u64 *prp_pool;
int length = total_len;
int i, nprps;
+ u32 prps_per_page = (page_size >> 3) - 1;
+ u32 num_pages;
+
length -= (page_size - offset);
if (length <= 0) {
}
nprps = DIV_ROUND_UP(length, page_size);
+ num_pages = DIV_ROUND_UP(nprps, prps_per_page);
if (nprps > dev->prp_entry_num) {
free(dev->prp_pool);
- dev->prp_pool = malloc(nprps << 3);
+ /*
+ * Always increase in increments of pages. It doesn't waste
+ * much memory and reduces the number of allocations.
+ */
+ dev->prp_pool = memalign(page_size, num_pages * page_size);
if (!dev->prp_pool) {
printf("Error: malloc prp_pool fail\n");
return -ENOMEM;
}
- dev->prp_entry_num = nprps;
+ dev->prp_entry_num = prps_per_page * num_pages;
}
prp_pool = dev->prp_pool;
}
memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
- ndev->prp_pool = malloc(MAX_PRP_POOL);
- if (!ndev->prp_pool) {
- ret = -ENOMEM;
- printf("Error: %s: Out of memory!\n", udev->name);
- goto free_nvme;
- }
- ndev->prp_entry_num = MAX_PRP_POOL >> 3;
-
ndev->cap = nvme_readq(&ndev->bar->cap);
ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
if (ret)
goto free_queue;
+ /* Allocate after the page size is known */
+ ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
+ if (!ndev->prp_pool) {
+ ret = -ENOMEM;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+ ndev->prp_entry_num = MAX_PRP_POOL >> 3;
+
ret = nvme_setup_io_queues(ndev);
if (ret)
goto free_queue;