libbb/hash_sha.c -> libbb/hash_md5_sha.c
authorDenys Vlasenko <dvlasenk@redhat.com>
Mon, 18 Oct 2010 11:47:47 +0000 (13:47 +0200)
committerDenys Vlasenko <dvlasenk@redhat.com>
Mon, 18 Oct 2010 11:47:47 +0000 (13:47 +0200)
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
libbb/Kbuild.src
libbb/hash_md5_sha.c [new file with mode: 0644]
libbb/hash_sha.c [deleted file]

index 5b3be413bdfe0b35b94ca56681ec5602eb572b91..806cace286fe68bfe5bd7326979fecd00b94ed11 100644 (file)
@@ -60,9 +60,9 @@ lib-y += login.o
 lib-y += make_directory.o
 lib-y += makedev.o
 lib-y += match_fstype.o
-# Alternative (disabled) implementation
+lib-y += hash_md5_sha.o
+# Alternative (disabled) MD5 implementation
 #lib-y += hash_md5prime.o
-lib-y += hash_sha.o
 lib-y += messages.o
 lib-y += mode_string.o
 lib-y += obscure.o
diff --git a/libbb/hash_md5_sha.c b/libbb/hash_md5_sha.c
new file mode 100644 (file)
index 0000000..3e708ef
--- /dev/null
@@ -0,0 +1,962 @@
+/* vi: set sw=4 ts=4: */
+/*
+ * Based on shasum from http://www.netsw.org/crypto/hash/
+ * Majorly hacked up to use Dr Brian Gladman's sha1 code
+ *
+ * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
+ * Copyright (C) 2003 Glenn L. McGrath
+ * Copyright (C) 2003 Erik Andersen
+ *
+ * Licensed under GPLv2 or later, see file LICENSE in this source tree.
+ *
+ * ---------------------------------------------------------------------------
+ * Issue Date: 10/11/2002
+ *
+ * This is a byte oriented version of SHA1 that operates on arrays of bytes
+ * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
+ *
+ * ---------------------------------------------------------------------------
+ *
+ * SHA256 and SHA512 parts are:
+ * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
+ * Shrank by Denys Vlasenko.
+ *
+ * ---------------------------------------------------------------------------
+ *
+ * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
+ * and replace "4096" with something like "2000 + time(NULL) % 2097",
+ * then rebuild and compare "shaNNNsum bigfile" results.
+ */
+
+#include "libbb.h"
+
+/* gcc 4.2.1 optimizes rotr64 better with inline than with macro
+ * (for rotX32, there is no difference). Why? My guess is that
+ * macro requires clever common subexpression elimination heuristics
+ * in gcc, while inline basically forces it to happen.
+ */
+//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
+static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
+{
+       return (x << n) | (x >> (32 - n));
+}
+//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
+static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
+{
+       return (x >> n) | (x << (32 - n));
+}
+/* rotr64 in needed for sha512 only: */
+//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
+static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
+{
+       return (x >> n) | (x << (64 - n));
+}
+
+
+static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
+{
+       unsigned t;
+       uint32_t W[80], a, b, c, d, e;
+       const uint32_t *words = (uint32_t*) ctx->wbuffer;
+
+       for (t = 0; t < 16; ++t)
+               W[t] = SWAP_BE32(words[t]);
+       for (/*t = 16*/; t < 80; ++t) {
+               uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
+               W[t] = rotl32(T, 1);
+       }
+
+       a = ctx->hash[0];
+       b = ctx->hash[1];
+       c = ctx->hash[2];
+       d = ctx->hash[3];
+       e = ctx->hash[4];
+
+#undef ch
+#undef parity
+#undef maj
+#undef rnd
+#define ch(x,y,z)        ((z) ^ ((x) & ((y) ^ (z))))
+#define parity(x,y,z)    ((x) ^ (y) ^ (z))
+#define maj(x,y,z)       (((x) & (y)) | ((z) & ((x) | (y))))
+/* A normal version as set out in the FIPS.  */
+#define rnd(f,k) \
+       do { \
+               uint32_t T = a; \
+               a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \
+               e = d; \
+               d = c; \
+               c = rotl32(b, 30); \
+               b = T; \
+       } while (0)
+
+       for (t = 0; t < 20; ++t)
+               rnd(ch, 0x5a827999);
+
+       for (/*t = 20*/; t < 40; ++t)
+               rnd(parity, 0x6ed9eba1);
+
+       for (/*t = 40*/; t < 60; ++t)
+               rnd(maj, 0x8f1bbcdc);
+
+       for (/*t = 60*/; t < 80; ++t)
+               rnd(parity, 0xca62c1d6);
+#undef ch
+#undef parity
+#undef maj
+#undef rnd
+
+       ctx->hash[0] += a;
+       ctx->hash[1] += b;
+       ctx->hash[2] += c;
+       ctx->hash[3] += d;
+       ctx->hash[4] += e;
+}
+
+/* Constants for SHA512 from FIPS 180-2:4.2.3.
+ * SHA256 constants from FIPS 180-2:4.2.2
+ * are the most significant half of first 64 elements
+ * of the same array.
+ */
+static const uint64_t sha_K[80] = {
+       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+       0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+       0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+       0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+       0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+       0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+       0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+       0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+       0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+       0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+       0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+       0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+       0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+       0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+       0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+       0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+       0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+       0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+       0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+       0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+       0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+       0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+       0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+       0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+       0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
+       0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+       0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+       0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+       0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+       0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+       0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
+};
+
+#undef Ch
+#undef Maj
+#undef S0
+#undef S1
+#undef R0
+#undef R1
+
+static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
+{
+       unsigned t;
+       uint32_t W[64], a, b, c, d, e, f, g, h;
+       const uint32_t *words = (uint32_t*) ctx->wbuffer;
+
+       /* Operators defined in FIPS 180-2:4.1.2.  */
+#define Ch(x, y, z) ((x & y) ^ (~x & z))
+#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
+#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
+#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
+#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
+#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
+
+       /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
+       for (t = 0; t < 16; ++t)
+               W[t] = SWAP_BE32(words[t]);
+       for (/*t = 16*/; t < 64; ++t)
+               W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
+
+       a = ctx->hash[0];
+       b = ctx->hash[1];
+       c = ctx->hash[2];
+       d = ctx->hash[3];
+       e = ctx->hash[4];
+       f = ctx->hash[5];
+       g = ctx->hash[6];
+       h = ctx->hash[7];
+
+       /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
+       for (t = 0; t < 64; ++t) {
+               /* Need to fetch upper half of sha_K[t]
+                * (I hope compiler is clever enough to just fetch
+                * upper half)
+                */
+               uint32_t K_t = sha_K[t] >> 32;
+               uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
+               uint32_t T2 = S0(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+       }
+#undef Ch
+#undef Maj
+#undef S0
+#undef S1
+#undef R0
+#undef R1
+       /* Add the starting values of the context according to FIPS 180-2:6.2.2
+          step 4.  */
+       ctx->hash[0] += a;
+       ctx->hash[1] += b;
+       ctx->hash[2] += c;
+       ctx->hash[3] += d;
+       ctx->hash[4] += e;
+       ctx->hash[5] += f;
+       ctx->hash[6] += g;
+       ctx->hash[7] += h;
+}
+
+static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
+{
+       unsigned t;
+       uint64_t W[80];
+       /* On i386, having assignments here (not later as sha256 does)
+        * produces 99 bytes smaller code with gcc 4.3.1
+        */
+       uint64_t a = ctx->hash[0];
+       uint64_t b = ctx->hash[1];
+       uint64_t c = ctx->hash[2];
+       uint64_t d = ctx->hash[3];
+       uint64_t e = ctx->hash[4];
+       uint64_t f = ctx->hash[5];
+       uint64_t g = ctx->hash[6];
+       uint64_t h = ctx->hash[7];
+       const uint64_t *words = (uint64_t*) ctx->wbuffer;
+
+       /* Operators defined in FIPS 180-2:4.1.2.  */
+#define Ch(x, y, z) ((x & y) ^ (~x & z))
+#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
+#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
+#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
+#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
+#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
+
+       /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
+       for (t = 0; t < 16; ++t)
+               W[t] = SWAP_BE64(words[t]);
+       for (/*t = 16*/; t < 80; ++t)
+               W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
+
+       /* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
+       for (t = 0; t < 80; ++t) {
+               uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
+               uint64_t T2 = S0(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+       }
+#undef Ch
+#undef Maj
+#undef S0
+#undef S1
+#undef R0
+#undef R1
+       /* Add the starting values of the context according to FIPS 180-2:6.3.2
+          step 4.  */
+       ctx->hash[0] += a;
+       ctx->hash[1] += b;
+       ctx->hash[2] += c;
+       ctx->hash[3] += d;
+       ctx->hash[4] += e;
+       ctx->hash[5] += f;
+       ctx->hash[6] += g;
+       ctx->hash[7] += h;
+}
+
+
+void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
+{
+       ctx->hash[0] = 0x67452301;
+       ctx->hash[1] = 0xefcdab89;
+       ctx->hash[2] = 0x98badcfe;
+       ctx->hash[3] = 0x10325476;
+       ctx->hash[4] = 0xc3d2e1f0;
+       ctx->total64 = 0;
+       ctx->process_block = sha1_process_block64;
+}
+
+static const uint32_t init256[] = {
+       0x6a09e667,
+       0xbb67ae85,
+       0x3c6ef372,
+       0xa54ff53a,
+       0x510e527f,
+       0x9b05688c,
+       0x1f83d9ab,
+       0x5be0cd19,
+       0,
+       0,
+};
+static const uint32_t init512_lo[] = {
+       0xf3bcc908,
+       0x84caa73b,
+       0xfe94f82b,
+       0x5f1d36f1,
+       0xade682d1,
+       0x2b3e6c1f,
+       0xfb41bd6b,
+       0x137e2179,
+       0,
+       0,
+};
+
+/* Initialize structure containing state of computation.
+   (FIPS 180-2:5.3.2)  */
+void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
+{
+       memcpy(ctx->hash, init256, sizeof(init256));
+       /*ctx->total64 = 0; - done by extending init256 with two 32-bit zeros */
+       ctx->process_block = sha256_process_block64;
+}
+
+/* Initialize structure containing state of computation.
+   (FIPS 180-2:5.3.3)  */
+void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
+{
+       int i;
+       /* Two extra iterations zero out ctx->total64[] */
+       for (i = 0; i < 8+2; i++)
+               ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
+       /*ctx->total64[0] = ctx->total64[1] = 0; - already done */
+}
+
+
+/* Used also for sha256 */
+void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len)
+{
+       unsigned bufpos = ctx->total64 & 63;
+       unsigned remaining;
+
+       ctx->total64 += len;
+#if 0
+       remaining = 64 - bufpos;
+
+       /* Hash whole blocks */
+       while (len >= remaining) {
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               buffer = (const char *)buffer + remaining;
+               len -= remaining;
+               remaining = 64;
+               bufpos = 0;
+               ctx->process_block(ctx);
+       }
+
+       /* Save last, partial blosk */
+       memcpy(ctx->wbuffer + bufpos, buffer, len);
+#else
+       /* Tiny bit smaller code */
+       while (1) {
+               remaining = 64 - bufpos;
+               if (remaining > len)
+                       remaining = len;
+               /* Copy data into aligned buffer */
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               len -= remaining;
+               buffer = (const char *)buffer + remaining;
+               bufpos += remaining;
+               /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
+               bufpos -= 64;
+               if (bufpos != 0)
+                       break;
+               /* Buffer is filled up, process it */
+               ctx->process_block(ctx);
+               /*bufpos = 0; - already is */
+       }
+#endif
+}
+
+void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
+{
+       unsigned bufpos = ctx->total64[0] & 127;
+       unsigned remaining;
+
+       /* First increment the byte count.  FIPS 180-2 specifies the possible
+          length of the file up to 2^128 _bits_.
+          We compute the number of _bytes_ and convert to bits later.  */
+       ctx->total64[0] += len;
+       if (ctx->total64[0] < len)
+               ctx->total64[1]++;
+#if 0
+       remaining = 128 - bufpos;
+
+       /* Hash whole blocks */
+       while (len >= remaining) {
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               buffer = (const char *)buffer + remaining;
+               len -= remaining;
+               remaining = 128;
+               bufpos = 0;
+               sha512_process_block128(ctx);
+       }
+
+       /* Save last, partial blosk */
+       memcpy(ctx->wbuffer + bufpos, buffer, len);
+#else
+       while (1) {
+               remaining = 128 - bufpos;
+               if (remaining > len)
+                       remaining = len;
+               /* Copy data into aligned buffer */
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               len -= remaining;
+               buffer = (const char *)buffer + remaining;
+               bufpos += remaining;
+               /* clever way to do "if (bufpos != 128) break; ... ; bufpos = 0;" */
+               bufpos -= 128;
+               if (bufpos != 0)
+                       break;
+               /* Buffer is filled up, process it */
+               sha512_process_block128(ctx);
+               /*bufpos = 0; - already is */
+       }
+#endif
+}
+
+
+/* Used also for sha256 */
+void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
+{
+       unsigned bufpos = ctx->total64 & 63;
+
+       /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
+       ctx->wbuffer[bufpos++] = 0x80;
+
+       /* This loop iterates either once or twice, no more, no less */
+       while (1) {
+               unsigned remaining = 64 - bufpos;
+               memset(ctx->wbuffer + bufpos, 0, remaining);
+               /* Do we have enough space for the length count? */
+               if (remaining >= 8) {
+                       /* Store the 64-bit counter of bits in the buffer in BE format */
+                       uint64_t t = ctx->total64 << 3;
+                       t = SWAP_BE64(t);
+                       /* wbuffer is suitably aligned for this */
+                       *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
+               }
+               ctx->process_block(ctx);
+               if (remaining >= 8)
+                       break;
+               bufpos = 0;
+       }
+
+       bufpos = (ctx->process_block == sha1_process_block64) ? 5 : 8;
+       /* This way we do not impose alignment constraints on resbuf: */
+       if (BB_LITTLE_ENDIAN) {
+               unsigned i;
+               for (i = 0; i < bufpos; ++i)
+                       ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
+       }
+       memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * bufpos);
+}
+
+void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
+{
+       unsigned bufpos = ctx->total64[0] & 127;
+
+       /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
+       ctx->wbuffer[bufpos++] = 0x80;
+
+       while (1) {
+               unsigned remaining = 128 - bufpos;
+               memset(ctx->wbuffer + bufpos, 0, remaining);
+               if (remaining >= 16) {
+                       /* Store the 128-bit counter of bits in the buffer in BE format */
+                       uint64_t t;
+                       t = ctx->total64[0] << 3;
+                       t = SWAP_BE64(t);
+                       *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
+                       t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
+                       t = SWAP_BE64(t);
+                       *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
+               }
+               sha512_process_block128(ctx);
+               if (remaining >= 16)
+                       break;
+               bufpos = 0;
+       }
+
+       if (BB_LITTLE_ENDIAN) {
+               unsigned i;
+               for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
+                       ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
+       }
+       memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
+}
+
+
+/*
+ * Compute MD5 checksum of strings according to the
+ * definition of MD5 in RFC 1321 from April 1992.
+ *
+ * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
+ *
+ * Copyright (C) 1995-1999 Free Software Foundation, Inc.
+ * Copyright (C) 2001 Manuel Novoa III
+ * Copyright (C) 2003 Glenn L. McGrath
+ * Copyright (C) 2003 Erik Andersen
+ *
+ * Licensed under GPLv2 or later, see file LICENSE in this source tree.
+ */
+
+/* 0: fastest, 3: smallest */
+#if CONFIG_MD5_SIZE_VS_SPEED < 0
+# define MD5_SIZE_VS_SPEED 0
+#elif CONFIG_MD5_SIZE_VS_SPEED > 3
+# define MD5_SIZE_VS_SPEED 3
+#else
+# define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
+#endif
+
+/* Initialize structure containing state of computation.
+ * (RFC 1321, 3.3: Step 3)
+ */
+void FAST_FUNC md5_begin(md5_ctx_t *ctx)
+{
+       ctx->A = 0x67452301;
+       ctx->B = 0xefcdab89;
+       ctx->C = 0x98badcfe;
+       ctx->D = 0x10325476;
+       ctx->total64 = 0;
+}
+
+/* These are the four functions used in the four steps of the MD5 algorithm
+ * and defined in the RFC 1321.  The first function is a little bit optimized
+ * (as found in Colin Plumbs public domain implementation).
+ * #define FF(b, c, d) ((b & c) | (~b & d))
+ */
+#undef FF
+#undef FG
+#undef FH
+#undef FI
+#define FF(b, c, d) (d ^ (b & (c ^ d)))
+#define FG(b, c, d) FF(d, b, c)
+#define FH(b, c, d) (b ^ c ^ d)
+#define FI(b, c, d) (c ^ (b | ~d))
+
+/* Hash a single block, 64 bytes long and 4-byte aligned */
+static void md5_process_block64(md5_ctx_t *ctx)
+{
+#if MD5_SIZE_VS_SPEED > 0
+       /* Before we start, one word to the strange constants.
+          They are defined in RFC 1321 as
+          T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
+        */
+       static const uint32_t C_array[] = {
+               /* round 1 */
+               0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
+               0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
+               0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
+               0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
+               /* round 2 */
+               0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
+               0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
+               0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
+               0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
+               /* round 3 */
+               0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
+               0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
+               0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
+               0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
+               /* round 4 */
+               0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
+               0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
+               0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
+               0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
+       };
+       static const char P_array[] ALIGN1 = {
+# if MD5_SIZE_VS_SPEED > 1
+               0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,   /* 1 */
+# endif
+               1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12,   /* 2 */
+               5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2,   /* 3 */
+               0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9    /* 4 */
+       };
+#endif
+       uint32_t *words = (void*) ctx->wbuffer;
+       uint32_t A = ctx->A;
+       uint32_t B = ctx->B;
+       uint32_t C = ctx->C;
+       uint32_t D = ctx->D;
+
+#if MD5_SIZE_VS_SPEED >= 2  /* 2 or 3 */
+
+       static const char S_array[] ALIGN1 = {
+               7, 12, 17, 22,
+               5, 9, 14, 20,
+               4, 11, 16, 23,
+               6, 10, 15, 21
+       };
+       const uint32_t *pc;
+       const char *pp;
+       const char *ps;
+       int i;
+       uint32_t temp;
+
+# if BB_BIG_ENDIAN
+       for (i = 0; i < 16; i++)
+               words[i] = SWAP_LE32(words[i]);
+# endif
+
+# if MD5_SIZE_VS_SPEED == 3
+       pc = C_array;
+       pp = P_array;
+       ps = S_array - 4;
+
+       for (i = 0; i < 64; i++) {
+               if ((i & 0x0f) == 0)
+                       ps += 4;
+               temp = A;
+               switch (i >> 4) {
+               case 0:
+                       temp += FF(B, C, D);
+                       break;
+               case 1:
+                       temp += FG(B, C, D);
+                       break;
+               case 2:
+                       temp += FH(B, C, D);
+                       break;
+               case 3:
+                       temp += FI(B, C, D);
+               }
+               temp += words[(int) (*pp++)] + *pc++;
+               temp = rotl32(temp, ps[i & 3]);
+               temp += B;
+               A = D;
+               D = C;
+               C = B;
+               B = temp;
+       }
+# else  /* MD5_SIZE_VS_SPEED == 2 */
+       pc = C_array;
+       pp = P_array;
+       ps = S_array;
+
+       for (i = 0; i < 16; i++) {
+               temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
+               temp = rotl32(temp, ps[i & 3]);
+               temp += B;
+               A = D;
+               D = C;
+               C = B;
+               B = temp;
+       }
+       ps += 4;
+       for (i = 0; i < 16; i++) {
+               temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
+               temp = rotl32(temp, ps[i & 3]);
+               temp += B;
+               A = D;
+               D = C;
+               C = B;
+               B = temp;
+       }
+       ps += 4;
+       for (i = 0; i < 16; i++) {
+               temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
+               temp = rotl32(temp, ps[i & 3]);
+               temp += B;
+               A = D;
+               D = C;
+               C = B;
+               B = temp;
+       }
+       ps += 4;
+       for (i = 0; i < 16; i++) {
+               temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
+               temp = rotl32(temp, ps[i & 3]);
+               temp += B;
+               A = D;
+               D = C;
+               C = B;
+               B = temp;
+       }
+# endif
+       /* Add checksum to the starting values */
+       ctx->A += A;
+       ctx->B += B;
+       ctx->C += C;
+       ctx->D += D;
+
+#else  /* MD5_SIZE_VS_SPEED == 0 or 1 */
+
+       uint32_t A_save = A;
+       uint32_t B_save = B;
+       uint32_t C_save = C;
+       uint32_t D_save = D;
+# if MD5_SIZE_VS_SPEED == 1
+       const uint32_t *pc;
+       const char *pp;
+       int i;
+# endif
+
+       /* First round: using the given function, the context and a constant
+          the next context is computed.  Because the algorithm's processing
+          unit is a 32-bit word and it is determined to work on words in
+          little endian byte order we perhaps have to change the byte order
+          before the computation.  To reduce the work for the next steps
+          we save swapped words in WORDS array.  */
+# undef OP
+# define OP(a, b, c, d, s, T) \
+       do { \
+               a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
+               words++; \
+               a = rotl32(a, s); \
+               a += b; \
+       } while (0)
+
+       /* Round 1 */
+# if MD5_SIZE_VS_SPEED == 1
+       pc = C_array;
+       for (i = 0; i < 4; i++) {
+               OP(A, B, C, D, 7, *pc++);
+               OP(D, A, B, C, 12, *pc++);
+               OP(C, D, A, B, 17, *pc++);
+               OP(B, C, D, A, 22, *pc++);
+       }
+# else
+       OP(A, B, C, D, 7, 0xd76aa478);
+       OP(D, A, B, C, 12, 0xe8c7b756);
+       OP(C, D, A, B, 17, 0x242070db);
+       OP(B, C, D, A, 22, 0xc1bdceee);
+       OP(A, B, C, D, 7, 0xf57c0faf);
+       OP(D, A, B, C, 12, 0x4787c62a);
+       OP(C, D, A, B, 17, 0xa8304613);
+       OP(B, C, D, A, 22, 0xfd469501);
+       OP(A, B, C, D, 7, 0x698098d8);
+       OP(D, A, B, C, 12, 0x8b44f7af);
+       OP(C, D, A, B, 17, 0xffff5bb1);
+       OP(B, C, D, A, 22, 0x895cd7be);
+       OP(A, B, C, D, 7, 0x6b901122);
+       OP(D, A, B, C, 12, 0xfd987193);
+       OP(C, D, A, B, 17, 0xa679438e);
+       OP(B, C, D, A, 22, 0x49b40821);
+# endif
+       words -= 16;
+
+       /* For the second to fourth round we have the possibly swapped words
+          in WORDS.  Redefine the macro to take an additional first
+          argument specifying the function to use.  */
+# undef OP
+# define OP(f, a, b, c, d, k, s, T) \
+       do { \
+               a += f(b, c, d) + words[k] + T; \
+               a = rotl32(a, s); \
+               a += b; \
+       } while (0)
+
+       /* Round 2 */
+# if MD5_SIZE_VS_SPEED == 1
+       pp = P_array;
+       for (i = 0; i < 4; i++) {
+               OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
+               OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
+               OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
+               OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
+       }
+# else
+       OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
+       OP(FG, D, A, B, C, 6, 9, 0xc040b340);
+       OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
+       OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
+       OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
+       OP(FG, D, A, B, C, 10, 9, 0x02441453);
+       OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
+       OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
+       OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
+       OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
+       OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
+       OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
+       OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
+       OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
+       OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
+       OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
+# endif
+
+       /* Round 3 */
+# if MD5_SIZE_VS_SPEED == 1
+       for (i = 0; i < 4; i++) {
+               OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
+               OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
+               OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
+               OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
+       }
+# else
+       OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
+       OP(FH, D, A, B, C, 8, 11, 0x8771f681);
+       OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
+       OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
+       OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
+       OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
+       OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
+       OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
+       OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
+       OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
+       OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
+       OP(FH, B, C, D, A, 6, 23, 0x04881d05);
+       OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
+       OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
+       OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
+       OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
+# endif
+
+       /* Round 4 */
+# if MD5_SIZE_VS_SPEED == 1
+       for (i = 0; i < 4; i++) {
+               OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
+               OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
+               OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
+               OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
+       }
+# else
+       OP(FI, A, B, C, D, 0, 6, 0xf4292244);
+       OP(FI, D, A, B, C, 7, 10, 0x432aff97);
+       OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
+       OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
+       OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
+       OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
+       OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
+       OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
+       OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
+       OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
+       OP(FI, C, D, A, B, 6, 15, 0xa3014314);
+       OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
+       OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
+       OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
+       OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
+       OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
+# undef OP
+# endif
+       /* Add checksum to the starting values */
+       ctx->A = A_save + A;
+       ctx->B = B_save + B;
+       ctx->C = C_save + C;
+       ctx->D = D_save + D;
+#endif
+}
+#undef FF
+#undef FG
+#undef FH
+#undef FI
+
+/* Feed data through a temporary buffer to call md5_hash_aligned_block()
+ * with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
+ * This function's internal buffer remembers previous data until it has 64
+ * bytes worth to pass on.  Call md5_end() to flush this buffer. */
+void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
+{
+       unsigned bufpos = ctx->total64 & 63;
+       unsigned remaining;
+
+       /* RFC 1321 specifies the possible length of the file up to 2^64 bits.
+        * Here we only track the number of bytes.  */
+       ctx->total64 += len;
+#if 0
+       remaining = 64 - bufpos;
+
+       /* Hash whole blocks */
+       while (len >= remaining) {
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               buffer = (const char *)buffer + remaining;
+               len -= remaining;
+               remaining = 64;
+               bufpos = 0;
+               md5_process_block64(ctx);
+       }
+
+       /* Save last, partial blosk */
+       memcpy(ctx->wbuffer + bufpos, buffer, len);
+#else
+       /* Tiny bit smaller code */
+       while (1) {
+               remaining = 64 - bufpos;
+               if (remaining > len)
+                       remaining = len;
+               /* Copy data into aligned buffer */
+               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
+               len -= remaining;
+               buffer = (const char *)buffer + remaining;
+               bufpos += remaining;
+               /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
+               bufpos -= 64;
+               if (bufpos != 0)
+                       break;
+               /* Buffer is filled up, process it */
+               md5_process_block64(ctx);
+               /*bufpos = 0; - already is */
+       }
+#endif
+}
+
+/* Process the remaining bytes in the buffer and put result from CTX
+ * in first 16 bytes following RESBUF.  The result is always in little
+ * endian byte order, so that a byte-wise output yields to the wanted
+ * ASCII representation of the message digest.
+ */
+void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
+{
+       unsigned bufpos = ctx->total64 & 63;
+       /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
+       ctx->wbuffer[bufpos++] = 0x80;
+
+       /* This loop iterates either once or twice, no more, no less */
+       while (1) {
+               unsigned remaining = 64 - bufpos;
+               memset(ctx->wbuffer + bufpos, 0, remaining);
+               /* Do we have enough space for the length count? */
+               if (remaining >= 8) {
+                       /* Store the 64-bit counter of bits in the buffer in LE format */
+                       uint64_t t = ctx->total64 << 3;
+                       t = SWAP_LE64(t);
+                       /* wbuffer is suitably aligned for this */
+                       *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
+               }
+               md5_process_block64(ctx);
+               if (remaining >= 8)
+                       break;
+               bufpos = 0;
+       }
+
+       /* The MD5 result is in little endian byte order.
+        * We (ab)use the fact that A-D are consecutive in memory.
+        */
+#if BB_BIG_ENDIAN
+       ctx->A = SWAP_LE32(ctx->A);
+       ctx->B = SWAP_LE32(ctx->B);
+       ctx->C = SWAP_LE32(ctx->C);
+       ctx->D = SWAP_LE32(ctx->D);
+#endif
+       memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4);
+}
diff --git a/libbb/hash_sha.c b/libbb/hash_sha.c
deleted file mode 100644 (file)
index 3e708ef..0000000
+++ /dev/null
@@ -1,962 +0,0 @@
-/* vi: set sw=4 ts=4: */
-/*
- * Based on shasum from http://www.netsw.org/crypto/hash/
- * Majorly hacked up to use Dr Brian Gladman's sha1 code
- *
- * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * Copyright (C) 2003 Glenn L. McGrath
- * Copyright (C) 2003 Erik Andersen
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- *
- * ---------------------------------------------------------------------------
- * Issue Date: 10/11/2002
- *
- * This is a byte oriented version of SHA1 that operates on arrays of bytes
- * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
- *
- * ---------------------------------------------------------------------------
- *
- * SHA256 and SHA512 parts are:
- * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
- * Shrank by Denys Vlasenko.
- *
- * ---------------------------------------------------------------------------
- *
- * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
- * and replace "4096" with something like "2000 + time(NULL) % 2097",
- * then rebuild and compare "shaNNNsum bigfile" results.
- */
-
-#include "libbb.h"
-
-/* gcc 4.2.1 optimizes rotr64 better with inline than with macro
- * (for rotX32, there is no difference). Why? My guess is that
- * macro requires clever common subexpression elimination heuristics
- * in gcc, while inline basically forces it to happen.
- */
-//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
-static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
-{
-       return (x << n) | (x >> (32 - n));
-}
-//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
-static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
-{
-       return (x >> n) | (x << (32 - n));
-}
-/* rotr64 in needed for sha512 only: */
-//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
-static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
-{
-       return (x >> n) | (x << (64 - n));
-}
-
-
-static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
-{
-       unsigned t;
-       uint32_t W[80], a, b, c, d, e;
-       const uint32_t *words = (uint32_t*) ctx->wbuffer;
-
-       for (t = 0; t < 16; ++t)
-               W[t] = SWAP_BE32(words[t]);
-       for (/*t = 16*/; t < 80; ++t) {
-               uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
-               W[t] = rotl32(T, 1);
-       }
-
-       a = ctx->hash[0];
-       b = ctx->hash[1];
-       c = ctx->hash[2];
-       d = ctx->hash[3];
-       e = ctx->hash[4];
-
-#undef ch
-#undef parity
-#undef maj
-#undef rnd
-#define ch(x,y,z)        ((z) ^ ((x) & ((y) ^ (z))))
-#define parity(x,y,z)    ((x) ^ (y) ^ (z))
-#define maj(x,y,z)       (((x) & (y)) | ((z) & ((x) | (y))))
-/* A normal version as set out in the FIPS.  */
-#define rnd(f,k) \
-       do { \
-               uint32_t T = a; \
-               a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \
-               e = d; \
-               d = c; \
-               c = rotl32(b, 30); \
-               b = T; \
-       } while (0)
-
-       for (t = 0; t < 20; ++t)
-               rnd(ch, 0x5a827999);
-
-       for (/*t = 20*/; t < 40; ++t)
-               rnd(parity, 0x6ed9eba1);
-
-       for (/*t = 40*/; t < 60; ++t)
-               rnd(maj, 0x8f1bbcdc);
-
-       for (/*t = 60*/; t < 80; ++t)
-               rnd(parity, 0xca62c1d6);
-#undef ch
-#undef parity
-#undef maj
-#undef rnd
-
-       ctx->hash[0] += a;
-       ctx->hash[1] += b;
-       ctx->hash[2] += c;
-       ctx->hash[3] += d;
-       ctx->hash[4] += e;
-}
-
-/* Constants for SHA512 from FIPS 180-2:4.2.3.
- * SHA256 constants from FIPS 180-2:4.2.2
- * are the most significant half of first 64 elements
- * of the same array.
- */
-static const uint64_t sha_K[80] = {
-       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
-       0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
-       0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
-       0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
-       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
-       0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
-       0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
-       0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
-       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
-       0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
-       0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
-       0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
-       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
-       0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
-       0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
-       0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
-       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
-       0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
-       0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
-       0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
-       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
-       0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
-       0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
-       0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
-       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
-       0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
-       0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
-       0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
-       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
-       0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
-       0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
-       0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
-       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
-       0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
-       0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
-       0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
-       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
-       0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
-       0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
-       0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
-};
-
-#undef Ch
-#undef Maj
-#undef S0
-#undef S1
-#undef R0
-#undef R1
-
-static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
-{
-       unsigned t;
-       uint32_t W[64], a, b, c, d, e, f, g, h;
-       const uint32_t *words = (uint32_t*) ctx->wbuffer;
-
-       /* Operators defined in FIPS 180-2:4.1.2.  */
-#define Ch(x, y, z) ((x & y) ^ (~x & z))
-#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
-#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
-#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
-#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
-#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
-
-       /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
-       for (t = 0; t < 16; ++t)
-               W[t] = SWAP_BE32(words[t]);
-       for (/*t = 16*/; t < 64; ++t)
-               W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
-
-       a = ctx->hash[0];
-       b = ctx->hash[1];
-       c = ctx->hash[2];
-       d = ctx->hash[3];
-       e = ctx->hash[4];
-       f = ctx->hash[5];
-       g = ctx->hash[6];
-       h = ctx->hash[7];
-
-       /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
-       for (t = 0; t < 64; ++t) {
-               /* Need to fetch upper half of sha_K[t]
-                * (I hope compiler is clever enough to just fetch
-                * upper half)
-                */
-               uint32_t K_t = sha_K[t] >> 32;
-               uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
-               uint32_t T2 = S0(a) + Maj(a, b, c);
-               h = g;
-               g = f;
-               f = e;
-               e = d + T1;
-               d = c;
-               c = b;
-               b = a;
-               a = T1 + T2;
-       }
-#undef Ch
-#undef Maj
-#undef S0
-#undef S1
-#undef R0
-#undef R1
-       /* Add the starting values of the context according to FIPS 180-2:6.2.2
-          step 4.  */
-       ctx->hash[0] += a;
-       ctx->hash[1] += b;
-       ctx->hash[2] += c;
-       ctx->hash[3] += d;
-       ctx->hash[4] += e;
-       ctx->hash[5] += f;
-       ctx->hash[6] += g;
-       ctx->hash[7] += h;
-}
-
-static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
-{
-       unsigned t;
-       uint64_t W[80];
-       /* On i386, having assignments here (not later as sha256 does)
-        * produces 99 bytes smaller code with gcc 4.3.1
-        */
-       uint64_t a = ctx->hash[0];
-       uint64_t b = ctx->hash[1];
-       uint64_t c = ctx->hash[2];
-       uint64_t d = ctx->hash[3];
-       uint64_t e = ctx->hash[4];
-       uint64_t f = ctx->hash[5];
-       uint64_t g = ctx->hash[6];
-       uint64_t h = ctx->hash[7];
-       const uint64_t *words = (uint64_t*) ctx->wbuffer;
-
-       /* Operators defined in FIPS 180-2:4.1.2.  */
-#define Ch(x, y, z) ((x & y) ^ (~x & z))
-#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
-#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
-#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
-#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
-#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
-
-       /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
-       for (t = 0; t < 16; ++t)
-               W[t] = SWAP_BE64(words[t]);
-       for (/*t = 16*/; t < 80; ++t)
-               W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
-
-       /* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
-       for (t = 0; t < 80; ++t) {
-               uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
-               uint64_t T2 = S0(a) + Maj(a, b, c);
-               h = g;
-               g = f;
-               f = e;
-               e = d + T1;
-               d = c;
-               c = b;
-               b = a;
-               a = T1 + T2;
-       }
-#undef Ch
-#undef Maj
-#undef S0
-#undef S1
-#undef R0
-#undef R1
-       /* Add the starting values of the context according to FIPS 180-2:6.3.2
-          step 4.  */
-       ctx->hash[0] += a;
-       ctx->hash[1] += b;
-       ctx->hash[2] += c;
-       ctx->hash[3] += d;
-       ctx->hash[4] += e;
-       ctx->hash[5] += f;
-       ctx->hash[6] += g;
-       ctx->hash[7] += h;
-}
-
-
-void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
-{
-       ctx->hash[0] = 0x67452301;
-       ctx->hash[1] = 0xefcdab89;
-       ctx->hash[2] = 0x98badcfe;
-       ctx->hash[3] = 0x10325476;
-       ctx->hash[4] = 0xc3d2e1f0;
-       ctx->total64 = 0;
-       ctx->process_block = sha1_process_block64;
-}
-
-static const uint32_t init256[] = {
-       0x6a09e667,
-       0xbb67ae85,
-       0x3c6ef372,
-       0xa54ff53a,
-       0x510e527f,
-       0x9b05688c,
-       0x1f83d9ab,
-       0x5be0cd19,
-       0,
-       0,
-};
-static const uint32_t init512_lo[] = {
-       0xf3bcc908,
-       0x84caa73b,
-       0xfe94f82b,
-       0x5f1d36f1,
-       0xade682d1,
-       0x2b3e6c1f,
-       0xfb41bd6b,
-       0x137e2179,
-       0,
-       0,
-};
-
-/* Initialize structure containing state of computation.
-   (FIPS 180-2:5.3.2)  */
-void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
-{
-       memcpy(ctx->hash, init256, sizeof(init256));
-       /*ctx->total64 = 0; - done by extending init256 with two 32-bit zeros */
-       ctx->process_block = sha256_process_block64;
-}
-
-/* Initialize structure containing state of computation.
-   (FIPS 180-2:5.3.3)  */
-void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
-{
-       int i;
-       /* Two extra iterations zero out ctx->total64[] */
-       for (i = 0; i < 8+2; i++)
-               ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
-       /*ctx->total64[0] = ctx->total64[1] = 0; - already done */
-}
-
-
-/* Used also for sha256 */
-void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len)
-{
-       unsigned bufpos = ctx->total64 & 63;
-       unsigned remaining;
-
-       ctx->total64 += len;
-#if 0
-       remaining = 64 - bufpos;
-
-       /* Hash whole blocks */
-       while (len >= remaining) {
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               buffer = (const char *)buffer + remaining;
-               len -= remaining;
-               remaining = 64;
-               bufpos = 0;
-               ctx->process_block(ctx);
-       }
-
-       /* Save last, partial blosk */
-       memcpy(ctx->wbuffer + bufpos, buffer, len);
-#else
-       /* Tiny bit smaller code */
-       while (1) {
-               remaining = 64 - bufpos;
-               if (remaining > len)
-                       remaining = len;
-               /* Copy data into aligned buffer */
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               len -= remaining;
-               buffer = (const char *)buffer + remaining;
-               bufpos += remaining;
-               /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
-               bufpos -= 64;
-               if (bufpos != 0)
-                       break;
-               /* Buffer is filled up, process it */
-               ctx->process_block(ctx);
-               /*bufpos = 0; - already is */
-       }
-#endif
-}
-
-void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
-{
-       unsigned bufpos = ctx->total64[0] & 127;
-       unsigned remaining;
-
-       /* First increment the byte count.  FIPS 180-2 specifies the possible
-          length of the file up to 2^128 _bits_.
-          We compute the number of _bytes_ and convert to bits later.  */
-       ctx->total64[0] += len;
-       if (ctx->total64[0] < len)
-               ctx->total64[1]++;
-#if 0
-       remaining = 128 - bufpos;
-
-       /* Hash whole blocks */
-       while (len >= remaining) {
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               buffer = (const char *)buffer + remaining;
-               len -= remaining;
-               remaining = 128;
-               bufpos = 0;
-               sha512_process_block128(ctx);
-       }
-
-       /* Save last, partial blosk */
-       memcpy(ctx->wbuffer + bufpos, buffer, len);
-#else
-       while (1) {
-               remaining = 128 - bufpos;
-               if (remaining > len)
-                       remaining = len;
-               /* Copy data into aligned buffer */
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               len -= remaining;
-               buffer = (const char *)buffer + remaining;
-               bufpos += remaining;
-               /* clever way to do "if (bufpos != 128) break; ... ; bufpos = 0;" */
-               bufpos -= 128;
-               if (bufpos != 0)
-                       break;
-               /* Buffer is filled up, process it */
-               sha512_process_block128(ctx);
-               /*bufpos = 0; - already is */
-       }
-#endif
-}
-
-
-/* Used also for sha256 */
-void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
-{
-       unsigned bufpos = ctx->total64 & 63;
-
-       /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
-       ctx->wbuffer[bufpos++] = 0x80;
-
-       /* This loop iterates either once or twice, no more, no less */
-       while (1) {
-               unsigned remaining = 64 - bufpos;
-               memset(ctx->wbuffer + bufpos, 0, remaining);
-               /* Do we have enough space for the length count? */
-               if (remaining >= 8) {
-                       /* Store the 64-bit counter of bits in the buffer in BE format */
-                       uint64_t t = ctx->total64 << 3;
-                       t = SWAP_BE64(t);
-                       /* wbuffer is suitably aligned for this */
-                       *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
-               }
-               ctx->process_block(ctx);
-               if (remaining >= 8)
-                       break;
-               bufpos = 0;
-       }
-
-       bufpos = (ctx->process_block == sha1_process_block64) ? 5 : 8;
-       /* This way we do not impose alignment constraints on resbuf: */
-       if (BB_LITTLE_ENDIAN) {
-               unsigned i;
-               for (i = 0; i < bufpos; ++i)
-                       ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
-       }
-       memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * bufpos);
-}
-
-void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
-{
-       unsigned bufpos = ctx->total64[0] & 127;
-
-       /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
-       ctx->wbuffer[bufpos++] = 0x80;
-
-       while (1) {
-               unsigned remaining = 128 - bufpos;
-               memset(ctx->wbuffer + bufpos, 0, remaining);
-               if (remaining >= 16) {
-                       /* Store the 128-bit counter of bits in the buffer in BE format */
-                       uint64_t t;
-                       t = ctx->total64[0] << 3;
-                       t = SWAP_BE64(t);
-                       *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
-                       t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
-                       t = SWAP_BE64(t);
-                       *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
-               }
-               sha512_process_block128(ctx);
-               if (remaining >= 16)
-                       break;
-               bufpos = 0;
-       }
-
-       if (BB_LITTLE_ENDIAN) {
-               unsigned i;
-               for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
-                       ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
-       }
-       memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
-}
-
-
-/*
- * Compute MD5 checksum of strings according to the
- * definition of MD5 in RFC 1321 from April 1992.
- *
- * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
- *
- * Copyright (C) 1995-1999 Free Software Foundation, Inc.
- * Copyright (C) 2001 Manuel Novoa III
- * Copyright (C) 2003 Glenn L. McGrath
- * Copyright (C) 2003 Erik Andersen
- *
- * Licensed under GPLv2 or later, see file LICENSE in this source tree.
- */
-
-/* 0: fastest, 3: smallest */
-#if CONFIG_MD5_SIZE_VS_SPEED < 0
-# define MD5_SIZE_VS_SPEED 0
-#elif CONFIG_MD5_SIZE_VS_SPEED > 3
-# define MD5_SIZE_VS_SPEED 3
-#else
-# define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
-#endif
-
-/* Initialize structure containing state of computation.
- * (RFC 1321, 3.3: Step 3)
- */
-void FAST_FUNC md5_begin(md5_ctx_t *ctx)
-{
-       ctx->A = 0x67452301;
-       ctx->B = 0xefcdab89;
-       ctx->C = 0x98badcfe;
-       ctx->D = 0x10325476;
-       ctx->total64 = 0;
-}
-
-/* These are the four functions used in the four steps of the MD5 algorithm
- * and defined in the RFC 1321.  The first function is a little bit optimized
- * (as found in Colin Plumbs public domain implementation).
- * #define FF(b, c, d) ((b & c) | (~b & d))
- */
-#undef FF
-#undef FG
-#undef FH
-#undef FI
-#define FF(b, c, d) (d ^ (b & (c ^ d)))
-#define FG(b, c, d) FF(d, b, c)
-#define FH(b, c, d) (b ^ c ^ d)
-#define FI(b, c, d) (c ^ (b | ~d))
-
-/* Hash a single block, 64 bytes long and 4-byte aligned */
-static void md5_process_block64(md5_ctx_t *ctx)
-{
-#if MD5_SIZE_VS_SPEED > 0
-       /* Before we start, one word to the strange constants.
-          They are defined in RFC 1321 as
-          T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
-        */
-       static const uint32_t C_array[] = {
-               /* round 1 */
-               0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
-               0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
-               0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
-               0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
-               /* round 2 */
-               0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
-               0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
-               0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
-               0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
-               /* round 3 */
-               0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
-               0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
-               0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
-               0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
-               /* round 4 */
-               0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
-               0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
-               0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
-               0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
-       };
-       static const char P_array[] ALIGN1 = {
-# if MD5_SIZE_VS_SPEED > 1
-               0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,   /* 1 */
-# endif
-               1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12,   /* 2 */
-               5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2,   /* 3 */
-               0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9    /* 4 */
-       };
-#endif
-       uint32_t *words = (void*) ctx->wbuffer;
-       uint32_t A = ctx->A;
-       uint32_t B = ctx->B;
-       uint32_t C = ctx->C;
-       uint32_t D = ctx->D;
-
-#if MD5_SIZE_VS_SPEED >= 2  /* 2 or 3 */
-
-       static const char S_array[] ALIGN1 = {
-               7, 12, 17, 22,
-               5, 9, 14, 20,
-               4, 11, 16, 23,
-               6, 10, 15, 21
-       };
-       const uint32_t *pc;
-       const char *pp;
-       const char *ps;
-       int i;
-       uint32_t temp;
-
-# if BB_BIG_ENDIAN
-       for (i = 0; i < 16; i++)
-               words[i] = SWAP_LE32(words[i]);
-# endif
-
-# if MD5_SIZE_VS_SPEED == 3
-       pc = C_array;
-       pp = P_array;
-       ps = S_array - 4;
-
-       for (i = 0; i < 64; i++) {
-               if ((i & 0x0f) == 0)
-                       ps += 4;
-               temp = A;
-               switch (i >> 4) {
-               case 0:
-                       temp += FF(B, C, D);
-                       break;
-               case 1:
-                       temp += FG(B, C, D);
-                       break;
-               case 2:
-                       temp += FH(B, C, D);
-                       break;
-               case 3:
-                       temp += FI(B, C, D);
-               }
-               temp += words[(int) (*pp++)] + *pc++;
-               temp = rotl32(temp, ps[i & 3]);
-               temp += B;
-               A = D;
-               D = C;
-               C = B;
-               B = temp;
-       }
-# else  /* MD5_SIZE_VS_SPEED == 2 */
-       pc = C_array;
-       pp = P_array;
-       ps = S_array;
-
-       for (i = 0; i < 16; i++) {
-               temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
-               temp = rotl32(temp, ps[i & 3]);
-               temp += B;
-               A = D;
-               D = C;
-               C = B;
-               B = temp;
-       }
-       ps += 4;
-       for (i = 0; i < 16; i++) {
-               temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
-               temp = rotl32(temp, ps[i & 3]);
-               temp += B;
-               A = D;
-               D = C;
-               C = B;
-               B = temp;
-       }
-       ps += 4;
-       for (i = 0; i < 16; i++) {
-               temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
-               temp = rotl32(temp, ps[i & 3]);
-               temp += B;
-               A = D;
-               D = C;
-               C = B;
-               B = temp;
-       }
-       ps += 4;
-       for (i = 0; i < 16; i++) {
-               temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
-               temp = rotl32(temp, ps[i & 3]);
-               temp += B;
-               A = D;
-               D = C;
-               C = B;
-               B = temp;
-       }
-# endif
-       /* Add checksum to the starting values */
-       ctx->A += A;
-       ctx->B += B;
-       ctx->C += C;
-       ctx->D += D;
-
-#else  /* MD5_SIZE_VS_SPEED == 0 or 1 */
-
-       uint32_t A_save = A;
-       uint32_t B_save = B;
-       uint32_t C_save = C;
-       uint32_t D_save = D;
-# if MD5_SIZE_VS_SPEED == 1
-       const uint32_t *pc;
-       const char *pp;
-       int i;
-# endif
-
-       /* First round: using the given function, the context and a constant
-          the next context is computed.  Because the algorithm's processing
-          unit is a 32-bit word and it is determined to work on words in
-          little endian byte order we perhaps have to change the byte order
-          before the computation.  To reduce the work for the next steps
-          we save swapped words in WORDS array.  */
-# undef OP
-# define OP(a, b, c, d, s, T) \
-       do { \
-               a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
-               words++; \
-               a = rotl32(a, s); \
-               a += b; \
-       } while (0)
-
-       /* Round 1 */
-# if MD5_SIZE_VS_SPEED == 1
-       pc = C_array;
-       for (i = 0; i < 4; i++) {
-               OP(A, B, C, D, 7, *pc++);
-               OP(D, A, B, C, 12, *pc++);
-               OP(C, D, A, B, 17, *pc++);
-               OP(B, C, D, A, 22, *pc++);
-       }
-# else
-       OP(A, B, C, D, 7, 0xd76aa478);
-       OP(D, A, B, C, 12, 0xe8c7b756);
-       OP(C, D, A, B, 17, 0x242070db);
-       OP(B, C, D, A, 22, 0xc1bdceee);
-       OP(A, B, C, D, 7, 0xf57c0faf);
-       OP(D, A, B, C, 12, 0x4787c62a);
-       OP(C, D, A, B, 17, 0xa8304613);
-       OP(B, C, D, A, 22, 0xfd469501);
-       OP(A, B, C, D, 7, 0x698098d8);
-       OP(D, A, B, C, 12, 0x8b44f7af);
-       OP(C, D, A, B, 17, 0xffff5bb1);
-       OP(B, C, D, A, 22, 0x895cd7be);
-       OP(A, B, C, D, 7, 0x6b901122);
-       OP(D, A, B, C, 12, 0xfd987193);
-       OP(C, D, A, B, 17, 0xa679438e);
-       OP(B, C, D, A, 22, 0x49b40821);
-# endif
-       words -= 16;
-
-       /* For the second to fourth round we have the possibly swapped words
-          in WORDS.  Redefine the macro to take an additional first
-          argument specifying the function to use.  */
-# undef OP
-# define OP(f, a, b, c, d, k, s, T) \
-       do { \
-               a += f(b, c, d) + words[k] + T; \
-               a = rotl32(a, s); \
-               a += b; \
-       } while (0)
-
-       /* Round 2 */
-# if MD5_SIZE_VS_SPEED == 1
-       pp = P_array;
-       for (i = 0; i < 4; i++) {
-               OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
-               OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
-               OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
-               OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
-       }
-# else
-       OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
-       OP(FG, D, A, B, C, 6, 9, 0xc040b340);
-       OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
-       OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
-       OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
-       OP(FG, D, A, B, C, 10, 9, 0x02441453);
-       OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
-       OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
-       OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
-       OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
-       OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
-       OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
-       OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
-       OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
-       OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
-       OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
-# endif
-
-       /* Round 3 */
-# if MD5_SIZE_VS_SPEED == 1
-       for (i = 0; i < 4; i++) {
-               OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
-               OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
-               OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
-               OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
-       }
-# else
-       OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
-       OP(FH, D, A, B, C, 8, 11, 0x8771f681);
-       OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
-       OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
-       OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
-       OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
-       OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
-       OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
-       OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
-       OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
-       OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
-       OP(FH, B, C, D, A, 6, 23, 0x04881d05);
-       OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
-       OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
-       OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
-       OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
-# endif
-
-       /* Round 4 */
-# if MD5_SIZE_VS_SPEED == 1
-       for (i = 0; i < 4; i++) {
-               OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
-               OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
-               OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
-               OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
-       }
-# else
-       OP(FI, A, B, C, D, 0, 6, 0xf4292244);
-       OP(FI, D, A, B, C, 7, 10, 0x432aff97);
-       OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
-       OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
-       OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
-       OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
-       OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
-       OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
-       OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
-       OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
-       OP(FI, C, D, A, B, 6, 15, 0xa3014314);
-       OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
-       OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
-       OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
-       OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
-       OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
-# undef OP
-# endif
-       /* Add checksum to the starting values */
-       ctx->A = A_save + A;
-       ctx->B = B_save + B;
-       ctx->C = C_save + C;
-       ctx->D = D_save + D;
-#endif
-}
-#undef FF
-#undef FG
-#undef FH
-#undef FI
-
-/* Feed data through a temporary buffer to call md5_hash_aligned_block()
- * with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
- * This function's internal buffer remembers previous data until it has 64
- * bytes worth to pass on.  Call md5_end() to flush this buffer. */
-void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
-{
-       unsigned bufpos = ctx->total64 & 63;
-       unsigned remaining;
-
-       /* RFC 1321 specifies the possible length of the file up to 2^64 bits.
-        * Here we only track the number of bytes.  */
-       ctx->total64 += len;
-#if 0
-       remaining = 64 - bufpos;
-
-       /* Hash whole blocks */
-       while (len >= remaining) {
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               buffer = (const char *)buffer + remaining;
-               len -= remaining;
-               remaining = 64;
-               bufpos = 0;
-               md5_process_block64(ctx);
-       }
-
-       /* Save last, partial blosk */
-       memcpy(ctx->wbuffer + bufpos, buffer, len);
-#else
-       /* Tiny bit smaller code */
-       while (1) {
-               remaining = 64 - bufpos;
-               if (remaining > len)
-                       remaining = len;
-               /* Copy data into aligned buffer */
-               memcpy(ctx->wbuffer + bufpos, buffer, remaining);
-               len -= remaining;
-               buffer = (const char *)buffer + remaining;
-               bufpos += remaining;
-               /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
-               bufpos -= 64;
-               if (bufpos != 0)
-                       break;
-               /* Buffer is filled up, process it */
-               md5_process_block64(ctx);
-               /*bufpos = 0; - already is */
-       }
-#endif
-}
-
-/* Process the remaining bytes in the buffer and put result from CTX
- * in first 16 bytes following RESBUF.  The result is always in little
- * endian byte order, so that a byte-wise output yields to the wanted
- * ASCII representation of the message digest.
- */
-void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
-{
-       unsigned bufpos = ctx->total64 & 63;
-       /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
-       ctx->wbuffer[bufpos++] = 0x80;
-
-       /* This loop iterates either once or twice, no more, no less */
-       while (1) {
-               unsigned remaining = 64 - bufpos;
-               memset(ctx->wbuffer + bufpos, 0, remaining);
-               /* Do we have enough space for the length count? */
-               if (remaining >= 8) {
-                       /* Store the 64-bit counter of bits in the buffer in LE format */
-                       uint64_t t = ctx->total64 << 3;
-                       t = SWAP_LE64(t);
-                       /* wbuffer is suitably aligned for this */
-                       *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
-               }
-               md5_process_block64(ctx);
-               if (remaining >= 8)
-                       break;
-               bufpos = 0;
-       }
-
-       /* The MD5 result is in little endian byte order.
-        * We (ab)use the fact that A-D are consecutive in memory.
-        */
-#if BB_BIG_ENDIAN
-       ctx->A = SWAP_LE32(ctx->A);
-       ctx->B = SWAP_LE32(ctx->B);
-       ctx->C = SWAP_LE32(ctx->C);
-       ctx->D = SWAP_LE32(ctx->D);
-#endif
-       memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4);
-}