return BN_num_bits(group->order);
}
+static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
+ BIGNUM *x, BN_CTX *ctx)
+{
+ BIGNUM *exp = NULL;
+ BN_CTX *new_ctx = NULL;
+ int ret = 0;
+
+ if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ exp = BN_CTX_get(ctx);
+ if (exp == NULL)
+ goto err;
+
+ /* Check if optimized inverse is implemented */
+ if (group->mont_data != NULL) {
+ /*-
+ * We want inverse in constant time, therefore we utilize the fact
+ * order must be prime and use Fermats Little Theorem instead.
+ */
+ if (!BN_set_word(exp, 2))
+ goto err;
+ if (!BN_sub(exp, group->order, exp))
+ goto err;
+ /*-
+ * Exponent X is public.
+ * No need for scatter-gather or BN_FLG_CONSTTIME.
+ */
+ if (!BN_mod_exp_mont(r, x, exp, group->order, ctx, group->mont_data))
+ goto err;
+ /* Inverse of zero doesn't exist. Let the fallback catch it. */
+ if (BN_is_zero(r))
+ ret = 0;
+ else
+ ret = 1;
+ }
+
+ /*-
+ * Fallback to classic inverse, blinded.
+ * BN_FLG_CONSTTIME is a don't care here.
+ */
+ if (ret == 0) {
+ do {
+ if (!BN_priv_rand_range(exp, group->order))
+ goto err;
+ } while (BN_is_zero(exp));
+
+ /* r := x * exp */
+ if (!BN_mod_mul(r, x, exp, group->order, ctx))
+ goto err;
+ /* r := 1/(x * exp) */
+ if (!BN_mod_inverse(r, r, group->order, ctx))
+ goto err;
+ /* r := exp/(x * exp) = 1/x */
+ if (!BN_mod_mul(r, r, exp, group->order, ctx))
+ goto err;
+
+ ret = 1;
+ }
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
int EC_GROUP_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
BIGNUM *x, BN_CTX *ctx)
{
if (group->meth->field_inverse_mod_ord != NULL)
return group->meth->field_inverse_mod_ord(group, res, x, ctx);
else
- return 0;
+ return ec_field_inverse_mod_ord(group, res, x, ctx);
}
/*-
}
while (BN_is_zero(r));
- /* Check if optimized inverse is implemented */
- if (EC_GROUP_do_inverse_ord(group, k, k, ctx) == 0) {
- /* compute the inverse of k */
- if (group->mont_data != NULL) {
- /*
- * We want inverse in constant time, therefore we utilize the fact
- * order must be prime and use Fermats Little Theorem instead.
- */
- if (!BN_set_word(X, 2)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- if (!BN_mod_sub(X, order, X, order, ctx)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- BN_set_flags(X, BN_FLG_CONSTTIME);
- if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx,
- group->mont_data)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- } else {
- if (!BN_mod_inverse(k, k, order, ctx)) {
- ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
- goto err;
- }
- }
+ /* compute the inverse of k */
+ if (!EC_GROUP_do_inverse_ord(group, k, k, ctx)) {
+ ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
+ goto err;
}
/* clear old values if necessary */
goto err;
}
/* calculate tmp1 = inv(S) mod order */
- /* Check if optimized inverse is implemented */
- if (EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx) == 0) {
- if (!BN_mod_inverse(u2, sig->s, order, ctx)) {
- ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
- goto err;
- }
+ if (!EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx)) {
+ ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
+ goto err;
}
/* digest -> m */
i = BN_num_bits(order);