#
# Add AVX512F+VL+BW code path.
#
+# November 2017
+#
+# Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
+# executed even on Knights Landing. Trigger for modification was
+# observation that AVX512 code paths can negatively affect overall
+# Skylake-X system performance. Since we are likely to suppress
+# AVX512F capability flag [at least on Skylake-X], conversion serves
+# as kind of "investment protection". Note that next *lake processor,
+# Cannolake, has AVX512IFMA code path to execute...
+#
# Numbers are cycles per processed byte with poly1305_blocks alone,
# measured with rdtsc at fixed clock frequency.
#
# Haswell 1.14/+175% 1.11 0.65
# Skylake[-X] 1.13/+120% 0.96 0.51 [0.35]
# Silvermont 2.83/+95% -
-# Knights L 3.60/- 1.65 1.10 (***)
+# Knights L 3.60/? 1.65 1.10 ?
# Goldmont 1.70/+180% -
# VIA Nano 1.82/+150% -
# Sledgehammer 1.38/+160% -
# Core processors, 50-30%, less newer processor is, but slower on
# contemporary ones, for example almost 2x slower on Atom, and as
# former are naturally disappearing, SSE2 is deemed unnecessary;
-# (***) Current AVX-512 code requires BW and VL extensions and can not
-# execute on Knights Landing;
$flavour = shift;
$output = shift;
.Leven_avx2:
.cfi_startproc
mov OPENSSL_ia32cap_P+8(%rip),%r10d
- mov \$`(1<<31|1<<30|1<<16)`,%r11d
vmovd 4*0($ctx),%x#$H0 # load hash value base 2^26
vmovd 4*1($ctx),%x#$H1
vmovd 4*2($ctx),%x#$H2
cmp \$512,$len
jb .Lskip_avx512
and %r11d,%r10d
- cmp %r11d,%r10d # check for AVX512F+BW+VL
- je .Lblocks_avx512
+ test \$`1<<16`,%r10d # check for AVX512F
+ jnz .Lblocks_avx512
.Lskip_avx512:
___
$code.=<<___ if (!$win64);
# reason stack layout is kept identical to poly1305_blocks_avx2. If not
# for this tail, we wouldn't have to even allocate stack frame...
-my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%ymm$_",(16..24));
-my ($M0,$M1,$M2,$M3,$M4) = map("%ymm$_",(25..29));
+my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24));
+my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29));
my $PADBIT="%zmm30";
-my $GATHER="%ymm31";
+
+map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain
+map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4));
+map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4));
+map(s/%y/%z/,($MASK));
$code.=<<___;
.type poly1305_blocks_avx512,\@function,4
poly1305_blocks_avx512:
.cfi_startproc
.Lblocks_avx512:
- vzeroupper
+ mov \$15,%eax
+ kmovw %eax,%k2
___
$code.=<<___ if (!$win64);
lea -8(%rsp),%r11
vmovdqa %xmm6,0x50(%r11)
vmovdqa %xmm7,0x60(%r11)
vmovdqa %xmm8,0x70(%r11)
- vmovdqa32 %xmm9,0x80(%r11)
- vmovdqa32 %xmm10,0x90(%r11)
- vmovdqa32 %xmm11,0xa0(%r11)
- vmovdqa32 %xmm12,0xb0(%r11)
- vmovdqa32 %xmm13,0xc0(%r11)
- vmovdqa32 %xmm14,0xd0(%r11)
- vmovdqa32 %xmm15,0xe0(%r11)
+ vmovdqa %xmm9,0x80(%r11)
+ vmovdqa %xmm10,0x90(%r11)
+ vmovdqa %xmm11,0xa0(%r11)
+ vmovdqa %xmm12,0xb0(%r11)
+ vmovdqa %xmm13,0xc0(%r11)
+ vmovdqa %xmm14,0xd0(%r11)
+ vmovdqa %xmm15,0xe0(%r11)
.Ldo_avx512_body:
___
$code.=<<___;
lea .Lconst(%rip),%rcx
lea 48+64($ctx),$ctx # size optimization
- vmovdqa 96(%rcx),$T2 # .Lpermd_avx2
+ vmovdqa 96(%rcx),%y#$T2 # .Lpermd_avx2
# expand pre-calculated table
- vmovdqu32 `16*0-64`($ctx),%x#$R0
+ vmovdqu32 `16*0-64`($ctx),${R0}{%k2}{z}
and \$-512,%rsp
- vmovdqu32 `16*1-64`($ctx),%x#$R1
- vmovdqu32 `16*2-64`($ctx),%x#$S1
- vmovdqu32 `16*3-64`($ctx),%x#$R2
- vmovdqu32 `16*4-64`($ctx),%x#$S2
- vmovdqu32 `16*5-64`($ctx),%x#$R3
- vmovdqu32 `16*6-64`($ctx),%x#$S3
- vmovdqu32 `16*7-64`($ctx),%x#$R4
- vmovdqu32 `16*8-64`($ctx),%x#$S4
+ vmovdqu32 `16*1-64`($ctx),${R1}{%k2}{z}
+ mov \$0x20,%rax
+ vmovdqu32 `16*2-64`($ctx),${S1}{%k2}{z}
+ vmovdqu32 `16*3-64`($ctx),${R2}{%k2}{z}
+ vmovdqu32 `16*4-64`($ctx),${S2}{%k2}{z}
+ vmovdqu32 `16*5-64`($ctx),${R3}{%k2}{z}
+ vmovdqu32 `16*6-64`($ctx),${S3}{%k2}{z}
+ vmovdqu32 `16*7-64`($ctx),${R4}{%k2}{z}
+ vmovdqu32 `16*8-64`($ctx),${S4}{%k2}{z}
vpermd $R0,$T2,$R0 # 00003412 -> 14243444
- vmovdqa64 64(%rcx),$MASK # .Lmask26
+ vpbroadcastq 64(%rcx),$MASK # .Lmask26
vpermd $R1,$T2,$R1
vpermd $S1,$T2,$S1
vpermd $R2,$T2,$R2
- vmovdqa32 $R0,0x00(%rsp) # save in case $len%128 != 0
+ vmovdqa64 $R0,0x00(%rsp){%k2} # save in case $len%128 != 0
vpsrlq \$32,$R0,$T0 # 14243444 -> 01020304
vpermd $S2,$T2,$S2
- vmovdqa32 $R1,0x20(%rsp)
+ vmovdqu64 $R1,0x00(%rsp,%rax){%k2}
vpsrlq \$32,$R1,$T1
vpermd $R3,$T2,$R3
- vmovdqa32 $S1,0x40(%rsp)
+ vmovdqa64 $S1,0x40(%rsp){%k2}
vpermd $S3,$T2,$S3
vpermd $R4,$T2,$R4
- vmovdqa32 $R2,0x60(%rsp)
+ vmovdqu64 $R2,0x40(%rsp,%rax){%k2}
vpermd $S4,$T2,$S4
- vmovdqa32 $S2,0x80(%rsp)
- vmovdqa32 $R3,0xa0(%rsp)
- vmovdqa32 $S3,0xc0(%rsp)
- vmovdqa32 $R4,0xe0(%rsp)
- vmovdqa32 $S4,0x100(%rsp)
+ vmovdqa64 $S2,0x80(%rsp){%k2}
+ vmovdqu64 $R3,0x80(%rsp,%rax){%k2}
+ vmovdqa64 $S3,0xc0(%rsp){%k2}
+ vmovdqu64 $R4,0xc0(%rsp,%rax){%k2}
+ vmovdqa64 $S4,0x100(%rsp){%k2}
################################################################
# calculate 5th through 8th powers of the key
vpandq $MASK,$D3,$D3
vpaddq $M3,$D4,$D4 # d3 -> d4
-___
-map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain
-map(s/%y/%z/,($M4,$M0,$M1,$M2,$M3));
-map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4));
-map(s/%y/%z/,($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4));
-map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4));
-map(s/%y/%z/,($MASK));
-$code.=<<___;
################################################################
# at this point we have 14243444 in $R0-$S4 and 05060708 in
# $D0-$D4, ...
vpaddd $R3,$S3,$S3
vpaddd $R4,$S4,$S4
- vpbroadcastq %x#$MASK,$MASK
vpbroadcastq 32(%rcx),$PADBIT # .L129
vpsrlq \$52,$T0,$T2 # splat input
vpaddq $H2,$T2,$H2 # accumulate input
sub \$192,$len
jbe .Ltail_avx512
- #jmp .Loop_avx512
+ jmp .Loop_avx512
.align 32
.Loop_avx512:
vpaddq $H3,$T3,$H3
vpaddq $H4,$T4,$H4
- vmovdqu64 16*0($inp),%x#$T0
+ vmovdqu 16*0($inp),%x#$T0
vpmuludq $H0,$R3,$M3
vpmuludq $H0,$R4,$M4
vpmuludq $H0,$R0,$M0
vpaddq $M0,$D0,$D0 # d0 += h0*r0
vpaddq $M1,$D1,$D1 # d1 += h0*r1
- vmovdqu64 16*1($inp),%x#$T1
+ vmovdqu 16*1($inp),%x#$T1
vpmuludq $H1,$R2,$M3
vpmuludq $H1,$R3,$M4
vpmuludq $H1,$S4,$M0
vpaddq $M0,$D0,$D0 # d0 += h1*s4
vpaddq $M2,$D2,$D2 # d2 += h0*r2
- vinserti64x2 \$1,16*2($inp),$T0,$T0
+ vinserti128 \$1,16*2($inp),%y#$T0,%y#$T0
vpmuludq $H3,$R0,$M3
vpmuludq $H3,$R1,$M4
vpmuludq $H1,$R0,$M1
vpaddq $M1,$D1,$D1 # d1 += h1*r0
vpaddq $M2,$D2,$D2 # d2 += h1*r1
- vinserti64x2 \$1,16*3($inp),$T1,$T1
+ vinserti128 \$1,16*3($inp),%y#$T1,%y#$T1
vpmuludq $H4,$S4,$M3
vpmuludq $H4,$R0,$M4
vpmuludq $H3,$S2,$M0
# horizontal addition
mov \$1,%eax
- vpsrldq \$8,$H3,$D3
- vpsrldq \$8,$D4,$H4
- vpsrldq \$8,$H0,$D0
- vpsrldq \$8,$H1,$D1
- vpsrldq \$8,$H2,$D2
+ vpermq \$0xb1,$H3,$D3
+ vpermq \$0xb1,$D4,$H4
+ vpermq \$0xb1,$H0,$D0
+ vpermq \$0xb1,$H1,$D1
+ vpermq \$0xb1,$H2,$D2
vpaddq $D3,$H3,$H3
vpaddq $D4,$H4,$H4
vpaddq $D0,$H0,$H0
# lazy reduction (interleaved with input splat)
vpsrlq \$26,$H3,$D3
- vpandq $MASK,$H3,$H3
+ vpand $MASK,$H3,$H3
vpsrldq \$6,$T0,$T2 # splat input
vpsrldq \$6,$T1,$T3
vpunpckhqdq $T1,$T0,$T4 # 4
vpaddq $D3,$H4,$H4 # h3 -> h4
vpsrlq \$26,$H0,$D0
- vpandq $MASK,$H0,$H0
+ vpand $MASK,$H0,$H0
vpunpcklqdq $T3,$T2,$T2 # 2:3
vpunpcklqdq $T1,$T0,$T0 # 0:1
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H4,$D4
- vpandq $MASK,$H4,$H4
+ vpand $MASK,$H4,$H4
vpsrlq \$26,$H1,$D1
- vpandq $MASK,$H1,$H1
+ vpand $MASK,$H1,$H1
vpsrlq \$30,$T2,$T3
vpsrlq \$4,$T2,$T2
vpaddq $D1,$H2,$H2 # h1 -> h2
vpaddq $D4,$H0,$H0 # h4 -> h0
vpsrlq \$26,$H2,$D2
- vpandq $MASK,$H2,$H2
- vpandq $MASK,$T2,$T2 # 2
- vpandq $MASK,$T0,$T0 # 0
+ vpand $MASK,$H2,$H2
+ vpand $MASK,$T2,$T2 # 2
+ vpand $MASK,$T0,$T0 # 0
vpaddq $D2,$H3,$H3 # h2 -> h3
vpsrlq \$26,$H0,$D0
- vpandq $MASK,$H0,$H0
+ vpand $MASK,$H0,$H0
vpaddq $H2,$T2,$H2 # accumulate input for .Ltail_avx2
- vpandq $MASK,$T1,$T1 # 1
+ vpand $MASK,$T1,$T1 # 1
vpaddq $D0,$H1,$H1 # h0 -> h1
vpsrlq \$26,$H3,$D3
- vpandq $MASK,$H3,$H3
- vpandq $MASK,$T3,$T3 # 3
- vporq $PADBIT,$T4,$T4 # padbit, yes, always
+ vpand $MASK,$H3,$H3
+ vpand $MASK,$T3,$T3 # 3
+ vpor 32(%rcx),$T4,$T4 # padbit, yes, always
vpaddq $D3,$H4,$H4 # h3 -> h4
lea 0x90(%rsp),%rax # size optimization for .Ltail_avx2