HASH_BLOCK_HOST_ORDER (SHA_CTX *c, const void *d, size_t num)
- {
- const SHA_LONG *W=d;
- register unsigned MD32_REG_T A,B,C,D,E,T;
-#ifndef MD32_XARRAY
- unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
- XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
-#else
- SHA_LONG XX[16];
-#endif
-
- A=c->h0;
- B=c->h1;
- C=c->h2;
- D=c->h3;
- E=c->h4;
-
- for (;;)
- {
- BODY_00_15( 0,A,B,C,D,E,T,W[ 0]);
- BODY_00_15( 1,T,A,B,C,D,E,W[ 1]);
- BODY_00_15( 2,E,T,A,B,C,D,W[ 2]);
- BODY_00_15( 3,D,E,T,A,B,C,W[ 3]);
- BODY_00_15( 4,C,D,E,T,A,B,W[ 4]);
- BODY_00_15( 5,B,C,D,E,T,A,W[ 5]);
- BODY_00_15( 6,A,B,C,D,E,T,W[ 6]);
- BODY_00_15( 7,T,A,B,C,D,E,W[ 7]);
- BODY_00_15( 8,E,T,A,B,C,D,W[ 8]);
- BODY_00_15( 9,D,E,T,A,B,C,W[ 9]);
- BODY_00_15(10,C,D,E,T,A,B,W[10]);
- BODY_00_15(11,B,C,D,E,T,A,W[11]);
- BODY_00_15(12,A,B,C,D,E,T,W[12]);
- BODY_00_15(13,T,A,B,C,D,E,W[13]);
- BODY_00_15(14,E,T,A,B,C,D,W[14]);
- BODY_00_15(15,D,E,T,A,B,C,W[15]);
-
- BODY_16_19(16,C,D,E,T,A,B,X( 0),W[ 0],W[ 2],W[ 8],W[13]);
- BODY_16_19(17,B,C,D,E,T,A,X( 1),W[ 1],W[ 3],W[ 9],W[14]);
- BODY_16_19(18,A,B,C,D,E,T,X( 2),W[ 2],W[ 4],W[10],W[15]);
- BODY_16_19(19,T,A,B,C,D,E,X( 3),W[ 3],W[ 5],W[11],X( 0));
-
- BODY_20_31(20,E,T,A,B,C,D,X( 4),W[ 4],W[ 6],W[12],X( 1));
- BODY_20_31(21,D,E,T,A,B,C,X( 5),W[ 5],W[ 7],W[13],X( 2));
- BODY_20_31(22,C,D,E,T,A,B,X( 6),W[ 6],W[ 8],W[14],X( 3));
- BODY_20_31(23,B,C,D,E,T,A,X( 7),W[ 7],W[ 9],W[15],X( 4));
- BODY_20_31(24,A,B,C,D,E,T,X( 8),W[ 8],W[10],X( 0),X( 5));
- BODY_20_31(25,T,A,B,C,D,E,X( 9),W[ 9],W[11],X( 1),X( 6));
- BODY_20_31(26,E,T,A,B,C,D,X(10),W[10],W[12],X( 2),X( 7));
- BODY_20_31(27,D,E,T,A,B,C,X(11),W[11],W[13],X( 3),X( 8));
- BODY_20_31(28,C,D,E,T,A,B,X(12),W[12],W[14],X( 4),X( 9));
- BODY_20_31(29,B,C,D,E,T,A,X(13),W[13],W[15],X( 5),X(10));
- BODY_20_31(30,A,B,C,D,E,T,X(14),W[14],X( 0),X( 6),X(11));
- BODY_20_31(31,T,A,B,C,D,E,X(15),W[15],X( 1),X( 7),X(12));
-
- BODY_32_39(32,E,T,A,B,C,D,X( 0),X( 2),X( 8),X(13));
- BODY_32_39(33,D,E,T,A,B,C,X( 1),X( 3),X( 9),X(14));
- BODY_32_39(34,C,D,E,T,A,B,X( 2),X( 4),X(10),X(15));
- BODY_32_39(35,B,C,D,E,T,A,X( 3),X( 5),X(11),X( 0));
- BODY_32_39(36,A,B,C,D,E,T,X( 4),X( 6),X(12),X( 1));
- BODY_32_39(37,T,A,B,C,D,E,X( 5),X( 7),X(13),X( 2));
- BODY_32_39(38,E,T,A,B,C,D,X( 6),X( 8),X(14),X( 3));
- BODY_32_39(39,D,E,T,A,B,C,X( 7),X( 9),X(15),X( 4));
-
- BODY_40_59(40,C,D,E,T,A,B,X( 8),X(10),X( 0),X( 5));
- BODY_40_59(41,B,C,D,E,T,A,X( 9),X(11),X( 1),X( 6));
- BODY_40_59(42,A,B,C,D,E,T,X(10),X(12),X( 2),X( 7));
- BODY_40_59(43,T,A,B,C,D,E,X(11),X(13),X( 3),X( 8));
- BODY_40_59(44,E,T,A,B,C,D,X(12),X(14),X( 4),X( 9));
- BODY_40_59(45,D,E,T,A,B,C,X(13),X(15),X( 5),X(10));
- BODY_40_59(46,C,D,E,T,A,B,X(14),X( 0),X( 6),X(11));
- BODY_40_59(47,B,C,D,E,T,A,X(15),X( 1),X( 7),X(12));
- BODY_40_59(48,A,B,C,D,E,T,X( 0),X( 2),X( 8),X(13));
- BODY_40_59(49,T,A,B,C,D,E,X( 1),X( 3),X( 9),X(14));
- BODY_40_59(50,E,T,A,B,C,D,X( 2),X( 4),X(10),X(15));
- BODY_40_59(51,D,E,T,A,B,C,X( 3),X( 5),X(11),X( 0));
- BODY_40_59(52,C,D,E,T,A,B,X( 4),X( 6),X(12),X( 1));
- BODY_40_59(53,B,C,D,E,T,A,X( 5),X( 7),X(13),X( 2));
- BODY_40_59(54,A,B,C,D,E,T,X( 6),X( 8),X(14),X( 3));
- BODY_40_59(55,T,A,B,C,D,E,X( 7),X( 9),X(15),X( 4));
- BODY_40_59(56,E,T,A,B,C,D,X( 8),X(10),X( 0),X( 5));
- BODY_40_59(57,D,E,T,A,B,C,X( 9),X(11),X( 1),X( 6));
- BODY_40_59(58,C,D,E,T,A,B,X(10),X(12),X( 2),X( 7));
- BODY_40_59(59,B,C,D,E,T,A,X(11),X(13),X( 3),X( 8));
-
- BODY_60_79(60,A,B,C,D,E,T,X(12),X(14),X( 4),X( 9));
- BODY_60_79(61,T,A,B,C,D,E,X(13),X(15),X( 5),X(10));
- BODY_60_79(62,E,T,A,B,C,D,X(14),X( 0),X( 6),X(11));
- BODY_60_79(63,D,E,T,A,B,C,X(15),X( 1),X( 7),X(12));
- BODY_60_79(64,C,D,E,T,A,B,X( 0),X( 2),X( 8),X(13));
- BODY_60_79(65,B,C,D,E,T,A,X( 1),X( 3),X( 9),X(14));
- BODY_60_79(66,A,B,C,D,E,T,X( 2),X( 4),X(10),X(15));
- BODY_60_79(67,T,A,B,C,D,E,X( 3),X( 5),X(11),X( 0));
- BODY_60_79(68,E,T,A,B,C,D,X( 4),X( 6),X(12),X( 1));
- BODY_60_79(69,D,E,T,A,B,C,X( 5),X( 7),X(13),X( 2));
- BODY_60_79(70,C,D,E,T,A,B,X( 6),X( 8),X(14),X( 3));
- BODY_60_79(71,B,C,D,E,T,A,X( 7),X( 9),X(15),X( 4));
- BODY_60_79(72,A,B,C,D,E,T,X( 8),X(10),X( 0),X( 5));
- BODY_60_79(73,T,A,B,C,D,E,X( 9),X(11),X( 1),X( 6));
- BODY_60_79(74,E,T,A,B,C,D,X(10),X(12),X( 2),X( 7));
- BODY_60_79(75,D,E,T,A,B,C,X(11),X(13),X( 3),X( 8));
- BODY_60_79(76,C,D,E,T,A,B,X(12),X(14),X( 4),X( 9));
- BODY_60_79(77,B,C,D,E,T,A,X(13),X(15),X( 5),X(10));
- BODY_60_79(78,A,B,C,D,E,T,X(14),X( 0),X( 6),X(11));
- BODY_60_79(79,T,A,B,C,D,E,X(15),X( 1),X( 7),X(12));
-
- c->h0=(c->h0+E)&0xffffffffL;
- c->h1=(c->h1+T)&0xffffffffL;
- c->h2=(c->h2+A)&0xffffffffL;
- c->h3=(c->h3+B)&0xffffffffL;
- c->h4=(c->h4+C)&0xffffffffL;
-
- if (--num == 0) break;
-
- A=c->h0;
- B=c->h1;
- C=c->h2;
- D=c->h3;
- E=c->h4;
-
- W+=SHA_LBLOCK;
- }
- }
-#endif
-
#ifndef DONT_IMPLEMENT_BLOCK_DATA_ORDER
void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
{
E=c->h4;
for (;;)
- {
+ {
+ const union { long one; char little; } is_endian = {1};
- HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
- BODY_00_15( 0,A,B,C,D,E,T,X( 0)); HOST_c2l(data,l); X( 2)=l;
- BODY_00_15( 1,T,A,B,C,D,E,X( 1)); HOST_c2l(data,l); X( 3)=l;
- BODY_00_15( 2,E,T,A,B,C,D,X( 2)); HOST_c2l(data,l); X( 4)=l;
- BODY_00_15( 3,D,E,T,A,B,C,X( 3)); HOST_c2l(data,l); X( 5)=l;
- BODY_00_15( 4,C,D,E,T,A,B,X( 4)); HOST_c2l(data,l); X( 6)=l;
- BODY_00_15( 5,B,C,D,E,T,A,X( 5)); HOST_c2l(data,l); X( 7)=l;
- BODY_00_15( 6,A,B,C,D,E,T,X( 6)); HOST_c2l(data,l); X( 8)=l;
- BODY_00_15( 7,T,A,B,C,D,E,X( 7)); HOST_c2l(data,l); X( 9)=l;
- BODY_00_15( 8,E,T,A,B,C,D,X( 8)); HOST_c2l(data,l); X(10)=l;
- BODY_00_15( 9,D,E,T,A,B,C,X( 9)); HOST_c2l(data,l); X(11)=l;
- BODY_00_15(10,C,D,E,T,A,B,X(10)); HOST_c2l(data,l); X(12)=l;
- BODY_00_15(11,B,C,D,E,T,A,X(11)); HOST_c2l(data,l); X(13)=l;
- BODY_00_15(12,A,B,C,D,E,T,X(12)); HOST_c2l(data,l); X(14)=l;
- BODY_00_15(13,T,A,B,C,D,E,X(13)); HOST_c2l(data,l); X(15)=l;
- BODY_00_15(14,E,T,A,B,C,D,X(14));
- BODY_00_15(15,D,E,T,A,B,C,X(15));
-
- BODY_16_19(16,C,D,E,T,A,B,X( 0),X( 0),X( 2),X( 8),X(13));
- BODY_16_19(17,B,C,D,E,T,A,X( 1),X( 1),X( 3),X( 9),X(14));
- BODY_16_19(18,A,B,C,D,E,T,X( 2),X( 2),X( 4),X(10),X(15));
- BODY_16_19(19,T,A,B,C,D,E,X( 3),X( 3),X( 5),X(11),X( 0));
-
- BODY_20_31(20,E,T,A,B,C,D,X( 4),X( 4),X( 6),X(12),X( 1));
- BODY_20_31(21,D,E,T,A,B,C,X( 5),X( 5),X( 7),X(13),X( 2));
- BODY_20_31(22,C,D,E,T,A,B,X( 6),X( 6),X( 8),X(14),X( 3));
- BODY_20_31(23,B,C,D,E,T,A,X( 7),X( 7),X( 9),X(15),X( 4));
- BODY_20_31(24,A,B,C,D,E,T,X( 8),X( 8),X(10),X( 0),X( 5));
- BODY_20_31(25,T,A,B,C,D,E,X( 9),X( 9),X(11),X( 1),X( 6));
- BODY_20_31(26,E,T,A,B,C,D,X(10),X(10),X(12),X( 2),X( 7));
- BODY_20_31(27,D,E,T,A,B,C,X(11),X(11),X(13),X( 3),X( 8));
- BODY_20_31(28,C,D,E,T,A,B,X(12),X(12),X(14),X( 4),X( 9));
- BODY_20_31(29,B,C,D,E,T,A,X(13),X(13),X(15),X( 5),X(10));
- BODY_20_31(30,A,B,C,D,E,T,X(14),X(14),X( 0),X( 6),X(11));
- BODY_20_31(31,T,A,B,C,D,E,X(15),X(15),X( 1),X( 7),X(12));
+ if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)p%4)==0)
+ {
+ const SHA_LONG *W=p;
+
+ BODY_00_15( 0,A,B,C,D,E,T,W[ 0]);
+ BODY_00_15( 1,T,A,B,C,D,E,W[ 1]);
+ BODY_00_15( 2,E,T,A,B,C,D,W[ 2]);
+ BODY_00_15( 3,D,E,T,A,B,C,W[ 3]);
+ BODY_00_15( 4,C,D,E,T,A,B,W[ 4]);
+ BODY_00_15( 5,B,C,D,E,T,A,W[ 5]);
+ BODY_00_15( 6,A,B,C,D,E,T,W[ 6]);
+ BODY_00_15( 7,T,A,B,C,D,E,W[ 7]);
+ BODY_00_15( 8,E,T,A,B,C,D,W[ 8]);
+ BODY_00_15( 9,D,E,T,A,B,C,W[ 9]);
+ BODY_00_15(10,C,D,E,T,A,B,W[10]);
+ BODY_00_15(11,B,C,D,E,T,A,W[11]);
+ BODY_00_15(12,A,B,C,D,E,T,W[12]);
+ BODY_00_15(13,T,A,B,C,D,E,W[13]);
+ BODY_00_15(14,E,T,A,B,C,D,W[14]);
+ BODY_00_15(15,D,E,T,A,B,C,W[15]);
+
+ BODY_16_19(16,C,D,E,T,A,B,X( 0),W[ 0],W[ 2],W[ 8],W[13]);
+ BODY_16_19(17,B,C,D,E,T,A,X( 1),W[ 1],W[ 3],W[ 9],W[14]);
+ BODY_16_19(18,A,B,C,D,E,T,X( 2),W[ 2],W[ 4],W[10],W[15]);
+ BODY_16_19(19,T,A,B,C,D,E,X( 3),W[ 3],W[ 5],W[11],X( 0));
+
+ BODY_20_31(20,E,T,A,B,C,D,X( 4),W[ 4],W[ 6],W[12],X( 1));
+ BODY_20_31(21,D,E,T,A,B,C,X( 5),W[ 5],W[ 7],W[13],X( 2));
+ BODY_20_31(22,C,D,E,T,A,B,X( 6),W[ 6],W[ 8],W[14],X( 3));
+ BODY_20_31(23,B,C,D,E,T,A,X( 7),W[ 7],W[ 9],W[15],X( 4));
+ BODY_20_31(24,A,B,C,D,E,T,X( 8),W[ 8],W[10],X( 0),X( 5));
+ BODY_20_31(25,T,A,B,C,D,E,X( 9),W[ 9],W[11],X( 1),X( 6));
+ BODY_20_31(26,E,T,A,B,C,D,X(10),W[10],W[12],X( 2),X( 7));
+ BODY_20_31(27,D,E,T,A,B,C,X(11),W[11],W[13],X( 3),X( 8));
+ BODY_20_31(28,C,D,E,T,A,B,X(12),W[12],W[14],X( 4),X( 9));
+ BODY_20_31(29,B,C,D,E,T,A,X(13),W[13],W[15],X( 5),X(10));
+ BODY_20_31(30,A,B,C,D,E,T,X(14),W[14],X( 0),X( 6),X(11));
+ BODY_20_31(31,T,A,B,C,D,E,X(15),W[15],X( 1),X( 7),X(12));
+ }
+ else
+ {
+ HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
+ BODY_00_15( 0,A,B,C,D,E,T,X( 0)); HOST_c2l(data,l); X( 2)=l;
+ BODY_00_15( 1,T,A,B,C,D,E,X( 1)); HOST_c2l(data,l); X( 3)=l;
+ BODY_00_15( 2,E,T,A,B,C,D,X( 2)); HOST_c2l(data,l); X( 4)=l;
+ BODY_00_15( 3,D,E,T,A,B,C,X( 3)); HOST_c2l(data,l); X( 5)=l;
+ BODY_00_15( 4,C,D,E,T,A,B,X( 4)); HOST_c2l(data,l); X( 6)=l;
+ BODY_00_15( 5,B,C,D,E,T,A,X( 5)); HOST_c2l(data,l); X( 7)=l;
+ BODY_00_15( 6,A,B,C,D,E,T,X( 6)); HOST_c2l(data,l); X( 8)=l;
+ BODY_00_15( 7,T,A,B,C,D,E,X( 7)); HOST_c2l(data,l); X( 9)=l;
+ BODY_00_15( 8,E,T,A,B,C,D,X( 8)); HOST_c2l(data,l); X(10)=l;
+ BODY_00_15( 9,D,E,T,A,B,C,X( 9)); HOST_c2l(data,l); X(11)=l;
+ BODY_00_15(10,C,D,E,T,A,B,X(10)); HOST_c2l(data,l); X(12)=l;
+ BODY_00_15(11,B,C,D,E,T,A,X(11)); HOST_c2l(data,l); X(13)=l;
+ BODY_00_15(12,A,B,C,D,E,T,X(12)); HOST_c2l(data,l); X(14)=l;
+ BODY_00_15(13,T,A,B,C,D,E,X(13)); HOST_c2l(data,l); X(15)=l;
+ BODY_00_15(14,E,T,A,B,C,D,X(14));
+ BODY_00_15(15,D,E,T,A,B,C,X(15));
+
+ BODY_16_19(16,C,D,E,T,A,B,X( 0),X( 0),X( 2),X( 8),X(13));
+ BODY_16_19(17,B,C,D,E,T,A,X( 1),X( 1),X( 3),X( 9),X(14));
+ BODY_16_19(18,A,B,C,D,E,T,X( 2),X( 2),X( 4),X(10),X(15));
+ BODY_16_19(19,T,A,B,C,D,E,X( 3),X( 3),X( 5),X(11),X( 0));
+
+ BODY_20_31(20,E,T,A,B,C,D,X( 4),X( 4),X( 6),X(12),X( 1));
+ BODY_20_31(21,D,E,T,A,B,C,X( 5),X( 5),X( 7),X(13),X( 2));
+ BODY_20_31(22,C,D,E,T,A,B,X( 6),X( 6),X( 8),X(14),X( 3));
+ BODY_20_31(23,B,C,D,E,T,A,X( 7),X( 7),X( 9),X(15),X( 4));
+ BODY_20_31(24,A,B,C,D,E,T,X( 8),X( 8),X(10),X( 0),X( 5));
+ BODY_20_31(25,T,A,B,C,D,E,X( 9),X( 9),X(11),X( 1),X( 6));
+ BODY_20_31(26,E,T,A,B,C,D,X(10),X(10),X(12),X( 2),X( 7));
+ BODY_20_31(27,D,E,T,A,B,C,X(11),X(11),X(13),X( 3),X( 8));
+ BODY_20_31(28,C,D,E,T,A,B,X(12),X(12),X(14),X( 4),X( 9));
+ BODY_20_31(29,B,C,D,E,T,A,X(13),X(13),X(15),X( 5),X(10));
+ BODY_20_31(30,A,B,C,D,E,T,X(14),X(14),X( 0),X( 6),X(11));
+ BODY_20_31(31,T,A,B,C,D,E,X(15),X(15),X( 1),X( 7),X(12));
+ }
BODY_32_39(32,E,T,A,B,C,D,X( 0),X( 2),X( 8),X(13));
BODY_32_39(33,D,E,T,A,B,C,X( 1),X( 3),X( 9),X(14));
D=c->h3;
E=c->h4;
- }
+ }
}
#endif
E=D, D=C, C=ROTATE(B,30), B=A; \
A=ROTATE(A,5)+T+xa; } while(0)
-#ifndef DONT_IMPLEMENT_BLOCK_HOST_ORDER
-void HASH_BLOCK_HOST_ORDER (SHA_CTX *c, const void *d, size_t num)
- {
- const SHA_LONG *W=d;
- register unsigned MD32_REG_T A,B,C,D,E,T;
- int i;
- SHA_LONG X[16];
-
- A=c->h0;
- B=c->h1;
- C=c->h2;
- D=c->h3;
- E=c->h4;
-
- for (;;)
- {
- for (i=0;i<16;i++)
- { X[i]=W[i]; BODY_00_15(X[i]); }
- for (i=0;i<4;i++)
- { BODY_16_19(X[i], X[i+2], X[i+8], X[(i+13)&15]); }
- for (;i<24;i++)
- { BODY_20_39(X[i&15], X[(i+2)&15], X[(i+8)&15],X[(i+13)&15]); }
- for (i=0;i<20;i++)
- { BODY_40_59(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }
- for (i=4;i<24;i++)
- { BODY_60_79(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }
-
- c->h0=(c->h0+A)&0xffffffffL;
- c->h1=(c->h1+B)&0xffffffffL;
- c->h2=(c->h2+C)&0xffffffffL;
- c->h3=(c->h3+D)&0xffffffffL;
- c->h4=(c->h4+E)&0xffffffffL;
-
- if (--num == 0) break;
-
- A=c->h0;
- B=c->h1;
- C=c->h2;
- D=c->h3;
- E=c->h4;
-
- W+=SHA_LBLOCK;
- }
- }
-#endif
-
#ifndef DONT_IMPLEMENT_BLOCK_DATA_ORDER
void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
{