#include "gnunet_common.h"
#include "gnunet_crypto_lib.h"
#include "gnunet_os_lib.h"
-#include <gmp.h>
#include <gcrypt.h>
+#include <limits.h>
/**
* Log an error message at log-level 'level' that indicates
typedef struct
{
- mpz_t n; /* public modulus */
- mpz_t e; /* public exponent */
- mpz_t d; /* exponent */
- mpz_t p; /* prime p. */
- mpz_t q; /* prime q. */
- mpz_t u; /* inverse of p mod q. */
+ gcry_mpi_t n; /* public modulus */
+ gcry_mpi_t e; /* public exponent */
+ gcry_mpi_t d; /* exponent */
+ gcry_mpi_t p; /* prime p. */
+ gcry_mpi_t q; /* prime q. */
+ gcry_mpi_t u; /* inverse of p mod q. */
} KBlock_secret_key;
/**
};
-static unsigned int
-get_nbits (mpz_t a)
-{
- return mpz_sizeinbase (a, 2);
-}
-
-
static void
-mpz_randomize (mpz_t n, unsigned int nbits, GNUNET_HashCode * rnd)
+mpz_randomize (gcry_mpi_t n, unsigned int nbits, GNUNET_HashCode * rnd)
{
- GNUNET_HashCode *tmp;
+ GNUNET_HashCode hc;
+ GNUNET_HashCode tmp;
int bits_per_hc = sizeof (GNUNET_HashCode) * 8;
int cnt;
int i;
GNUNET_assert (nbits > 0);
cnt = (nbits + bits_per_hc - 1) / bits_per_hc;
- tmp = GNUNET_malloc (sizeof (GNUNET_HashCode) * cnt);
+ gcry_mpi_set_ui (n, 0);
- tmp[0] = *rnd;
- for (i = 0; i < cnt - 1; i++)
+ tmp = *rnd;
+ for (i = 0; i < cnt; i++)
{
- GNUNET_CRYPTO_hash (&tmp[i], sizeof (GNUNET_HashCode), &tmp[i + 1]);
+ int j;
+
+ if (i > 0)
+ GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), &tmp);
+ for (j = sizeof(GNUNET_HashCode) / sizeof(unsigned int); j > 0; j--)
+ {
+#if HAVE_GCRY_MPI_LSHIFT
+ gcry_mpi_lshift (n, n, sizeof(unsigned int));
+#else
+ gcry_mpi_mul_ui(n, n, pow (2, sizeof(unsigned int)));
+#endif
+ gcry_mpi_add_ui(n, n, ((unsigned int *) &tmp)[j]);
+ }
+ hc = tmp;
}
- GNUNET_CRYPTO_hash (&tmp[i], sizeof (GNUNET_HashCode), rnd);
- mpz_import (n, cnt * sizeof (GNUNET_HashCode) / sizeof (unsigned int),
- 1, sizeof (unsigned int), 1, 0, tmp);
- GNUNET_free (tmp);
- i = get_nbits (n);
+ GNUNET_CRYPTO_hash (&hc, sizeof (GNUNET_HashCode), rnd);
+ i = gcry_mpi_get_nbits (n);
while (i > nbits)
- mpz_clrbit (n, --i);
+ gcry_mpi_clear_bit (n, --i);
+}
+
+static unsigned int
+mpz_trailing_zeroes (gcry_mpi_t n)
+{
+ unsigned int idx, cnt;
+
+ cnt = gcry_mpi_get_nbits(n);
+ for (idx = 0; idx < cnt; idx++)
+ {
+ if (gcry_mpi_test_bit(n, idx) == 0)
+ return idx;
+ }
+
+ return ULONG_MAX;
+}
+
+static void
+mpz_tdiv_q_2exp (gcry_mpi_t q, gcry_mpi_t n, unsigned int b)
+{
+ gcry_mpi_t u, d;
+
+ u = gcry_mpi_set_ui (NULL, 1);
+ d = gcry_mpi_new (0);
+ gcry_mpi_mul_2exp (d, u, b);
+ gcry_mpi_div (q, NULL, n, d, 0);
}
/**
* Return true if n is probably a prime
*/
static int
-is_prime (mpz_t n, int steps, GNUNET_HashCode * hc)
+is_prime (gcry_mpi_t n, int steps, GNUNET_HashCode * hc)
{
- mpz_t x;
- mpz_t y;
- mpz_t z;
- mpz_t nminus1;
- mpz_t a2;
- mpz_t q;
+ gcry_mpi_t x;
+ gcry_mpi_t y;
+ gcry_mpi_t z;
+ gcry_mpi_t nminus1;
+ gcry_mpi_t a2;
+ gcry_mpi_t q;
unsigned int i, j, k;
int rc = 0;
unsigned int nbits;
- mpz_init (x);
- mpz_init (y);
- mpz_init (z);
- mpz_init (nminus1);
- mpz_init_set_ui (a2, 2);
- nbits = get_nbits (n);
- mpz_sub_ui (nminus1, n, 1);
+ x = gcry_mpi_new (0);
+ y = gcry_mpi_new (0);
+ z = gcry_mpi_new (0);
+ nminus1 = gcry_mpi_new (0);
+ a2 = gcry_mpi_set_ui (NULL, 2);
+
+ nbits = gcry_mpi_get_nbits (n);
+ gcry_mpi_sub_ui(nminus1, n, 1);
/* Find q and k, so that n = 1 + 2^k * q . */
- mpz_init_set (q, nminus1);
- k = mpz_scan1 (q, 0);
+ q = gcry_mpi_set (NULL, nminus1);
+ k = mpz_trailing_zeroes (q);
mpz_tdiv_q_2exp (q, q, k);
for (i = 0; i < steps; i++)
{
if (!i)
{
- mpz_set_ui (x, 2);
+ gcry_mpi_set_ui (x, 2);
}
else
{
mpz_randomize (x, nbits - 1, hc);
- GNUNET_assert (mpz_cmp (x, nminus1) < 0 && mpz_cmp_ui (x, 1) > 0);
+ GNUNET_assert (gcry_mpi_cmp (x, nminus1) < 0);
+ GNUNET_assert (gcry_mpi_cmp_ui (x, 1) > 0);
}
- mpz_powm (y, x, q, n);
- if (mpz_cmp_ui (y, 1) && mpz_cmp (y, nminus1))
+ gcry_mpi_powm (y, x, q, n);
+ if (gcry_mpi_cmp_ui (y, 1) && gcry_mpi_cmp (y, nminus1))
{
- for (j = 1; j < k && mpz_cmp (y, nminus1); j++)
+ for (j = 1; j < k && gcry_mpi_cmp (y, nminus1); j++)
{
- mpz_powm (y, y, a2, n);
- if (!mpz_cmp_ui (y, 1))
+ gcry_mpi_powm (y, y, a2, n);
+ if (!gcry_mpi_cmp_ui (y, 1))
goto leave; /* Not a prime. */
}
- if (mpz_cmp (y, nminus1))
+ if (gcry_mpi_cmp (y, nminus1))
goto leave; /* Not a prime. */
}
}
rc = 1; /* May be a prime. */
leave:
- mpz_clear (x);
- mpz_clear (y);
- mpz_clear (z);
- mpz_clear (nminus1);
- mpz_clear (q);
- mpz_clear (a2);
+ gcry_mpi_release (x);
+ gcry_mpi_release (y);
+ gcry_mpi_release (z);
+ gcry_mpi_release (nminus1);
+ gcry_mpi_release (q);
+ gcry_mpi_release (a2);
return rc;
}
static void
-gen_prime (mpz_t ptest, unsigned int nbits, GNUNET_HashCode * hc)
+gen_prime (gcry_mpi_t *ptest, unsigned int nbits, GNUNET_HashCode * hc)
{
/* Note: 2 is not included because it can be tested more easily by
looking at bit 0. The last entry in this list is marked by a zero */
#define DIM(v) (sizeof(v)/sizeof((v)[0]))
static int no_of_small_prime_numbers = DIM (small_prime_numbers) - 1;
- mpz_t prime, pminus1, val_2, val_3, result;
+ gcry_mpi_t prime, pminus1, val_2, val_3, result;
int i;
unsigned x, step;
- int *mods;
- mpz_t tmp;
+ unsigned int *mods;
+ gcry_mpi_t tmp;
+ gcry_mpi_t sp;
GNUNET_assert (nbits >= 16);
mods = GNUNET_malloc (no_of_small_prime_numbers * sizeof (*mods));
/* Make nbits fit into mpz_t implementation. */
- mpz_init_set_ui (val_2, 2);
- mpz_init_set_ui (val_3, 3);
- mpz_init (prime);
- mpz_init (result);
- mpz_init (pminus1);
- mpz_init (ptest);
+ val_2 = gcry_mpi_set_ui (NULL, 2);
+ val_3 = gcry_mpi_set_ui (NULL, 3);
+ prime = gcry_mpi_new(0);
+ result = gcry_mpi_new(0);
+ pminus1 = gcry_mpi_new(0);
+ *ptest = gcry_mpi_new(0);
while (1)
{
/* generate a random number */
generating a secret prime we are most probably doing that
for RSA, to make sure that the modulus does have the
requested key size we set the 2 high order bits. */
- mpz_setbit (prime, nbits - 1);
- mpz_setbit (prime, nbits - 2);
- mpz_setbit (prime, 0);
+ gcry_mpi_set_bit (prime, nbits - 1);
+ gcry_mpi_set_bit (prime, nbits - 2);
+ gcry_mpi_set_bit (prime, 0);
/* Calculate all remainders. */
- mpz_init (tmp);
+ tmp = gcry_mpi_new (0);
+ sp = gcry_mpi_new (0);
for (i = 0; (x = small_prime_numbers[i]); i++)
- mods[i] = mpz_fdiv_r_ui (tmp, prime, x);
- mpz_clear (tmp);
+ {
+ size_t written;
+
+ gcry_mpi_set_ui(sp, x);
+ gcry_mpi_div (NULL, tmp, prime, sp, -1 /* TODO CG: is this correct? */);
+ gcry_mpi_print (GCRYMPI_FMT_USG, (unsigned char *) &mods[i], sizeof(*mods), &written, tmp);
+ }
+ gcry_mpi_release (sp);
+ gcry_mpi_release (tmp);
/* Now try some primes starting with prime. */
for (step = 0; step < 20000; step += 2)
{
if (x)
continue; /* Found a multiple of an already known prime. */
- mpz_add_ui (ptest, prime, step);
- if (!mpz_tstbit (ptest, nbits - 2))
+ gcry_mpi_add_ui (*ptest, prime, step);
+ if (!gcry_mpi_test_bit (*ptest, nbits - 2))
break;
/* Do a fast Fermat test now. */
- mpz_sub_ui (pminus1, ptest, 1);
- mpz_powm (result, val_2, pminus1, ptest);
- if ((!mpz_cmp_ui (result, 1)) && (is_prime (ptest, 5, hc)))
+ gcry_mpi_sub_ui (pminus1, *ptest, 1);
+ gcry_mpi_powm (result, val_2, pminus1, *ptest);
+ if ((!gcry_mpi_cmp_ui (result, 1)) && (is_prime (*ptest, 5, hc)))
{
/* Got it. */
- mpz_clear (val_2);
- mpz_clear (val_3);
- mpz_clear (result);
- mpz_clear (pminus1);
- mpz_clear (prime);
+ gcry_mpi_release (val_2);
+ gcry_mpi_release (val_3);
+ gcry_mpi_release (result);
+ gcry_mpi_release (pminus1);
+ gcry_mpi_release (prime);
GNUNET_free (mods);
return;
}
}
}
-/**
- * Find the greatest common divisor G of A and B.
- * Return: 1 if this 1, 0 in all other cases
- */
-static int
-test_gcd (mpz_t g, mpz_t xa, mpz_t xb)
-{
- mpz_t a, b;
-
- mpz_init_set (a, xa);
- mpz_init_set (b, xb);
-
- /* TAOCP Vol II, 4.5.2, Algorithm A */
- while (mpz_cmp_ui (b, 0))
- {
- mpz_fdiv_r (g, a, b); /* g used as temorary variable */
- mpz_set (a, b);
- mpz_set (b, g);
- }
- mpz_set (g, a);
-
- mpz_clear (a);
- mpz_clear (b);
- return (0 == mpz_cmp_ui (g, 1));
-}
-
/**
* Generate a key pair with a key of size NBITS.
* @param sk where to store the key
generate_kblock_key (KBlock_secret_key * sk,
unsigned int nbits, GNUNET_HashCode * hc)
{
- mpz_t t1, t2;
- mpz_t phi; /* helper: (p-1)(q-1) */
- mpz_t g;
- mpz_t f;
+ gcry_mpi_t t1, t2;
+ gcry_mpi_t phi; /* helper: (p-1)(q-1) */
+ gcry_mpi_t g;
+ gcry_mpi_t f;
/* make sure that nbits is even so that we generate p, q of equal size */
if ((nbits & 1))
nbits++;
- mpz_init_set_ui (sk->e, 257);
- mpz_init (sk->n);
- mpz_init (sk->p);
- mpz_init (sk->q);
- mpz_init (sk->d);
- mpz_init (sk->u);
+ sk->e = gcry_mpi_set_ui (NULL, 257);
+ sk->n = gcry_mpi_new(0);
+ sk->p = gcry_mpi_new(0);
+ sk->q = gcry_mpi_new(0);
+ sk->d = gcry_mpi_new(0);
+ sk->u = gcry_mpi_new(0);
- mpz_init (t1);
- mpz_init (t2);
- mpz_init (phi);
- mpz_init (g);
- mpz_init (f);
+ t1 = gcry_mpi_new(0);
+ t2 = gcry_mpi_new(0);
+ phi = gcry_mpi_new(0);
+ g = gcry_mpi_new(0);
+ f = gcry_mpi_new(0);
do
{
do
{
- mpz_clear (sk->p);
- mpz_clear (sk->q);
- gen_prime (sk->p, nbits / 2, hc);
- gen_prime (sk->q, nbits / 2, hc);
+ gcry_mpi_release (sk->p);
+ gcry_mpi_release (sk->q);
+ gen_prime (&sk->p, nbits / 2, hc);
+ gen_prime (&sk->q, nbits / 2, hc);
- if (mpz_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */
- mpz_swap (sk->p, sk->q);
+ if (gcry_mpi_cmp (sk->p, sk->q) > 0) /* p shall be smaller than q (for calc of u) */
+ gcry_mpi_swap (sk->p, sk->q);
/* calculate the modulus */
- mpz_mul (sk->n, sk->p, sk->q);
+ gcry_mpi_mul (sk->n, sk->p, sk->q);
}
- while (get_nbits (sk->n) != nbits);
+ while (gcry_mpi_get_nbits (sk->n) != nbits);
/* calculate Euler totient: phi = (p-1)(q-1) */
- mpz_sub_ui (t1, sk->p, 1);
- mpz_sub_ui (t2, sk->q, 1);
- mpz_mul (phi, t1, t2);
- mpz_gcd (g, t1, t2);
- mpz_fdiv_q (f, phi, g);
+ gcry_mpi_sub_ui (t1, sk->p, 1);
+ gcry_mpi_sub_ui (t2, sk->q, 1);
+ gcry_mpi_mul (phi, t1, t2);
+ gcry_mpi_gcd (g, t1, t2);
+ gcry_mpi_div (f, NULL, phi, g, -1 /* TODO CG: is this correct? */);
- while (0 == test_gcd (t1, sk->e, phi))
+ while (0 == gcry_mpi_gcd (t1, sk->e, phi))
{ /* (while gcd is not 1) */
- mpz_add_ui (sk->e, sk->e, 2);
+ gcry_mpi_add_ui (sk->e, sk->e, 2);
}
/* calculate the secret key d = e^1 mod phi */
}
- while ((0 == mpz_invert (sk->d, sk->e, f)) ||
- (0 == mpz_invert (sk->u, sk->p, sk->q)));
-
- mpz_clear (t1);
- mpz_clear (t2);
- mpz_clear (phi);
- mpz_clear (f);
- mpz_clear (g);
+ while ((0 == gcry_mpi_invm (sk->d, sk->e, f)) ||
+ (0 == gcry_mpi_invm (sk->u, sk->p, sk->q)));
+
+ gcry_mpi_release (t1);
+ gcry_mpi_release (t2);
+ gcry_mpi_release (phi);
+ gcry_mpi_release (f);
+ gcry_mpi_release (g);
}
{
KBlock_secret_key sk;
GNUNET_HashCode hx;
- void *pbu[6];
- mpz_t *pkv[6];
+ unsigned char *pbu[6];
+ gcry_mpi_t *pkv[6];
size_t sizes[6];
struct KskRsaPrivateKeyBinaryEncoded *retval;
int i;
size = sizeof (struct KskRsaPrivateKeyBinaryEncoded);
for (i = 0; i < 6; i++)
{
- pbu[i] = mpz_export (NULL, &sizes[i], 1, /* most significant word first */
- 1, /* unit is bytes */
- 1, /* big endian */
- 0, /* nails */
- *pkv[i]);
+ gcry_mpi_aprint(GCRYMPI_FMT_STD, &pbu[i], &sizes[i], *pkv[i]);
size += sizes[i];
}
GNUNET_assert (size < 65536);
memcpy (&((char *) &retval[1])[i], pbu[5], sizes[5]);
for (i = 0; i < 6; i++)
{
- mpz_clear (*pkv[i]);
+ gcry_mpi_release (*pkv[i]);
free (pbu[i]);
}
return retval;