* on the size of the number */
/*
- * number of Miller-Rabin iterations for an error rate of less than 2^-80 for
- * random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook of
- * Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996];
- * original paper: Damgaard, Landrock, Pomerance: Average case error
- * estimates for the strong probable prime test. -- Math. Comp. 61 (1993)
- * 177-194)
+ * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
+ * that will be done for checking that a random number is probably prime. The
+ * error rate for accepting a composite number as prime depends on the size of
+ * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
+ * and so the level is what you would expect for a key of double the size of the
+ * prime.
+ *
+ * This table is generated using the algorithm of FIPS PUB 186-4
+ * Digital Signature Standard (DSS), section F.1, page 117.
+ * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
+ *
+ * The following magma script was used to generate the output:
+ * securitybits:=125;
+ * k:=1024;
+ * for t:=1 to 65 do
+ * for M:=3 to Floor(2*Sqrt(k-1)-1) do
+ * S:=0;
+ * // Sum over m
+ * for m:=3 to M do
+ * s:=0;
+ * // Sum over j
+ * for j:=2 to m do
+ * s+:=(RealField(32)!2)^-(j+(k-1)/j);
+ * end for;
+ * S+:=2^(m-(m-1)*t)*s;
+ * end for;
+ * A:=2^(k-2-M*t);
+ * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
+ * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
+ * seclevel:=Floor(-Log(2,pkt));
+ * if seclevel ge securitybits then
+ * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
+ * break;
+ * end if;
+ * end for;
+ * if seclevel ge securitybits then break; end if;
+ * end for;
+ *
+ * It can be run online at:
+ * http://magma.maths.usyd.edu.au/calc
+ *
+ * And will output:
+ * k: 1024, security: 129 bits (t: 6, M: 23)
+ *
+ * k is the number of bits of the prime, securitybits is the level we want to
+ * reach.
+ *
+ * prime length | RSA key size | # MR tests | security level
+ * -------------+--------------|------------+---------------
+ * (b) >= 6394 | >= 12788 | 3 | 256 bit
+ * (b) >= 3747 | >= 7494 | 3 | 192 bit
+ * (b) >= 1345 | >= 2690 | 4 | 128 bit
+ * (b) >= 1080 | >= 2160 | 5 | 128 bit
+ * (b) >= 852 | >= 1704 | 5 | 112 bit
+ * (b) >= 476 | >= 952 | 5 | 80 bit
+ * (b) >= 400 | >= 800 | 6 | 80 bit
+ * (b) >= 347 | >= 694 | 7 | 80 bit
+ * (b) >= 308 | >= 616 | 8 | 80 bit
+ * (b) >= 55 | >= 110 | 27 | 64 bit
+ * (b) >= 6 | >= 12 | 34 | 64 bit
*/
-# define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \
- (b) >= 850 ? 3 : \
- (b) >= 650 ? 4 : \
- (b) >= 550 ? 5 : \
- (b) >= 450 ? 6 : \
- (b) >= 400 ? 7 : \
- (b) >= 350 ? 8 : \
- (b) >= 300 ? 9 : \
- (b) >= 250 ? 12 : \
- (b) >= 200 ? 15 : \
- (b) >= 150 ? 18 : \
- /* b >= 100 */ 27)
+
+# define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
+ (b) >= 1345 ? 4 : \
+ (b) >= 476 ? 5 : \
+ (b) >= 400 ? 6 : \
+ (b) >= 347 ? 7 : \
+ (b) >= 308 ? 8 : \
+ (b) >= 55 ? 27 : \
+ /* b >= 6 */ 34)
# define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a Miller-Rabin
probabilistic primality test with B<nchecks> iterations. If
B<nchecks == BN_prime_checks>, a number of iterations is used that
-yields a false positive rate of at most 2^-80 for random input.
+yields a false positive rate of at most 2^-64 for random input.
+The error rate depends on the size of the prime and goes down for bigger primes.
+The rate is 2^-80 starting at 308 bits, 2^-112 at 852 bit, 2^-128 at 1080 bits,
+2^-192 at 3747 bit and 2^-256 at 6394 bit.
+
+When the source of the prime is not random or not trusted, the number
+of checks needs to be much higher to reach the same level of assurance:
+It should equal half of the targeted security level in bits (rounded up to the
+next integer if necessary).
+For instance, to reach the 128 bit security level, B<nchecks> should be set to
+64.
If B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
after the j-th iteration (j = 0, 1, ...). B<ctx> is a