GCM "jumbo" update:
authorAndy Polyakov <appro@openssl.org>
Thu, 13 May 2010 15:32:43 +0000 (15:32 +0000)
committerAndy Polyakov <appro@openssl.org>
Thu, 13 May 2010 15:32:43 +0000 (15:32 +0000)
- gcm128.c: support for Intel PCLMULQDQ, readability improvements;
- asm/ghash-x86.pl: splitted vanilla, MMX, PCLMULQDQ subroutines;
- asm/ghash-x86_64.pl: add PCLMULQDQ implementations.

crypto/modes/asm/ghash-x86.pl
crypto/modes/asm/ghash-x86_64.pl
crypto/modes/gcm128.c

index 1dbeff09c269468a6cc0cb27eae0355f988f9648..d93b675809fd083ad48f84f86910eca22ebf3e74 100644 (file)
@@ -23,7 +23,7 @@
 # PIII         63 /77          16              24
 # P4           96 /122         30              84(***)
 # Opteron      50 /71          21              30
-# Core2                54 /68          13              18
+# Core2                54 /68          12.5            18
 #
 # (*)  gcc 3.4.x was observed to generate few percent slower code,
 #      which is one of reasons why 2.95.3 results were chosen,
 #      position-independent;
 # (***)        see comment in non-MMX routine for further details;
 #
-# To summarize, it's 2-3 times faster than gcc-generated code. To
+# To summarize, it's >2-3 times faster than gcc-generated code. To
 # anchor it to something else SHA1 assembler processes one byte in
 # 11-13 cycles on contemporary x86 cores.
 
+# May 2010
+#
+# Add PCLMULQDQ version performing at 2.13 cycles per processed byte.
+# The question is how close is it to theoretical limit? The pclmulqdq
+# instruction latency appears to be 14 cycles and there can't be more
+# than 2 of them executing at any given time. This means that single
+# Karatsuba multiplication would take 28 cycles *plus* few cycles for
+# pre- and post-processing. Then multiplication has to be followed by
+# modulo-reduction. Given that aggregated reduction method [see
+# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
+# white paper by Intel] allows you to perform reduction only once in
+# a while we can assume that asymptotic performance can be estimated
+# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
+# and Naggr is the aggregation factor.
+#
+# Before we proceed to this implementation let's have closer look at
+# the best-performing code suggested by Intel in their white paper.
+# By tracing inter-register dependencies Tmod is estimated as ~19
+# cycles and Naggr is 4, resulting in 2.05 cycles per processed byte.
+# As implied, this is quite optimistic estimate, because it does not
+# account for Karatsuba pre- and post-processing, which for a single
+# multiplication is ~5 cycles. Unfortunately Intel does not provide
+# performance data for GHASH alone, only for fused GCM mode. But
+# we can estimate it by subtracting CTR performance result provided
+# in "AES Instruction Set" white paper: 3.54-1.38=2.16 cycles per
+# processed byte or 5% off the estimate. It should be noted though
+# that 3.54 is GCM result for 16KB block size, while 1.38 is CTR for
+# 1KB block size, meaning that real number is likely to be a bit
+# further from estimate.
+#
+# Moving on to the implementation in question. Tmod is estimated as
+# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
+# 2.16. How is it possible that measured performance is better than
+# optimistic theoretical estimate? There is one thing Intel failed
+# to recognize. By fusing GHASH with CTR former's performance is
+# really limited to above (Tmul + Tmod/Naggr) equation. But if GHASH
+# procedure is detached, the modulo-reduction can be interleaved with
+# Naggr-1 multiplications and under ideal conditions even disappear
+# from the equation. So that optimistic theoretical estimate for this
+# implementation is ... 28/16=1.75, and not 2.16. Well, it's probably
+# way too optimistic, at least for such small Naggr. I'd argue that
+# (28+Tproc/Naggr), where Tproc is time required for Karatsuba pre-
+# and post-processing, is more realistic estimate. In this case it
+# gives ... 1.91 cycles per processed byte. Or in other words,
+# depending on how well we can interleave reduction and one of the
+# two multiplications the performance should be betwen 1.91 and 2.16.
+# As already mentioned, this implementation processes one byte [out
+# of 1KB buffer] in 2.13 cycles, while x86_64 counterpart - in 2.07.
+# x86_64 performance is better, because larger register bank allows
+# to interleave reduction and multiplication better.
+#
+# Does it make sense to increase Naggr? To start with it's virtually
+# impossible in 32-bit mode, because of limited register bank
+# capacity. Otherwise improvement has to be weighed agiainst slower
+# setup, as well as code size and complexity increase. As even
+# optimistic estimate doesn't promise 30% performance improvement,
+# there are currently no plans to increase Naggr.
+
 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 push(@INC,"${dir}","${dir}../../perlasm");
 require "x86asm.pl";
 
-&asm_init($ARGV[0],"gcm-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
+&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
 
-&static_label("rem_4bit") if (!$x86only);
+$sse2=0;
+for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
 
-$Zhh  = "ebp";
-$Zhl  = "edx";
-$Zlh  = "ecx";
-$Zll  = "ebx";
+($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
 $inp  = "edi";
 $Htbl = "esi";
-
+\f
 $unroll = 0;   # Affects x86 loop. Folded loop performs ~7% worse
                # than unrolled, which has to be weighted against
-               # 1.7x code size reduction. Well, *overall* 1.7x,
-               # x86-specific code itself shrinks by 2.5x...
-
-sub mmx_loop() {
-# MMX version performs 2.8 times better on P4 (see comment in non-MMX
-# routine for further details), 40% better on Opteron, 50% better
-# on PIII and Core2... In other words effort is considered to be well
-# spent...
-    my $inp = shift;
-    my $rem_4bit = shift;
-    my $cnt = $Zhh;
-    my $nhi = $Zhl;
-    my $nlo = $Zlh;
-    my $rem = $Zll;
-
-    my $Zlo = "mm0";
-    my $Zhi = "mm1";
-    my $tmp = "mm2";
-
-       &xor    ($nlo,$nlo);    # avoid partial register stalls on PIII
-       &mov    ($nhi,$Zll);
-       &mov    (&LB($nlo),&LB($nhi));
-       &mov    ($cnt,14);
-       &shl    (&LB($nlo),4);
-       &and    ($nhi,0xf0);
-       &movq   ($Zlo,&QWP(8,$Htbl,$nlo));
-       &movq   ($Zhi,&QWP(0,$Htbl,$nlo));
-       &movd   ($rem,$Zlo);
-       &jmp    (&label("mmx_loop"));
-
-    &set_label("mmx_loop",16);
-       &psrlq  ($Zlo,4);
-       &and    ($rem,0xf);
-       &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
-       &movq   ($tmp,$Zhi);
-       &psrlq  ($Zhi,4);
-       &mov    (&LB($nlo),&BP(0,$inp,$cnt));
-       &dec    ($cnt);
-       &psllq  ($tmp,60);
-       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
-       &movd   ($rem,$Zlo);
-       &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
-       &mov    ($nhi,$nlo);
-       &pxor   ($Zlo,$tmp);
-       &js     (&label("mmx_break"));
-
-       &shl    (&LB($nlo),4);
-       &and    ($rem,0xf);
-       &psrlq  ($Zlo,4);
-       &and    ($nhi,0xf0);
-       &movq   ($tmp,$Zhi);
-       &psrlq  ($Zhi,4);
-       &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
-       &psllq  ($tmp,60);
-       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
-       &movd   ($rem,$Zlo);
-       &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
-       &pxor   ($Zlo,$tmp);
-       &jmp    (&label("mmx_loop"));
-
-    &set_label("mmx_break",16);
-       &shl    (&LB($nlo),4);
-       &and    ($rem,0xf);
-       &psrlq  ($Zlo,4);
-       &and    ($nhi,0xf0);
-       &movq   ($tmp,$Zhi);
-       &psrlq  ($Zhi,4);
-       &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
-       &psllq  ($tmp,60);
-       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
-       &movd   ($rem,$Zlo);
-       &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
-       &pxor   ($Zlo,$tmp);
-
-       &psrlq  ($Zlo,4);
-       &and    ($rem,0xf);
-       &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
-       &movq   ($tmp,$Zhi);
-       &psrlq  ($Zhi,4);
-       &psllq  ($tmp,60);
-       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
-       &movd   ($rem,$Zlo);
-       &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
-       &mov    ($nhi,$nlo);
-       &pxor   ($Zlo,$tmp);
-
-       &psrlq  ($Zlo,32);      # lower part of Zlo is already there
-       &movd   ($Zhl,$Zhi);
-       &psrlq  ($Zhi,32);
-       &movd   ($Zlh,$Zlo);
-       &movd   ($Zhh,$Zhi);
-
-       &bswap  ($Zll);
-       &bswap  ($Zhl);
-       &bswap  ($Zlh);
-       &bswap  ($Zhh);
-}
+               # 2.5x x86-specific code size reduction.
 
 sub x86_loop {
     my $off = shift;
@@ -245,33 +205,30 @@ if ($unroll) {
     &function_end_B("_x86_gmult_4bit_inner");
 }
 
-&function_begin("gcm_gmult_4bit");
-    if (!$x86only) {
-       &call   (&label("pic_point"));
-       &set_label("pic_point");
-       &blindpop("eax");
-       &picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
-       &bt     (&DWP(0,"ebp"),23);     # check for MMX bit
-       &jnc    (&label("x86"));
-
-       &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
-
-       &mov    ($inp,&wparam(0));      # load Xi
-       &mov    ($Htbl,&wparam(1));     # load Htable
-
-       &movz   ($Zll,&BP(15,$inp));
-
-       &mmx_loop($inp,"eax");
+sub deposit_rem_4bit {
+    my $bias = shift;
 
-       &emms   ();
-       &mov    (&DWP(12,$inp),$Zll);
-       &mov    (&DWP(4,$inp),$Zhl);
-       &mov    (&DWP(8,$inp),$Zlh);
-       &mov    (&DWP(0,$inp),$Zhh);
+       &mov    (&DWP($bias+0, "esp"),0x0000<<16);
+       &mov    (&DWP($bias+4, "esp"),0x1C20<<16);
+       &mov    (&DWP($bias+8, "esp"),0x3840<<16);
+       &mov    (&DWP($bias+12,"esp"),0x2460<<16);
+       &mov    (&DWP($bias+16,"esp"),0x7080<<16);
+       &mov    (&DWP($bias+20,"esp"),0x6CA0<<16);
+       &mov    (&DWP($bias+24,"esp"),0x48C0<<16);
+       &mov    (&DWP($bias+28,"esp"),0x54E0<<16);
+       &mov    (&DWP($bias+32,"esp"),0xE100<<16);
+       &mov    (&DWP($bias+36,"esp"),0xFD20<<16);
+       &mov    (&DWP($bias+40,"esp"),0xD940<<16);
+       &mov    (&DWP($bias+44,"esp"),0xC560<<16);
+       &mov    (&DWP($bias+48,"esp"),0x9180<<16);
+       &mov    (&DWP($bias+52,"esp"),0x8DA0<<16);
+       &mov    (&DWP($bias+56,"esp"),0xA9C0<<16);
+       &mov    (&DWP($bias+60,"esp"),0xB5E0<<16);
+}
+\f
+$suffix = $x86only ? "" : "_x86";
 
-       &function_end_A();
-    &set_label("x86",16);
-    }
+&function_begin("gcm_gmult_4bit".$suffix);
        &stack_push(16+4+1);                    # +1 for stack alignment
        &mov    ($inp,&wparam(0));              # load Xi
        &mov    ($Htbl,&wparam(1));             # load Htable
@@ -302,32 +259,195 @@ if ($unroll) {
        &mov    (&DWP(4,$inp),$Zhl);
        &mov    (&DWP(0,$inp),$Zhh);
        &stack_pop(16+4+1);
-&function_end("gcm_gmult_4bit");
+&function_end("gcm_gmult_4bit".$suffix);
+
+&function_begin("gcm_ghash_4bit".$suffix);
+       &stack_push(16+4+1);                    # +1 for 64-bit alignment
+       &mov    ($Zll,&wparam(0));              # load Xi
+       &mov    ($Htbl,&wparam(1));             # load Htable
+       &mov    ($inp,&wparam(2));              # load in
+       &mov    ("ecx",&wparam(3));             # load len
+       &add    ("ecx",$inp);
+       &mov    (&wparam(3),"ecx");
+
+       &mov    ($Zhh,&DWP(0,$Zll));            # load Xi[16]
+       &mov    ($Zhl,&DWP(4,$Zll));
+       &mov    ($Zlh,&DWP(8,$Zll));
+       &mov    ($Zll,&DWP(12,$Zll));
+
+       &deposit_rem_4bit(16);
+
+    &set_label("x86_outer_loop",16);
+       &xor    ($Zll,&DWP(12,$inp));           # xor with input
+       &xor    ($Zlh,&DWP(8,$inp));
+       &xor    ($Zhl,&DWP(4,$inp));
+       &xor    ($Zhh,&DWP(0,$inp));
+       &mov    (&DWP(12,"esp"),$Zll);          # dump it on stack
+       &mov    (&DWP(8,"esp"),$Zlh);
+       &mov    (&DWP(4,"esp"),$Zhl);
+       &mov    (&DWP(0,"esp"),$Zhh);
+
+       &shr    ($Zll,20);
+       &and    ($Zll,0xf0);
+
+       if ($unroll) {
+               &call   ("_x86_gmult_4bit_inner");
+       } else {
+               &x86_loop(0);
+               &mov    ($inp,&wparam(2));
+       }
+       &lea    ($inp,&DWP(16,$inp));
+       &cmp    ($inp,&wparam(3));
+       &mov    (&wparam(2),$inp)       if (!$unroll);
+       &jb     (&label("x86_outer_loop"));
+
+       &mov    ($inp,&wparam(0));      # load Xi
+       &mov    (&DWP(12,$inp),$Zll);
+       &mov    (&DWP(8,$inp),$Zlh);
+       &mov    (&DWP(4,$inp),$Zhl);
+       &mov    (&DWP(0,$inp),$Zhh);
+       &stack_pop(16+4+1);
+&function_end("gcm_ghash_4bit".$suffix);
+\f
+if (!$x86only) {{{
+
+&static_label("rem_4bit");
+
+sub mmx_loop() {
+# MMX version performs 2.8 times better on P4 (see comment in non-MMX
+# routine for further details), 40% better on Opteron and Core2, 50%
+# better on PIII... In other words effort is considered to be well
+# spent...
+    my $inp = shift;
+    my $rem_4bit = shift;
+    my $cnt = $Zhh;
+    my $nhi = $Zhl;
+    my $nlo = $Zlh;
+    my $rem = $Zll;
+
+    my ($Zlo,$Zhi) = ("mm0","mm1");
+    my $tmp = "mm2";
+
+       &xor    ($nlo,$nlo);    # avoid partial register stalls on PIII
+       &mov    ($nhi,$Zll);
+       &mov    (&LB($nlo),&LB($nhi));
+       &mov    ($cnt,14);
+       &shl    (&LB($nlo),4);
+       &and    ($nhi,0xf0);
+       &movq   ($Zlo,&QWP(8,$Htbl,$nlo));
+       &movq   ($Zhi,&QWP(0,$Htbl,$nlo));
+       &movd   ($rem,$Zlo);
+       &jmp    (&label("mmx_loop"));
+
+    &set_label("mmx_loop",16);
+       &psrlq  ($Zlo,4);
+       &and    ($rem,0xf);
+       &movq   ($tmp,$Zhi);
+       &psrlq  ($Zhi,4);
+       &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
+       &mov    (&LB($nlo),&BP(0,$inp,$cnt));
+       &psllq  ($tmp,60);
+       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+       &dec    ($cnt);
+       &movd   ($rem,$Zlo);
+       &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
+       &mov    ($nhi,$nlo);
+       &pxor   ($Zlo,$tmp);
+       &js     (&label("mmx_break"));
+
+       &shl    (&LB($nlo),4);
+       &and    ($rem,0xf);
+       &psrlq  ($Zlo,4);
+       &and    ($nhi,0xf0);
+       &movq   ($tmp,$Zhi);
+       &psrlq  ($Zhi,4);
+       &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
+       &psllq  ($tmp,60);
+       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+       &movd   ($rem,$Zlo);
+       &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
+       &pxor   ($Zlo,$tmp);
+       &jmp    (&label("mmx_loop"));
+
+    &set_label("mmx_break",16);
+       &shl    (&LB($nlo),4);
+       &and    ($rem,0xf);
+       &psrlq  ($Zlo,4);
+       &and    ($nhi,0xf0);
+       &movq   ($tmp,$Zhi);
+       &psrlq  ($Zhi,4);
+       &pxor   ($Zlo,&QWP(8,$Htbl,$nlo));
+       &psllq  ($tmp,60);
+       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+       &movd   ($rem,$Zlo);
+       &pxor   ($Zhi,&QWP(0,$Htbl,$nlo));
+       &pxor   ($Zlo,$tmp);
+
+       &psrlq  ($Zlo,4);
+       &and    ($rem,0xf);
+       &movq   ($tmp,$Zhi);
+       &psrlq  ($Zhi,4);
+       &pxor   ($Zlo,&QWP(8,$Htbl,$nhi));
+       &psllq  ($tmp,60);
+       &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem,8));
+       &movd   ($rem,$Zlo);
+       &pxor   ($Zhi,&QWP(0,$Htbl,$nhi));
+       &pxor   ($Zlo,$tmp);
+
+       &psrlq  ($Zlo,32);      # lower part of Zlo is already there
+       &movd   ($Zhl,$Zhi);
+       &psrlq  ($Zhi,32);
+       &movd   ($Zlh,$Zlo);
+       &movd   ($Zhh,$Zhi);
+
+       &bswap  ($Zll);
+       &bswap  ($Zhl);
+       &bswap  ($Zlh);
+       &bswap  ($Zhh);
+}
+
+&function_begin("gcm_gmult_4bit_mmx");
+       &mov    ($inp,&wparam(0));      # load Xi
+       &mov    ($Htbl,&wparam(1));     # load Htable
 
-# Streamed version performs 20% better on P4, 7% on Opteron,
-# 10% on Core2 and PIII...
-&function_begin("gcm_ghash_4bit");
-    if (!$x86only) {
        &call   (&label("pic_point"));
        &set_label("pic_point");
        &blindpop("eax");
-       &picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
-       &bt     (&DWP(0,"ebp"),23);     # check for MMX bit
-       &jnc    (&label("x86"));
-
        &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
 
+       &movz   ($Zll,&BP(15,$inp));
+
+       &mmx_loop($inp,"eax");
+
+       &emms   ();
+       &mov    (&DWP(12,$inp),$Zll);
+       &mov    (&DWP(4,$inp),$Zhl);
+       &mov    (&DWP(8,$inp),$Zlh);
+       &mov    (&DWP(0,$inp),$Zhh);
+&function_end("gcm_gmult_4bit_mmx");
+\f
+# Streamed version performs 20% better on P4, 7% on Opteron,
+# 10% on Core2 and PIII...
+&function_begin("gcm_ghash_4bit_mmx");
        &mov    ($Zhh,&wparam(0));      # load Xi
        &mov    ($Htbl,&wparam(1));     # load Htable
        &mov    ($inp,&wparam(2));      # load in
        &mov    ($Zlh,&wparam(3));      # load len
+
+       &call   (&label("pic_point"));
+       &set_label("pic_point");
+       &blindpop("eax");
+       &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
+
        &add    ($Zlh,$inp);
        &mov    (&wparam(3),$Zlh);      # len to point at the end of input
        &stack_push(4+1);               # +1 for stack alignment
+
        &mov    ($Zll,&DWP(12,$Zhh));   # load Xi[16]
        &mov    ($Zhl,&DWP(4,$Zhh));
        &mov    ($Zlh,&DWP(8,$Zhh));
        &mov    ($Zhh,&DWP(0,$Zhh));
+       &jmp    (&label("mmx_outer_loop"));
 
     &set_label("mmx_outer_loop",16);
        &xor    ($Zll,&DWP(12,$inp));
@@ -355,83 +475,484 @@ if ($unroll) {
        &mov    (&DWP(0,$inp),$Zhh);
 
        &stack_pop(4+1);
-       &function_end_A();
-    &set_label("x86",16);
-    }
-       &stack_push(16+4+1);                    # +1 for 64-bit alignment
-       &mov    ($Zll,&wparam(0));              # load Xi
-       &mov    ($Htbl,&wparam(1));             # load Htable
-       &mov    ($inp,&wparam(2));              # load in
-       &mov    ("ecx",&wparam(3));             # load len
-       &add    ("ecx",$inp);
-       &mov    (&wparam(3),"ecx");
+&function_end("gcm_ghash_4bit_mmx");
+\f
+if ($sse2) {{
+######################################################################
+# PCLMULQDQ version.
+
+$Xip="eax";
+$Htbl="edx";
+$const="ecx";
+$inp="esi";
+$len="ebx";
+
+($Xi,$Xhi)=("xmm0","xmm1");    $Hkey="xmm2";
+($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
+($Xn,$Xhn)=("xmm6","xmm7");
+
+&static_label("bswap");
+
+sub clmul64x64_T2 {    # minimal "register" pressure
+my ($Xhi,$Xi,$Hkey)=@_;
+
+       &movdqa         ($Xhi,$Xi);             #
+       &pshufd         ($T1,$Xi,0b01001110);
+       &pshufd         ($T2,$Hkey,0b01001110);
+       &pxor           ($T1,$Xi);              #
+       &pxor           ($T2,$Hkey);
+
+       &pclmulqdq      ($Xi,$Hkey,0x00);       #######
+       &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
+       &pclmulqdq      ($T1,$T2,0x00);         #######
+       &pxor           ($T1,$Xi);              #
+       &pxor           ($T1,$Xhi);             #
+
+       &movdqa         ($T2,$T1);              #
+       &psrldq         ($T1,8);
+       &pslldq         ($T2,8);                #
+       &pxor           ($Xhi,$T1);
+       &pxor           ($Xi,$T2);              #
+}
 
-       &mov    ($Zhh,&DWP(0,$Zll));            # load Xi[16]
-       &mov    ($Zhl,&DWP(4,$Zll));
-       &mov    ($Zlh,&DWP(8,$Zll));
-       &mov    ($Zll,&DWP(12,$Zll));
+sub clmul64x64_T3 {
+# Even though this subroutine offers visually better ILP, it
+# was empirically found to be a tad slower than above version.
+# At least in gcm_ghash_clmul context. But it's just as well,
+# because loop modulo-scheduling is possible only thanks to
+# minimized "register" pressure...
+my ($Xhi,$Xi,$Hkey)=@_;
+
+       &movdqa         ($T1,$Xi);              #
+       &movdqa         ($Xhi,$Xi);
+       &pclmulqdq      ($Xi,$Hkey,0x00);       #######
+       &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
+       &pshufd         ($T2,$T1,0b01001110);   #
+       &pshufd         ($T3,$Hkey,0b01001110);
+       &pxor           ($T2,$T1);              #
+       &pxor           ($T3,$Hkey);
+       &pclmulqdq      ($T2,$T3,0x00);         #######
+       &pxor           ($T2,$Xi);              #
+       &pxor           ($T2,$Xhi);             #
+
+       &movdqa         ($T3,$T2);              #
+       &psrldq         ($T2,8);
+       &pslldq         ($T3,8);                #
+       &pxor           ($Xhi,$T2);
+       &pxor           ($Xi,$T3);              #
+}
+\f
+if (1) {               # Algorithm 9 with <<1 twist.
+                       # Reduction is shorter and uses only two
+                       # temporary registers, which makes it better
+                       # candidate for interleaving with 64x64
+                       # multiplication. Pre-modulo-scheduled loop
+                       # was found to be ~20% faster than Algorithm 5
+                       # below. Algorithm 9 was then chosen and
+                       # optimized further...
+
+sub reduction_alg9 {   # 17/13 times faster than Intel version
+my ($Xhi,$Xi) = @_;
+
+       # 1st phase
+       &movdqa         ($T1,$Xi)               #
+       &psllq          ($Xi,1);
+       &pxor           ($Xi,$T1);              #
+       &psllq          ($Xi,5);                #
+       &pxor           ($Xi,$T1);              #
+       &psllq          ($Xi,57);               #
+       &movdqa         ($T2,$Xi);              #
+       &pslldq         ($Xi,8);
+       &psrldq         ($T2,8);                #       
+       &pxor           ($Xi,$T1);
+       &pxor           ($Xhi,$T2);             #
+
+       # 2nd phase
+       &movdqa         ($T2,$Xi);
+       &psrlq          ($Xi,5);
+       &pxor           ($Xi,$T2);              #
+       &psrlq          ($Xi,1);                #
+       &pxor           ($Xi,$T2);              #
+       &pxor           ($T2,$Xhi);
+       &psrlq          ($Xi,1);                #
+       &pxor           ($Xi,$T2);              #
+}
 
-       &deposit_rem_4bit(16);
+&function_begin_B("gcm_init_clmul");
+       &mov            ($Htbl,&wparam(0));
+       &mov            ($Xip,&wparam(1));
 
-    &set_label("x86_outer_loop",16);
-       &xor    ($Zll,&DWP(12,$inp));           # xor with input
-       &xor    ($Zlh,&DWP(8,$inp));
-       &xor    ($Zhl,&DWP(4,$inp));
-       &xor    ($Zhh,&DWP(0,$inp));
-       &mov    (&DWP(12,"esp"),$Zll);          # dump it on stack
-       &mov    (&DWP(8,"esp"),$Zlh);
-       &mov    (&DWP(4,"esp"),$Zhl);
-       &mov    (&DWP(0,"esp"),$Zhh);
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
-       &shr    ($Zll,20);
-       &and    ($Zll,0xf0);
+       &movdqu         ($Hkey,&QWP(0,$Xip));
+       &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
 
-       if ($unroll) {
-               &call   ("_x86_gmult_4bit_inner");
-       } else {
-               &x86_loop(0);
-               &mov    ($inp,&wparam(2));
-       }
-       &lea    ($inp,&DWP(16,$inp));
-       &cmp    ($inp,&wparam(3));
-       &mov    (&wparam(2),$inp)       if (!$unroll);
-       &jb     (&label("x86_outer_loop"));
+       # <<1 twist
+       &pshufd         ($T2,$Hkey,0b11111111); # broadcast uppermost dword
+       &movdqa         ($T1,$Hkey);
+       &psllq          ($Hkey,1);
+       &pxor           ($T3,$T3);              #
+       &psrlq          ($T1,63);
+       &pcmpgtd        ($T3,$T2);              # broadcast carry bit
+       &pslldq         ($T1,8);
+       &por            ($Hkey,$T1);            # H<<=1
 
-       &mov    ($inp,&wparam(0));      # load Xi
-       &mov    (&DWP(12,$inp),$Zll);
-       &mov    (&DWP(8,$inp),$Zlh);
-       &mov    (&DWP(4,$inp),$Zhl);
-       &mov    (&DWP(0,$inp),$Zhh);
-       &stack_pop(16+4+1);
-&function_end("gcm_ghash_4bit");
+       # magic reduction
+       &pand           ($T3,&QWP(16,$const));  # 0x1c2_polynomial
+       &pxor           ($Hkey,$T3);            # if(carry) H^=0x1c2_polynomial
 
-sub deposit_rem_4bit {
-    my $bias = shift;
+       # calculate H^2
+       &movdqa         ($Xi,$Hkey);
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
+       &reduction_alg9 ($Xhi,$Xi);
 
-       &mov    (&DWP($bias+0, "esp"),0x0000<<16);
-       &mov    (&DWP($bias+4, "esp"),0x1C20<<16);
-       &mov    (&DWP($bias+8, "esp"),0x3840<<16);
-       &mov    (&DWP($bias+12,"esp"),0x2460<<16);
-       &mov    (&DWP($bias+16,"esp"),0x7080<<16);
-       &mov    (&DWP($bias+20,"esp"),0x6CA0<<16);
-       &mov    (&DWP($bias+24,"esp"),0x48C0<<16);
-       &mov    (&DWP($bias+28,"esp"),0x54E0<<16);
-       &mov    (&DWP($bias+32,"esp"),0xE100<<16);
-       &mov    (&DWP($bias+36,"esp"),0xFD20<<16);
-       &mov    (&DWP($bias+40,"esp"),0xD940<<16);
-       &mov    (&DWP($bias+44,"esp"),0xC560<<16);
-       &mov    (&DWP($bias+48,"esp"),0x9180<<16);
-       &mov    (&DWP($bias+52,"esp"),0x8DA0<<16);
-       &mov    (&DWP($bias+56,"esp"),0xA9C0<<16);
-       &mov    (&DWP($bias+60,"esp"),0xB5E0<<16);
+       &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
+       &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
+
+       &ret            ();
+&function_end_B("gcm_init_clmul");
+
+&function_begin_B("gcm_gmult_clmul");
+       &mov            ($Xip,&wparam(0));
+       &mov            ($Htbl,&wparam(1));
+
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+       &movdqu         ($Xi,&QWP(0,$Xip));
+       &movdqa         ($T3,&QWP(0,$const));
+       &movdqu         ($Hkey,&QWP(0,$Htbl));
+       &pshufb         ($Xi,$T3);
+
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
+       &reduction_alg9 ($Xhi,$Xi);
+
+       &pshufb         ($Xi,$T3);
+       &movdqu         (&QWP(0,$Xip),$Xi);
+
+       &ret    ();
+&function_end_B("gcm_gmult_clmul");
+
+&function_begin("gcm_ghash_clmul");
+       &mov            ($Xip,&wparam(0));
+       &mov            ($Htbl,&wparam(1));
+       &mov            ($inp,&wparam(2));
+       &mov            ($len,&wparam(3));
+
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+       &movdqu         ($Xi,&QWP(0,$Xip));
+       &movdqa         ($T3,&QWP(0,$const));
+       &movdqu         ($Hkey,&QWP(0,$Htbl));
+       &pshufb         ($Xi,$T3);
+
+       &sub            ($len,0x10);
+       &jz             (&label("odd_tail"));
+
+       #######
+       # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+       #       [(H*Ii+1) + (H*Xi+1)] mod P =
+       #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+       #
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
+       &pshufb         ($T1,$T3);
+       &pshufb         ($Xn,$T3);
+       &pxor           ($Xi,$T1);              # Ii+Xi
+
+       &clmul64x64_T2  ($Xhn,$Xn,$Hkey);       # H*Ii+1
+       &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+       &lea            ($inp,&DWP(32,$inp));   # i+=2
+       &sub            ($len,0x20);
+       &jbe            (&label("even_tail"));
+
+&set_label("mod_loop");
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
+
+       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &pxor           ($Xhi,$Xhn);
+
+       &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
+       &pshufb         ($T1,$T3);
+       &pshufb         ($Xn,$T3);
+
+       &movdqa         ($T3,$Xn);              #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
+       &movdqa         ($Xhn,$Xn);
+        &pxor          ($Xhi,$T1);             # "Ii+Xi", consume early
+
+         &movdqa       ($T1,$Xi)               #&reduction_alg9($Xhi,$Xi); 1st phase
+         &psllq        ($Xi,1);
+         &pxor         ($Xi,$T1);              #
+         &psllq        ($Xi,5);                #
+         &pxor         ($Xi,$T1);              #
+       &pclmulqdq      ($Xn,$Hkey,0x00);       #######
+         &psllq        ($Xi,57);               #
+         &movdqa       ($T2,$Xi);              #
+         &pslldq       ($Xi,8);
+         &psrldq       ($T2,8);                #       
+         &pxor         ($Xi,$T1);
+       &pshufd         ($T1,$T3,0b01001110);
+         &pxor         ($Xhi,$T2);             #
+       &pxor           ($T1,$T3);
+       &pshufd         ($T3,$Hkey,0b01001110);
+       &pxor           ($T3,$Hkey);            #
+
+       &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
+         &movdqa       ($T2,$Xi);              # 2nd phase
+         &psrlq        ($Xi,5);
+         &pxor         ($Xi,$T2);              #
+         &psrlq        ($Xi,1);                #
+         &pxor         ($Xi,$T2);              #
+         &pxor         ($T2,$Xhi);
+         &psrlq        ($Xi,1);                #
+         &pxor         ($Xi,$T2);              #
+
+       &pclmulqdq      ($T1,$T3,0x00);         #######
+       &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
+       &pxor           ($T1,$Xn);              #
+       &pxor           ($T1,$Xhn);             #
+
+       &movdqa         ($T3,$T1);              #
+       &psrldq         ($T1,8);
+       &pslldq         ($T3,8);                #
+       &pxor           ($Xhn,$T1);
+       &pxor           ($Xn,$T3);              #
+       &movdqa         ($T3,&QWP(0,$const));
+
+       &lea            ($inp,&DWP(32,$inp));
+       &sub            ($len,0x20);
+       &ja             (&label("mod_loop"));
+
+&set_label("even_tail");
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
+
+       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &pxor           ($Xhi,$Xhn);
+
+       &reduction_alg9 ($Xhi,$Xi);
+
+       &test           ($len,$len);
+       &jnz            (&label("done"));
+
+       &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
+&set_label("odd_tail");
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &pshufb         ($T1,$T3);
+       &pxor           ($Xi,$T1);              # Ii+Xi
+
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
+       &reduction_alg9 ($Xhi,$Xi);
+
+&set_label("done");
+       &pshufb         ($Xi,$T3);
+       &movdqu         (&QWP(0,$Xip),$Xi);
+&function_end("gcm_ghash_clmul");
+\f
+} else {               # Algorith 5. Kept for reference purposes.
+
+sub reduction_alg5 {   # 19/16 times faster than Intel version
+my ($Xhi,$Xi)=@_;
+
+       # <<1
+       &movdqa         ($T1,$Xi);              #
+       &movdqa         ($T2,$Xhi);
+       &pslld          ($Xi,1);
+       &pslld          ($Xhi,1);               #
+       &psrld          ($T1,31);
+       &psrld          ($T2,31);               #
+       &movdqa         ($T3,$T1);
+       &pslldq         ($T1,4);
+       &psrldq         ($T3,12);               #
+       &pslldq         ($T2,4);
+       &por            ($Xhi,$T3);             #
+       &por            ($Xi,$T1);
+       &por            ($Xhi,$T2);             #
+
+       # 1st phase
+       &movdqa         ($T1,$Xi);
+       &movdqa         ($T2,$Xi);
+       &movdqa         ($T3,$Xi);              #
+       &pslld          ($T1,31);
+       &pslld          ($T2,30);
+       &pslld          ($Xi,25);               #
+       &pxor           ($T1,$T2);
+       &pxor           ($T1,$Xi);              #
+       &movdqa         ($T2,$T1);              #
+       &pslldq         ($T1,12);
+       &psrldq         ($T2,4);                #
+       &pxor           ($T3,$T1);
+
+       # 2nd phase
+       &pxor           ($Xhi,$T3);             #
+       &movdqa         ($Xi,$T3);
+       &movdqa         ($T1,$T3);
+       &psrld          ($Xi,1);                #
+       &psrld          ($T1,2);
+       &psrld          ($T3,7);                #
+       &pxor           ($Xi,$T1);
+       &pxor           ($Xhi,$T2);
+       &pxor           ($Xi,$T3);              #
+       &pxor           ($Xi,$Xhi);             #
 }
 
-if (!$x86only) {
+&function_begin_B("gcm_init_clmul");
+       &mov            ($Htbl,&wparam(0));
+       &mov            ($Xip,&wparam(1));
+
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+       &movdqu         ($Hkey,&QWP(0,$Xip));
+       &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
+
+       # calculate H^2
+       &movdqa         ($Xi,$Hkey);
+       &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
+       &reduction_alg5 ($Xhi,$Xi);
+
+       &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
+       &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
+
+       &ret            ();
+&function_end_B("gcm_init_clmul");
+
+&function_begin_B("gcm_gmult_clmul");
+       &mov            ($Xip,&wparam(0));
+       &mov            ($Htbl,&wparam(1));
+
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+       &movdqu         ($Xi,&QWP(0,$Xip));
+       &movdqa         ($Xn,&QWP(0,$const));
+       &movdqu         ($Hkey,&QWP(0,$Htbl));
+       &pshufb         ($Xi,$Xn);
+
+       &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
+       &reduction_alg5 ($Xhi,$Xi);
+
+       &pshufb         ($Xi,$Xn);
+       &movdqu         (&QWP(0,$Xip),$Xi);
+
+       &ret    ();
+&function_end_B("gcm_gmult_clmul");
+
+&function_begin("gcm_ghash_clmul");
+       &mov            ($Xip,&wparam(0));
+       &mov            ($Htbl,&wparam(1));
+       &mov            ($inp,&wparam(2));
+       &mov            ($len,&wparam(3));
+
+       &call           (&label("pic"));
+&set_label("pic");
+       &blindpop       ($const);
+       &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
+
+       &movdqu         ($Xi,&QWP(0,$Xip));
+       &movdqa         ($T3,&QWP(0,$const));
+       &movdqu         ($Hkey,&QWP(0,$Htbl));
+       &pshufb         ($Xi,$T3);
+
+       &sub            ($len,0x10);
+       &jz             (&label("odd_tail"));
+
+       #######
+       # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+       #       [(H*Ii+1) + (H*Xi+1)] mod P =
+       #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+       #
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
+       &pshufb         ($T1,$T3);
+       &pshufb         ($Xn,$T3);
+       &pxor           ($Xi,$T1);              # Ii+Xi
+
+       &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
+       &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+       &sub            ($len,0x20);
+       &lea            ($inp,&DWP(32,$inp));   # i+=2
+       &jbe            (&label("even_tail"));
+
+&set_label("mod_loop");
+       &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
+       &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
+
+       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &pxor           ($Xhi,$Xhn);
+
+       &reduction_alg5 ($Xhi,$Xi);
+
+       #######
+       &movdqa         ($T3,&QWP(0,$const));
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
+       &pshufb         ($T1,$T3);
+       &pshufb         ($Xn,$T3);
+       &pxor           ($Xi,$T1);              # Ii+Xi
+
+       &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
+       &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
+
+       &sub            ($len,0x20);
+       &lea            ($inp,&DWP(32,$inp));
+       &ja             (&label("mod_loop"));
+
+&set_label("even_tail");
+       &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
+
+       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &pxor           ($Xhi,$Xhn);
+
+       &reduction_alg5 ($Xhi,$Xi);
+
+       &movdqa         ($T3,&QWP(0,$const));
+       &test           ($len,$len);
+       &jnz            (&label("done"));
+
+       &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
+&set_label("odd_tail");
+       &movdqu         ($T1,&QWP(0,$inp));     # Ii
+       &pshufb         ($T1,$T3);
+       &pxor           ($Xi,$T1);              # Ii+Xi
+
+       &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
+       &reduction_alg5 ($Xhi,$Xi);
+
+       &movdqa         ($T3,&QWP(0,$const));
+&set_label("done");
+       &pshufb         ($Xi,$T3);
+       &movdqu         (&QWP(0,$Xip),$Xi);
+&function_end("gcm_ghash_clmul");
+
+}
+\f
+&set_label("bswap",64);
+       &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
+       &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
+}}     # $sse2
+
 &set_label("rem_4bit",64);
        &data_word(0,0x0000<<16,0,0x1C20<<16,0,0x3840<<16,0,0x2460<<16);
        &data_word(0,0x7080<<16,0,0x6CA0<<16,0,0x48C0<<16,0,0x54E0<<16);
        &data_word(0,0xE100<<16,0,0xFD20<<16,0,0xD940<<16,0,0xC560<<16);
        &data_word(0,0x9180<<16,0,0x8DA0<<16,0,0xA9C0<<16,0,0xB5E0<<16);
-}
+}}}    # !$x86only
+
 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
 &asm_finish();
index 25005b9062d44dc0c906011372d8d91e9a34168d..7811a98874cd915ef2d4a5f224b776fccb85bd9b 100644 (file)
 # Opteron      18.5            10.2            +80%
 # Core2                17.5            11.0            +59%
 
+# May 2010
+#
+# Add PCLMULQDQ version performing at 2.07 cycles per processed byte.
+# See ghash-x86.pl for background information and details about coding
+# techniques.
+
 $flavour = shift;
 $output  = shift;
 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
@@ -51,7 +57,7 @@ $rem="%rdx";
 sub lo() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/;
                        $r =~ s/%[er]([sd]i)/%\1l/;
                        $r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
-
+\f
 { my $N;
   sub loop() {
   my $inp = shift;
@@ -156,8 +162,7 @@ $code.=<<___;
        ret
 .size  gcm_gmult_4bit,.-gcm_gmult_4bit
 ___
-
-
+\f
 # per-function register layout
 $inp="%rdx";
 $len="%rcx";
@@ -203,9 +208,295 @@ $code.=<<___;
 .Lghash_epilogue:
        ret
 .size  gcm_ghash_4bit,.-gcm_ghash_4bit
+___
+\f
+######################################################################
+# PCLMULQDQ version.
+
+@_4args=$win64?        ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
+               ("%rdi","%rsi","%rdx","%rcx");  # Unix order
+
+($Xi,$Xhi)=("%xmm0","%xmm1");  $Hkey="%xmm2";
+($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
+
+sub clmul64x64_T2 {    # minimal register pressure
+my ($Xhi,$Xi,$Hkey,$modulo)=@_;
 
+$code.=<<___ if (!defined($modulo));
+       movdqa          $Xi,$Xhi                #
+       pshufd          \$0b01001110,$Xi,$T1
+       pshufd          \$0b01001110,$Hkey,$T2
+       pxor            $Xi,$T1                 #
+       pxor            $Hkey,$T2
+___
+$code.=<<___;
+       pclmulqdq       \$0x00,$Hkey,$Xi        #######
+       pclmulqdq       \$0x11,$Hkey,$Xhi       #######
+       pclmulqdq       \$0x00,$T2,$T1          #######
+       pxor            $Xi,$T1                 #
+       pxor            $Xhi,$T1                #
+
+       movdqa          $T1,$T2                 #
+       psrldq          \$8,$T1
+       pslldq          \$8,$T2                 #
+       pxor            $T1,$Xhi
+       pxor            $T2,$Xi                 #
+___
+}
+
+sub reduction_alg9 {   # 17/13 times faster than Intel version
+my ($Xhi,$Xi) = @_;
+
+$code.=<<___;
+       # 1st phase
+       movdqa          $Xi,$T1                 #
+       psllq           \$1,$Xi
+       pxor            $T1,$Xi                 #
+       psllq           \$5,$Xi                 #
+       pxor            $T1,$Xi                 #
+       psllq           \$57,$Xi                #
+       movdqa          $Xi,$T2                 #
+       pslldq          \$8,$Xi
+       psrldq          \$8,$T2                 #       
+       pxor            $T1,$Xi
+       pxor            $T2,$Xhi                #
+
+       # 2nd phase
+       movdqa          $Xi,$T2
+       psrlq           \$5,$Xi
+       pxor            $T2,$Xi                 #
+       psrlq           \$1,$Xi                 #
+       pxor            $T2,$Xi                 #
+       pxor            $Xhi,$T2
+       psrlq           \$1,$Xi                 #
+       pxor            $T2,$Xi                 #
+___
+}
+\f
+{ my ($Htbl,$Xip)=@_4args;
+
+$code.=<<___;
+.globl gcm_init_clmul
+.type  gcm_init_clmul,\@abi-omnipotent
+.align 16
+gcm_init_clmul:
+       movdqu          ($Xip),$Hkey
+       pshufd          \$0b01001110,$Hkey,$Hkey        # dword swap
+
+       # <<1 twist
+       pshufd          \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
+       movdqa          $Hkey,$T1
+       psllq           \$1,$Hkey
+       pxor            $T3,$T3                 #
+       psrlq           \$63,$T1
+       pcmpgtd         $T2,$T3                 # broadcast carry bit
+       pslldq          \$8,$T1
+       por             $T1,$Hkey               # H<<=1
+
+       # magic reduction
+       pand            .L0x1c2_polynomial(%rip),$T3
+       pxor            $T3,$Hkey               # if(carry) H^=0x1c2_polynomial
+
+       # calculate H^2
+       movdqa          $Hkey,$Xi
+___
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
+       &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+       movdqu          $Hkey,($Htbl)           # save H
+       movdqu          $Xi,16($Htbl)           # save H^2
+       ret
+.size  gcm_init_clmul,.-gcm_init_clmul
+___
+}
+
+{ my ($Xip,$Htbl)=@_4args;
+
+$code.=<<___;
+.globl gcm_gmult_clmul
+.type  gcm_gmult_clmul,\@abi-omnipotent
+.align 16
+gcm_gmult_clmul:
+       movdqu          ($Xip),$Xi
+       movdqa          .Lbswap_mask(%rip),$T3
+       movdqu          ($Htbl),$Hkey
+       pshufb          $T3,$Xi
+___
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
+       &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+       pshufb          $T3,$Xi
+       movdqu          $Xi,($Xip)
+       ret
+.size  gcm_gmult_clmul,.-gcm_gmult_clmul
+___
+}
+\f
+{ my ($Xip,$Htbl,$inp,$len)=@_4args;
+  my $Xn="%xmm6";
+  my $Xhn="%xmm7";
+  my $Hkey2="%xmm8";
+  my $T1n="%xmm9";
+  my $T2n="%xmm10";
+
+$code.=<<___;
+.globl gcm_ghash_clmul
+.type  gcm_ghash_clmul,\@abi-omnipotent
+.align 16
+gcm_ghash_clmul:
+___
+$code.=<<___ if ($win64);
+.LSEH_begin_gcm_ghash_clmul:
+       # I can't trust assembler to use specific encoding:-(
+       .byte   0x48,0x83,0xec,0x58             #sub    \$0x58,%rsp
+       .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
+       .byte   0x0f,0x29,0x7c,0x24,0x10        #movdqa %xmm7,0x10(%rsp)
+       .byte   0x44,0x0f,0x29,0x44,0x24,0x20   #movaps %xmm8,0x20(%rsp)
+       .byte   0x44,0x0f,0x29,0x4c,0x24,0x30   #movaps %xmm9,0x30(%rsp)
+       .byte   0x44,0x0f,0x29,0x54,0x24,0x40   #movaps %xmm10,0x40(%rsp)
+___
+$code.=<<___;
+       movdqa          .Lbswap_mask(%rip),$T3
+
+       movdqu          ($Xip),$Xi
+       movdqu          ($Htbl),$Hkey
+       pshufb          $T3,$Xi
+
+       sub             \$0x10,$len
+       jz              .Lodd_tail
+
+       movdqu          16($Htbl),$Hkey2
+       #######
+       # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+       #       [(H*Ii+1) + (H*Xi+1)] mod P =
+       #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+       #
+       movdqu          ($inp),$T1              # Ii
+       movdqu          16($inp),$Xn            # Ii+1
+       pshufb          $T3,$T1
+       pshufb          $T3,$Xn
+       pxor            $T1,$Xi                 # Ii+Xi
+___
+       &clmul64x64_T2  ($Xhn,$Xn,$Hkey);       # H*Ii+1
+$code.=<<___;
+       movdqa          $Xi,$Xhi                #
+       pshufd          \$0b01001110,$Xi,$T1
+       pshufd          \$0b01001110,$Hkey2,$T2
+       pxor            $Xi,$T1                 #
+       pxor            $Hkey2,$T2
+
+       lea             32($inp),$inp           # i+=2
+       sub             \$0x20,$len
+       jbe             .Leven_tail
+
+.Lmod_loop:
+___
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey2,1);    # H^2*(Ii+Xi)
+$code.=<<___;
+       movdqu          ($inp),$T1              # Ii
+       pxor            $Xn,$Xi                 # (H*Ii+1) + H^2*(Ii+Xi)
+       pxor            $Xhn,$Xhi
+
+       movdqu          16($inp),$Xn            # Ii+1
+       pshufb          $T3,$T1
+       pshufb          $T3,$Xn
+
+       movdqa          $Xn,$Xhn                #
+       pshufd          \$0b01001110,$Xn,$T1n
+       pshufd          \$0b01001110,$Hkey,$T2n
+       pxor            $Xn,$T1n                #
+       pxor            $Hkey,$T2n
+        pxor           $T1,$Xhi                # "Ii+Xi", consume early
+
+         movdqa        $Xi,$T1                 # 1st phase
+         psllq         \$1,$Xi
+         pxor          $T1,$Xi                 #
+         psllq         \$5,$Xi                 #
+         pxor          $T1,$Xi                 #
+       pclmulqdq       \$0x00,$Hkey,$Xn        #######
+         psllq         \$57,$Xi                #
+         movdqa        $Xi,$T2                 #
+         pslldq        \$8,$Xi
+         psrldq        \$8,$T2                 #       
+         pxor          $T1,$Xi
+         pxor          $T2,$Xhi                #
+
+       pclmulqdq       \$0x11,$Hkey,$Xhn       #######
+         movdqa        $Xi,$T2                 # 2nd phase
+         psrlq         \$5,$Xi
+         pxor          $T2,$Xi                 #
+         psrlq         \$1,$Xi                 #
+         pxor          $T2,$Xi                 #
+         pxor          $Xhi,$T2
+         psrlq         \$1,$Xi                 #
+         pxor          $T2,$Xi                 #
+
+       pclmulqdq       \$0x00,$T2n,$T1n        #######
+        movdqa         $Xi,$Xhi                #
+        pshufd         \$0b01001110,$Xi,$T1
+        pshufd         \$0b01001110,$Hkey2,$T2
+        pxor           $Xi,$T1                 #
+        pxor           $Hkey2,$T2
+
+       pxor            $Xn,$T1n                #
+       pxor            $Xhn,$T1n               #
+       movdqa          $T1n,$T2n               #
+       psrldq          \$8,$T1n
+       pslldq          \$8,$T2n                #
+       pxor            $T1n,$Xhn
+       pxor            $T2n,$Xn                #
+
+       lea             32($inp),$inp
+       sub             \$0x20,$len
+       ja              .Lmod_loop
+
+.Leven_tail:
+___
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey2,1);    # H^2*(Ii+Xi)
+$code.=<<___;
+       pxor            $Xn,$Xi                 # (H*Ii+1) + H^2*(Ii+Xi)
+       pxor            $Xhn,$Xhi
+___
+       &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+       test            $len,$len
+       jnz             .Ldone
+
+.Lodd_tail:
+       movdqu          ($inp),$T1              # Ii
+       pshufb          $T3,$T1
+       pxor            $T1,$Xi                 # Ii+Xi
+___
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
+       &reduction_alg9 ($Xhi,$Xi);
+$code.=<<___;
+.Ldone:
+       pshufb          $T3,$Xi
+       movdqu          $Xi,($Xip)
+___
+$code.=<<___ if ($win64);
+       movaps  (%rsp),%xmm6
+       movaps  0x10(%rsp),%xmm7
+       movaps  0x20(%rsp),%xmm8
+       movaps  0x30(%rsp),%xmm9
+       movaps  0x40(%rsp),%xmm10
+       add     \$0x58,%rsp
+___
+$code.=<<___;
+       ret
+.LSEH_end_gcm_ghash_clmul:
+.size  gcm_ghash_clmul,.-gcm_ghash_clmul
+___
+}
+
+$code.=<<___;
+.align 64
+.Lbswap_mask:
+       .byte   15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
+.L0x1c2_polynomial:
+       .byte   1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
 .align 64
-.type  rem_4bit,\@object
+.type  .Lrem_4bit,\@object
 .Lrem_4bit:
        .long   0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
        .long   0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
@@ -214,7 +505,7 @@ $code.=<<___;
 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
 .align 64
 ___
-
+\f
 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
 #              CONTEXT *context,DISPATCHER_CONTEXT *disp)
 if ($win64) {
@@ -316,6 +607,10 @@ se_handler:
        .rva    .LSEH_end_gcm_ghash_4bit
        .rva    .LSEH_info_gcm_ghash_4bit
 
+       .rva    .LSEH_begin_gcm_ghash_clmul
+       .rva    .LSEH_end_gcm_ghash_clmul
+       .rva    .LSEH_info_gcm_ghash_clmul
+
 .section       .xdata
 .align 8
 .LSEH_info_gcm_gmult_4bit:
@@ -326,9 +621,46 @@ se_handler:
        .byte   9,0,0,0
        .rva    se_handler
        .rva    .Lghash_prologue,.Lghash_epilogue       # HandlerData
+.LSEH_info_gcm_ghash_clmul:
+       .byte   0x01,0x1f,0x0b,0x00
+       .byte   0x1f,0xa8,0x04,0x00     #movaps 0x40(rsp),xmm10
+       .byte   0x19,0x98,0x03,0x00     #movaps 0x30(rsp),xmm9
+       .byte   0x13,0x88,0x02,0x00     #movaps 0x20(rsp),xmm8
+       .byte   0x0d,0x78,0x01,0x00     #movaps 0x10(rsp),xmm7
+       .byte   0x08,0x68,0x00,0x00     #movaps (rsp),xmm6
+       .byte   0x04,0xa2,0x00,0x00     #sub    rsp,0x58
 ___
 }
+\f
+sub rex {
+ local *opcode=shift;
+ my ($dst,$src)=@_;
+
+   if ($dst>=8 || $src>=8) {
+       $rex=0x40;
+       $rex|=0x04 if($dst>=8);
+       $rex|=0x01 if($src>=8);
+       push @opcode,$rex;
+   }
+}
+
+sub pclmulqdq {
+  my $arg=shift;
+  my @opcode=(0x66);
+
+    if ($arg=~/\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
+       rex(\@opcode,$3,$2);
+       push @opcode,0x0f,0x3a,0x44;
+       push @opcode,0xc0|($2&7)|(($3&7)<<3);   # ModR/M
+       my $c=$1;
+       push @opcode,$c=~/^0/?oct($c):$c;
+       return ".byte\t".join(',',@opcode);
+    }
+    return "pclmulqdq\t".$arg;
+}
+
 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
+$code =~ s/\bpclmulqdq\s+(\$.*%xmm[0-9]+).*$/pclmulqdq($1)/gem;
 
 print $code;
 
index 920f5257893d9c85fafd853147d1a0d796c67394..b21b6b3a1594718f1ab68d98689abe6abb4c2581 100644 (file)
@@ -67,7 +67,20 @@ typedef struct { u64 hi,lo; } u128;
 #define        PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v)
 #endif
 
-#define        PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
+#define        PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16))
+#define REDUCE1BIT(V)  do { \
+       if (sizeof(size_t)==8) { \
+               u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
+               V.lo  = (V.hi<<63)|(V.lo>>1); \
+               V.hi  = (V.hi>>1 )^T; \
+       } \
+       else { \
+               u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
+               V.lo  = (V.hi<<63)|(V.lo>>1); \
+               V.hi  = (V.hi>>1 )^((u64)T<<32); \
+       } \
+} while(0)
+
 #ifdef TABLE_BITS
 #undef TABLE_BITS
 #endif
@@ -75,15 +88,14 @@ typedef struct { u64 hi,lo; } u128;
  * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
  * never be set to 8. 8 is effectively reserved for testing purposes.
  * Under ideal conditions "8-bit" version should be twice as fast as
- * "4-bit" one. But world is far from ideal. For gcc-generated x86 code,
- * "8-bit" was observed to run only ~50% faster. On x86_64 observed
- * improvement was ~75%, much closer to optimal, but the fact of
- * deviation means that references to pre-computed tables end up on
- * critical path and as tables are pretty big, 4KB per key+1KB shared,
- * execution time is sensitive to cache timing. It's not actually
- * proven, but 4-bit procedure is believed to provide adequate
- * all-round performance...
- */  
+ * "4-bit" one. For gcc-generated x86[_64] code, "8-bit" was observed to
+ * run ~75% faster, closer to 100% for commercial compilers... But the
+ * catch is that "8-bit" procedure consumes 16 times more memory, 4KB
+ * per indivudual key + 1KB shared, and as access to these tables end up
+ * on critical path, real-life execution time would be sensitive to
+ * cache timing. It's not actually proven, but "4-bit" procedure is
+ * believed to provide adequate all-round performance...
+ */
 #define        TABLE_BITS 4
 
 #if    TABLE_BITS==8
@@ -99,16 +111,7 @@ static void gcm_init_8bit(u128 Htable[256], u64 H[2])
        V.lo = H[1];
 
        for (Htable[128]=V, i=64; i>0; i>>=1) {
-               if (sizeof(size_t)==8) {
-                       u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
-                       V.lo  = (V.hi<<63)|(V.lo>>1);
-                       V.hi  = (V.hi>>1 )^T;
-               }
-               else {
-                       u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
-                       V.lo  = (V.hi<<63)|(V.lo>>1);
-                       V.hi  = (V.hi>>1 )^((u64)T<<32);
-               }
+               REDUCE1BIT(V);
                Htable[i] = V;
        }
 
@@ -238,18 +241,6 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
 #if defined(OPENSSL_SMALL_FOOTPRINT)
        int  i;
 #endif
-#define REDUCE(V) do { \
-       if (sizeof(size_t)==8) { \
-               u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
-               V.lo  = (V.hi<<63)|(V.lo>>1); \
-               V.hi  = (V.hi>>1 )^T; \
-       } \
-       else { \
-               u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
-               V.lo  = (V.hi<<63)|(V.lo>>1); \
-               V.hi  = (V.hi>>1 )^((u64)T<<32); \
-       } \
-} while(0)
 
        Htable[0].hi = 0;
        Htable[0].lo = 0;
@@ -258,7 +249,7 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
 
 #if defined(OPENSSL_SMALL_FOOTPRINT)
        for (Htable[8]=V, i=4; i>0; i>>=1) {
-               REDUCE(V);
+               REDUCE1BIT(V);
                Htable[i] = V;
        }
 
@@ -272,11 +263,11 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
        }
 #else
        Htable[8] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[4] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[2] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[1] = V;
        Htable[3].hi  = V.hi^Htable[2].hi, Htable[3].lo  = V.lo^Htable[2].lo;
        V=Htable[4];
@@ -314,7 +305,6 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
                }
        }
 #endif
-#undef REDUCE
 }
 
 #ifndef GHASH_ASM
@@ -471,7 +461,7 @@ void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
 
 #define GCM_MUL(ctx,Xi)   gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
 #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
-#define GHASH(in,len,ctx) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
+#define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
 /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
  * trashing effect. In other words idea is to hash data while it's
  * still in L1 cache after encryption pass... */
@@ -514,17 +504,7 @@ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
                        Z.hi ^= V.hi&M;
                        Z.lo ^= V.lo&M;
 
-                       if (sizeof(size_t)==8) {
-                               u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
-                               V.lo  = (V.hi<<63)|(V.lo>>1);
-                               V.hi  = (V.hi>>1 )^T;
-                       }
-                       else {
-                               u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
-                               V.lo  = (V.hi<<63)|(V.lo>>1);
-                               V.hi  = (V.hi>>1 )^((u64)T<<32);
-                       }
-                               
+                       REDUCE1BIT(V);
                }
        }
 
@@ -559,12 +539,40 @@ struct gcm128_context {
        u128 Htable[256];
 #else
        u128 Htable[16];
+       void (*gmult)(u64 Xi[2],const u128 Htable[16]);
+       void (*ghash)(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
 #endif
        unsigned int res, pad;
        block128_f block;
        void *key;
 };
 
+#if    TABLE_BITS==4 && defined(GHASH_ASM) && !defined(I386_ONLY) && \
+       (defined(__i386)        || defined(__i386__)    || \
+        defined(__x86_64)      || defined(__x86_64__)  || \
+        defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64))
+# define GHASH_ASM_IAX
+extern unsigned int OPENSSL_ia32cap_P[2];
+
+void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
+void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+# if   defined(__i386) || defined(__i386__) || defined(_M_IX86)
+#  define GHASH_ASM_X86
+void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+# endif
+
+# undef  GCM_MUL
+# define GCM_MUL(ctx,Xi)   (*((ctx)->gmult))(ctx->Xi.u,ctx->Htable)
+# undef  GHASH
+# define GHASH(ctx,in,len) (*((ctx)->ghash))((ctx)->Xi.u,(ctx)->Htable,in,len)
+#endif
+
 void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
 {
        const union { long one; char little; } is_endian = {1};
@@ -593,7 +601,29 @@ void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
 #if    TABLE_BITS==8
        gcm_init_8bit(ctx->Htable,ctx->H.u);
 #elif  TABLE_BITS==4
+# if   defined(GHASH_ASM_IAX)
+       if (OPENSSL_ia32cap_P[1]&(1<<1)) {
+               gcm_init_clmul(ctx->Htable,ctx->H.u);
+               ctx->gmult = gcm_gmult_clmul;
+               ctx->ghash = gcm_ghash_clmul;
+               return;
+       }
        gcm_init_4bit(ctx->Htable,ctx->H.u);
+#  if  defined(GHASH_ASM_X86)
+       if (OPENSSL_ia32cap_P[0]&(1<<23)) {
+               ctx->gmult = gcm_gmult_4bit_mmx;
+               ctx->ghash = gcm_ghash_4bit_mmx;
+       } else {
+               ctx->gmult = gcm_gmult_4bit_x86;
+               ctx->ghash = gcm_ghash_4bit_x86;
+       }
+#  else
+       ctx->gmult = gcm_gmult_4bit;
+       ctx->ghash = gcm_ghash_4bit;
+#  endif
+# else
+       gcm_init_4bit(ctx->Htable,ctx->H.u);
+# endif
 #endif
 }
 
@@ -671,7 +701,7 @@ void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
 
 #ifdef GHASH
        if ((i = (len&(size_t)-16))) {
-               GHASH(aad,i,ctx);
+               GHASH(ctx,aad,i);
                aad += i;
                len -= i;
        }
@@ -740,7 +770,7 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        in  += 16;
                        j   -= 16;
                    }
-                   GHASH(out-GHASH_CHUNK,GHASH_CHUNK,ctx);
+                   GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK);
                    len -= GHASH_CHUNK;
                }
                if ((i = (len&(size_t)-16))) {
@@ -760,7 +790,7 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        in  += 16;
                        len -= 16;
                    }
-                   GHASH(out-j,j,ctx);
+                   GHASH(ctx,out-j,j);
                }
 #else
                while (len>=16) {
@@ -854,7 +884,7 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                while (len>=GHASH_CHUNK) {
                    size_t j=GHASH_CHUNK;
 
-                   GHASH(in,GHASH_CHUNK,ctx);
+                   GHASH(ctx,in,GHASH_CHUNK);
                    while (j) {
                        (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
                        ++ctr;
@@ -872,7 +902,7 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                    len -= GHASH_CHUNK;
                }
                if ((i = (len&(size_t)-16))) {
-                   GHASH(in,i,ctx);
+                   GHASH(ctx,in,i);
                    while (len>=16) {
                        (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
                        ++ctr;
@@ -1243,6 +1273,7 @@ int main()
        {
        size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
        union { u64 u; u8 c[1024]; } buf;
+       int i;
 
        AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
        CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
@@ -1267,11 +1298,11 @@ int main()
                        ctr_t/(double)sizeof(buf),
                        (gcm_t-ctr_t)/(double)sizeof(buf));
 #ifdef GHASH
-       GHASH(buf.c,sizeof(buf),&ctx);
+       GHASH(&ctx,buf.c,sizeof(buf));
        start = OPENSSL_rdtsc();
-       GHASH(buf.c,sizeof(buf),&ctx);
+       for (i=0;i<100;++i) GHASH(&ctx,buf.c,sizeof(buf));
        gcm_t = OPENSSL_rdtsc() - start;
-       printf("%.2f\n",gcm_t/(double)sizeof(buf));
+       printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i);
 #endif
        }
 #endif