arm: mvebu: Implement secure boot
authorMario Six <mario.six@gdsys.cc>
Wed, 11 Jan 2017 15:01:00 +0000 (16:01 +0100)
committerStefan Roese <sr@denx.de>
Wed, 1 Feb 2017 08:04:18 +0000 (09:04 +0100)
The patch implements secure booting for the mvebu architecture.

This includes:
- The addition of secure headers and all needed signatures and keys in
  mkimage
- Commands capable of writing the board's efuses to both write the
  needed cryptographic data and enable the secure booting mechanism
- The creation of convenience text files containing the necessary
  commands to write the efuses

The KAK and CSK keys are expected to reside in the files kwb_kak.key and
kwb_csk.key (OpenSSL 2048 bit private keys) in the top-level directory.

Signed-off-by: Reinhard Pfau <reinhard.pfau@gdsys.cc>
Signed-off-by: Mario Six <mario.six@gdsys.cc>
Reviewed-by: Stefan Roese <sr@denx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Stefan Roese <sr@denx.de>
Makefile
arch/arm/mach-mvebu/Kconfig
arch/arm/mach-mvebu/Makefile
arch/arm/mach-mvebu/efuse.c [new file with mode: 0644]
arch/arm/mach-mvebu/include/mach/cpu.h
arch/arm/mach-mvebu/include/mach/efuse.h [new file with mode: 0644]
doc/README.armada-secureboot [new file with mode: 0644]
tools/Makefile
tools/kwbimage.c
tools/kwbimage.h

index 3fb6393c90cd76bc402aba1389f9df4b839c9b4e..d3222a086cc4ef1f8f250df3d42a0307c78822b1 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -957,7 +957,8 @@ MKIMAGEFLAGS_u-boot.kwb = -n $(srctree)/$(CONFIG_SYS_KWD_CONFIG:"%"=%) \
        -T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
 
 MKIMAGEFLAGS_u-boot-spl.kwb = -n $(srctree)/$(CONFIG_SYS_KWD_CONFIG:"%"=%) \
-       -T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
+       -T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE) \
+       $(if $(KEYDIR),-k $(KEYDIR))
 
 MKIMAGEFLAGS_u-boot.pbl = -n $(srctree)/$(CONFIG_SYS_FSL_PBL_RCW:"%"=%) \
                -R $(srctree)/$(CONFIG_SYS_FSL_PBL_PBI:"%"=%) -T pblimage
index 53117c4296d97887ddda65159369ba2b405c546f..412bda4160abc542587bbf3dc8a19cd22eae3b7d 100644 (file)
@@ -1,5 +1,9 @@
 if ARCH_MVEBU
 
+config HAVE_MVEBU_EFUSE
+       bool
+       default n
+
 config ARMADA_32BIT
        bool
        select CPU_V7
@@ -23,6 +27,7 @@ config ARMADA_375
 config ARMADA_38X
        bool
        select ARMADA_32BIT
+       select HAVE_MVEBU_EFUSE
 
 config ARMADA_XP
        bool
@@ -146,4 +151,34 @@ config SYS_VENDOR
 config SYS_SOC
        default "mvebu"
 
+config MVEBU_EFUSE
+       bool "Enable eFuse support"
+       default n
+       depends on HAVE_MVEBU_EFUSE
+       help
+         Enable support for reading and writing eFuses on mvebu SoCs.
+
+config MVEBU_EFUSE_FAKE
+       bool "Fake eFuse access (dry run)"
+       default n
+       depends on MVEBU_EFUSE
+       help
+         This enables a "dry run" mode where eFuses are not really programmed.
+         Instead the eFuse accesses are emulated by writing to and reading
+         from a memory block.
+         This is can be used for testing prog scripts.
+
+config SECURED_MODE_IMAGE
+       bool "Build image for trusted boot"
+       default false
+       depends on 88F6820
+       help
+         Build an image that employs the ARMADA SoC's trusted boot framework
+         for securely booting images.
+
+config SECURED_MODE_CSK_INDEX
+       int "Index of active CSK"
+       default 0
+       depends on SECURED_MODE_IMAGE
+
 endif
index 65e90c4fc9af83552af0f1cf12fa5e9524b01b28..d4210af9d2058bc2bbeee38561c51196a52ec2a1 100644 (file)
@@ -27,6 +27,7 @@ ifndef CONFIG_SPL_BUILD
 obj-$(CONFIG_ARMADA_375) += ../../../drivers/ddr/marvell/axp/xor.o
 obj-$(CONFIG_ARMADA_38X) += ../../../drivers/ddr/marvell/a38x/xor.o
 obj-$(CONFIG_ARMADA_XP) += ../../../drivers/ddr/marvell/axp/xor.o
+obj-$(CONFIG_MVEBU_EFUSE) += efuse.o
 endif # CONFIG_SPL_BUILD
 obj-y  += gpio.o
 obj-y  += mbus.o
diff --git a/arch/arm/mach-mvebu/efuse.c b/arch/arm/mach-mvebu/efuse.c
new file mode 100644 (file)
index 0000000..67fcadc
--- /dev/null
@@ -0,0 +1,264 @@
+/*
+ * Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+#include <config.h>
+#include <common.h>
+#include <errno.h>
+#include <asm/io.h>
+#include <asm/arch/cpu.h>
+#include <asm/arch/efuse.h>
+#include <asm/arch/soc.h>
+#include <linux/mbus.h>
+
+#if defined(CONFIG_MVEBU_EFUSE_FAKE)
+#define DRY_RUN
+#else
+#undef DRY_RUN
+#endif
+
+#define MBUS_EFUSE_BASE 0xF6000000
+#define MBUS_EFUSE_SIZE BIT(20)
+
+#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
+
+enum {
+       MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
+};
+
+struct mvebu_hd_efuse {
+       u32 bits_31_0;
+       u32 bits_63_32;
+       u32 bit64;
+       u32 reserved0;
+};
+
+#ifndef DRY_RUN
+static struct mvebu_hd_efuse *efuses =
+       (struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
+#else
+static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
+#endif
+
+static int efuse_initialised;
+
+static struct mvebu_hd_efuse *get_efuse_line(int nr)
+{
+       if (nr < 0 || nr > 63 || !efuse_initialised)
+               return NULL;
+
+       return efuses + nr;
+}
+
+static void enable_efuse_program(void)
+{
+#ifndef DRY_RUN
+       setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
+#endif
+}
+
+static void disable_efuse_program(void)
+{
+#ifndef DRY_RUN
+       clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
+#endif
+}
+
+static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
+                        struct efuse_val *new_val, u32 mask0, u32 mask1)
+{
+       struct efuse_val val;
+
+       val.dwords.d[0] = readl(&efuse->bits_31_0);
+       val.dwords.d[1] = readl(&efuse->bits_63_32);
+       val.lock = readl(&efuse->bit64);
+
+       if (val.lock & 1)
+               return -EPERM;
+
+       val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
+       val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
+       val.lock |= new_val->lock;
+
+       writel(val.dwords.d[0], &efuse->bits_31_0);
+       mdelay(1);
+       writel(val.dwords.d[1], &efuse->bits_63_32);
+       mdelay(1);
+       writel(val.lock, &efuse->bit64);
+       mdelay(5);
+
+       return 0;
+}
+
+static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
+{
+       struct mvebu_hd_efuse *efuse;
+       int res = 0;
+
+       res = mvebu_efuse_init_hw();
+       if (res)
+               return res;
+
+       efuse = get_efuse_line(nr);
+       if (!efuse)
+               return -ENODEV;
+
+       if (!new_val)
+               return -EINVAL;
+
+       /* only write a fuse line with lock bit */
+       if (!new_val->lock)
+               return -EINVAL;
+
+       /* according to specs ECC protection bits must be 0 on write */
+       if (new_val->bytes.d[7] & 0xFE)
+               return -EINVAL;
+
+       if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
+               return 0;
+
+       enable_efuse_program();
+
+       res = do_prog_efuse(efuse, new_val, mask0, mask1);
+
+       disable_efuse_program();
+
+       return res;
+}
+
+int mvebu_efuse_init_hw(void)
+{
+       int ret;
+
+       if (efuse_initialised)
+               return 0;
+
+       ret = mvebu_mbus_add_window_by_id(
+               CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
+
+       if (ret)
+               return ret;
+
+       efuse_initialised = 1;
+
+       return 0;
+}
+
+int mvebu_read_efuse(int nr, struct efuse_val *val)
+{
+       struct mvebu_hd_efuse *efuse;
+       int res;
+
+       res = mvebu_efuse_init_hw();
+       if (res)
+               return res;
+
+       efuse = get_efuse_line(nr);
+       if (!efuse)
+               return -ENODEV;
+
+       if (!val)
+               return -EINVAL;
+
+       val->dwords.d[0] = readl(&efuse->bits_31_0);
+       val->dwords.d[1] = readl(&efuse->bits_63_32);
+       val->lock = readl(&efuse->bit64);
+       return 0;
+}
+
+int mvebu_write_efuse(int nr, struct efuse_val *val)
+{
+       return prog_efuse(nr, val, ~0, ~0);
+}
+
+int mvebu_lock_efuse(int nr)
+{
+       struct efuse_val val = {
+               .lock = 1,
+       };
+
+       return prog_efuse(nr, &val, 0, 0);
+}
+
+/*
+ * wrapper funcs providing the fuse API
+ *
+ * we use the following mapping:
+ *   "bank" -> eFuse line
+ *   "word" -> 0: bits 0-31
+ *             1: bits 32-63
+ *             2: bit 64 (lock)
+ */
+
+static struct efuse_val prog_val;
+static int valid_prog_words;
+
+int fuse_read(u32 bank, u32 word, u32 *val)
+{
+       struct efuse_val fuse_line;
+       int res;
+
+       if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
+               return -EINVAL;
+
+       res = mvebu_read_efuse(bank, &fuse_line);
+       if (res)
+               return res;
+
+       if (word < 2)
+               *val = fuse_line.dwords.d[word];
+       else
+               *val = fuse_line.lock;
+
+       return res;
+}
+
+int fuse_sense(u32 bank, u32 word, u32 *val)
+{
+       /* not supported */
+       return -ENOSYS;
+}
+
+int fuse_prog(u32 bank, u32 word, u32 val)
+{
+       int res = 0;
+
+       /*
+        * NOTE: Fuse line should be written as whole.
+        * So how can we do that with this API?
+        * For now: remember values for word == 0 and word == 1 and write the
+        * whole line when word == 2.
+        * This implies that we always require all 3 fuse prog cmds (one for
+        * for each word) to write a single fuse line.
+        * Exception is a single write to word 2 which will lock the fuse line.
+        *
+        * Hope that will be OK.
+        */
+
+       if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
+               return -EINVAL;
+
+       if (word < 2) {
+               prog_val.dwords.d[word] = val;
+               valid_prog_words |= (1 << word);
+       } else if ((valid_prog_words & 3) == 0 && val) {
+               res = mvebu_lock_efuse(bank);
+               valid_prog_words = 0;
+       } else if ((valid_prog_words & 3) != 3 || !val) {
+               res = -EINVAL;
+       } else {
+               prog_val.lock = val != 0;
+               res = mvebu_write_efuse(bank, &prog_val);
+               valid_prog_words = 0;
+       }
+
+       return res;
+}
+
+int fuse_override(u32 bank, u32 word, u32 val)
+{
+       /* not supported */
+       return -ENOSYS;
+}
index 66f7680fb31907d6106bb6282231815d85f276c4..d241eea9568d87ce2acfc80501d7c1ef75963027 100644 (file)
@@ -36,7 +36,9 @@ enum cpu_target {
        CPU_TARGET_ETH01 = 0x7,
        CPU_TARGET_PCIE13 = 0x8,
        CPU_TARGET_SASRAM = 0x9,
+       CPU_TARGET_SATA01 = 0xa, /* A38X */
        CPU_TARGET_NAND = 0xd,
+       CPU_TARGET_SATA23_DFX = 0xe, /* A38X */
 };
 
 enum cpu_attrib {
diff --git a/arch/arm/mach-mvebu/include/mach/efuse.h b/arch/arm/mach-mvebu/include/mach/efuse.h
new file mode 100644 (file)
index 0000000..ef693e6
--- /dev/null
@@ -0,0 +1,69 @@
+/*
+ * Copyright (C) 2015 Reinhard Pfau <reinhard.pfau@gdsys.cc>
+ *
+ * SPDX-License-Identifier:    GPL-2.0+
+ */
+
+#ifndef _MVEBU_EFUSE_H
+#define _MVEBU_EFUSE_H
+
+#include <common.h>
+
+struct efuse_val {
+       union {
+               struct {
+                       u8 d[8];
+               } bytes;
+               struct {
+                       u16 d[4];
+               } words;
+               struct {
+                       u32 d[2];
+               } dwords;
+       };
+       u32 lock;
+};
+
+#if defined(CONFIG_ARMADA_38X)
+
+enum efuse_line {
+       EFUSE_LINE_SECURE_BOOT = 24,
+       EFUSE_LINE_PUBKEY_DIGEST_0 = 26,
+       EFUSE_LINE_PUBKEY_DIGEST_1 = 27,
+       EFUSE_LINE_PUBKEY_DIGEST_2 = 28,
+       EFUSE_LINE_PUBKEY_DIGEST_3 = 29,
+       EFUSE_LINE_PUBKEY_DIGEST_4 = 30,
+       EFUSE_LINE_CSK_0_VALID = 31,
+       EFUSE_LINE_CSK_1_VALID = 32,
+       EFUSE_LINE_CSK_2_VALID = 33,
+       EFUSE_LINE_CSK_3_VALID = 34,
+       EFUSE_LINE_CSK_4_VALID = 35,
+       EFUSE_LINE_CSK_5_VALID = 36,
+       EFUSE_LINE_CSK_6_VALID = 37,
+       EFUSE_LINE_CSK_7_VALID = 38,
+       EFUSE_LINE_CSK_8_VALID = 39,
+       EFUSE_LINE_CSK_9_VALID = 40,
+       EFUSE_LINE_CSK_10_VALID = 41,
+       EFUSE_LINE_CSK_11_VALID = 42,
+       EFUSE_LINE_CSK_12_VALID = 43,
+       EFUSE_LINE_CSK_13_VALID = 44,
+       EFUSE_LINE_CSK_14_VALID = 45,
+       EFUSE_LINE_CSK_15_VALID = 46,
+       EFUSE_LINE_FLASH_ID = 47,
+       EFUSE_LINE_BOX_ID = 48,
+
+       EFUSE_LINE_MIN = 0,
+       EFUSE_LINE_MAX = 63,
+};
+
+#endif
+
+int mvebu_efuse_init_hw(void);
+
+int mvebu_read_efuse(int nr, struct efuse_val *val);
+
+int mvebu_write_efuse(int nr, struct efuse_val *val);
+
+int mvebu_lock_efuse(int nr);
+
+#endif
diff --git a/doc/README.armada-secureboot b/doc/README.armada-secureboot
new file mode 100644 (file)
index 0000000..157cb5a
--- /dev/null
@@ -0,0 +1,373 @@
+The trusted boot framework on Marvell Armada 38x
+================================================
+
+Contents:
+
+1. Overview of the trusted boot
+2. Terminology
+3. Boot image layout
+4. The secured header
+5. The secured boot flow
+6. Usage example
+7. Work to be done
+8. Bibliography
+
+1. Overview of the trusted boot
+-------------------------------
+
+The Armada's trusted boot framework enables the SoC to cryptographically verify
+a specially prepared boot image. This can be used to establish a chain of trust
+from the boot firmware all the way to the OS.
+
+To achieve this, the Armada SoC requires a specially prepared boot image, which
+contains the relevant cryptographic data, as well as other information
+pertaining to the boot process. Furthermore, a eFuse structure (a
+one-time-writeable memory) need to be configured in the correct way.
+
+Roughly, the secure boot process works as follows:
+
+* Load the header block of the boot image, extract a special "root" public RSA
+  key from it, and verify its SHA-256 hash against a SHA-256 stored in a eFuse
+  field.
+* Load an array of code signing public RSA keys from the header block, and
+  verify its RSA signature (contained in the header block as well) using the
+  "root" RSA key.
+* Choose a code signing key, and use it to verify the header block (excluding
+  the key array).
+* Verify the binary image's signature (contained in the header block) using the
+  code signing key.
+* If all checks pass successfully, boot the image.
+
+The chain of trust is thus as follows:
+
+* The SHA-256 value in the eFuse field verifies the "root" public key.
+* The "root" public key verifies the code signing key array.
+* The selected code signing key verifies the header block and the binary image.
+
+In the special case of building a boot image containing U-Boot as the binary
+image, which employs this trusted boot framework, the following tasks need to
+be addressed:
+
+1. Creation of the needed cryptographic key material.
+2. Creation of a conforming boot image containing the U-Boot image as binary
+   image.
+3. Burning the necessary eFuse values.
+
+(1) will be addressed later, (2) will be taken care of by U-Boot's build
+system (some user configuration is required, though), and for (3) the necessary
+data (essentially a series of U-Boot commands to be entered at the U-Boot
+command prompt) will be created by the build system as well.
+
+The documentation of the trusted boot mode is contained in part 1, chapter
+7.2.5 in the functional specification [1], and in application note [2].
+
+2. Terminology
+--------------
+
+                  CSK - Code Signing Key(s): An array of RSA key pairs, which
+                         are used to sign and verify the secured header and the
+                         boot loader image.
+                  KAK - Key Authentication Key: A RSA key pair, which is used
+                         to sign and verify the array of CSKs.
+         Header block - The first part of the boot image, which contains the
+                        image's headers (also known as "headers block", "boot
+                        header", and "image header")
+                 eFuse - A one-time-writeable memory.
+               BootROM - The Armada's built-in boot firmware, which is
+                         responsible for verifying and starting secure images.
+           Boot image - The complete image the SoC's boot firmware loads
+                        (contains the header block and the binary image)
+          Main header - The header in the header block containing information
+                        and data pertaining to the boot process (used for both
+                        the regular and secured boot processes)
+         Binary image - The binary code payload of the boot image; in this
+                        case the U-Boot's code (also known as "source image",
+                        or just "image")
+       Secured header - The specialized header in the header block that
+                        contains information and data pertaining to the
+                        trusted boot (also known as "security header")
+     Secured boot mode - A special boot mode of the Armada SoC in which secured
+                         images are verified (non-secure images won't boot);
+                         the mode is activated by setting a eFuse field.
+    Trusted debug mode - A special mode for the trusted boot that allows
+                        debugging of devices employing the trusted boot
+                        framework in a secure manner (untested in the current
+                        implementation).
+Trusted boot framework - The ARMADA SoC's implementation of a secure verified
+                         boot process.
+
+3. Boot image layout
+--------------------
+
++-- Boot image --------------------------------------------+
+|                                                          |
+| +-- Header block --------------------------------------+ |
+| | Main header                                          | |
+| +------------------------------------------------------+ |
+| | Secured header                                       | |
+| +------------------------------------------------------+ |
+| | BIN header(s)                                        | |
+| +------------------------------------------------------+ |
+| | REG header(s)                                        | |
+| +------------------------------------------------------+ |
+| | Padding                                              | |
+| +------------------------------------------------------+ |
+|                                                          |
+| +------------------------------------------------------+ |
+| | Binary image + checksum                              | |
+| +------------------------------------------------------+ |
++----------------------------------------------------------+
+
+4. The secured header
+---------------------
+
+For the trusted boot framework, a additional header is added to the boot image.
+The following data are relevant for the secure boot:
+
+                  KAK: The KAK is contained in the secured header in the form
+                       of a RSA-2048 public key in DER format with a length of
+                       524 bytes.
+Header block signature: The RSA signature of the header block (excluding the
+                        CSK array), created using the selected CSK.
+Binary image signature: The RSA signature of the binary image, created using
+                        the selected CSK.
+             CSK array: The array of the 16 CSKs as RSA-2048 public keys in DER
+                       format with a length of 8384 = 16 * 524 bytes.
+   CSK block signature: The RSA signature of the CSK array, created using the
+                        KAK.
+
+NOTE: The JTAG delay, Box ID, and Flash ID header fields do play a role in the
+trusted boot process to enable and configure secure debugging, but they were
+not tested in the current implementation of the trusted boot in U-Boot.
+
+5. The secured boot flow
+------------------------
+
+The steps in the boot flow that are relevant for the trusted boot framework
+proceed as follows:
+
+1) Check if trusted boot is enabled, and perform regular boot if it is not.
+2) Load the secured header, and verify its checksum.
+3) Select the lowest valid CSK from CSK0 to CSK15.
+4) Verify the SHA-256 hash of the KAK embedded in the secured header.
+5) Verify the RSA signature of the CSK block from the secured header with the
+   KAK.
+6) Verify the header block signature (which excludes the CSK block) from the
+   secured header with the selected CSK.
+7) Load the binary image to the main memory and verify its checksum.
+8) Verify the binary image's RSA signature from the secured header with the
+   selected CSK.
+9) Continue the boot process as in the case of the regular boot.
+
+NOTE: All RSA signatures are verified according to the PKCS #1 v2.1 standard
+described in [3].
+
+NOTE: The Box ID and Flash ID are checked after step 6, and the trusted debug
+mode may be entered there, but since this mode is untested in the current
+implementation, it is not described further.
+
+6. Usage example
+----------------
+
+### Create key material
+
+To employ the trusted boot framework, cryptographic key material needs to be
+created. In the current implementation, two keys are needed to build a valid
+secured boot image: The KAK private key and a CSK private key (both have to be
+2048 bit RSA keys in PEM format). Note that the usage of more than one CSK is
+currently not supported.
+
+NOTE: Since the public key can be generated from the private key, it is
+sufficient to store the private key for each key pair.
+
+OpenSSL can be used to generate the needed files kwb_kak.key and kwb_csk.key
+(the names of these files have to be configured, see the next section on
+kwbimage.cfg settings):
+
+openssl genrsa -out kwb_kak.key 2048
+openssl genrsa -out kwb_csk.key 2048
+
+The generated files have to be placed in the U-Boot root directory.
+
+Alternatively, instead of copying the files, symlinks to the private keys can
+be placed in the U-Boot root directory.
+
+WARNING: Knowledge of the KAK or CSK private key would enable an attacker to
+generate secured boot images containing arbitrary code. Hence, the private keys
+should be carefully guarded.
+
+### Create/Modifiy kwbimage.cfg
+
+The Kirkwook architecture in U-Boot employs a special board-specific
+configuration file (kwbimage.cfg), which controls various boot image settings
+that are interpreted by the BootROM, such as the boot medium. The support the
+trusted boot framework, several new options were added to faciliate
+configuration of the secured boot.
+
+The configuration file's layout has been retained, only the following new
+options were added:
+
+               KAK - The name of the KAK RSA private key file in the U-Boot
+                      root directory, without the trailing extension of ".key".
+               CSK - The name of the (active) CSK RSA private key file in the
+                     U-Boot root directory, without the trailing extension of
+                     ".key".
+            BOX_ID - The BoxID to be used for trusted debugging (a integer
+                     value).
+          FLASH_ID - The FlashID to be used for trusted debugging (a integer
+                     value).
+        JTAG_DELAY - The JTAG delay to be used for trusted debugging (a
+                     integer value).
+          CSK_INDEX - The index of the active CSK (a integer value).
+SEC_SPECIALIZED_IMG - Flag to indicate whether to include the BoxID and FlashID
+                     in the image (that is, whether to use the trusted debug
+                     mode or not); no parameters.
+       SEC_BOOT_DEV - The boot device from which the trusted boot is allowed to
+                     proceed, identified via a numeric ID. The tested values
+                     are 0x34 = NOR flash, 0x31 = SDIO/MMC card; for
+                     additional ID values, consult the documentation in [1].
+      SEC_FUSE_DUMP - Dump the "fuse prog" commands necessary for writing the
+                     correct eFuse values to a text file in the U-Boot root
+                     directory. The parameter is the architecture for which to
+                     dump the commands (currently only "a38x" is supported).
+
+The parameter values may be hardcoded into the file, but it is also possible to
+employ a dynamic approach of creating a Autoconf-like kwbimage.cfg.in, then
+reading configuration values from Kconfig options or from the board config
+file, and generating the actual kwbimage.cfg from this template using Makefile
+mechanisms (see board/gdsys/a38x/Makefile as an example for this approach).
+
+### Set config options
+
+To enable the generation of trusted boot images, the corresponding support
+needs to be activated, and a index for the active CSK needs to be selected as
+well.
+
+Furthermore, eFuse writing support has to be activated in order to burn the
+eFuse structure's values (this option is just needed for programming the eFuse
+structure; production boot images may disable it).
+
+ARM architecture
+ -> [*] Build image for trusted boot
+    (0)   Index of active CSK
+ -> [*] Enable eFuse support
+    [ ]   Fake eFuse access (dry run)
+
+### Build and test boot image
+
+The creation of the boot image is done via the usual invocation of make (with a
+suitably set CROSS_COMPILE environment variable, of course). The resulting boot
+image u-boot-spl.kwb can then be tested, if so desired. The hdrparser from [5]
+can be used for this purpose. To build the tool, invoke make in the
+'tools/marvell/doimage_mv' directory of [5], which builds a stand-alone
+hdrparser executable. A test can be conducted by calling hdrparser with the
+produced boot image and the following (mandatory) parameters:
+
+./hdrparser -k 0 -t u-boot-spl.kwb
+
+Here we assume that the CSK index is 0 and the boot image file resides in the
+same directory (adapt accordingly if needed). The tool should report that all
+checksums are valid ("GOOD"), that all signature verifications succeed
+("PASSED"), and, finally, that the overall test was successful
+("T E S T   S U C C E E D E D" in the last line of output).
+
+### Burn eFuse structure
+
++----------------------------------------------------------+
+| WARNING: Burning the eFuse structure is a irreversible   |
+| operation! Should wrong or corrupted values be used, the |
+| board won't boot anymore, and recovery is likely         |
+| impossible!                                              |
++----------------------------------------------------------+
+
+After the build process has finished, and the SEC_FUSE_DUMP option was set in
+the kwbimage.cfg was set, a text file kwb_fuses_a38x.txt should be present in
+the U-Boot top-level directory. It contains all the necessary commands to set
+the eFuse structure to the values needed for the used KAK digest, as well as
+the CSK index, Flash ID and Box ID that were selected in kwbimage.cfg.
+
+Sequentially executing the commands in this file at the U-Boot command prompt
+will write these values to the eFuse structure.
+
+If the SEC_FUSE_DUMP option was not set, the commands needed to burn the fuses
+have to be crafted by hand. The needed fuse lines can be looked up in [1]; a
+rough overview of the process is:
+
+* Burn the KAK public key hash. The hash itself can be found in the file
+  pub_kak_hash.txt in the U-Boot top-level directory; be careful to account for
+  the endianness!
+* Burn the CSK selection, BoxID, and FlashID
+* Enable trusted boot by burning the corresponding fuse (WARNING: this must be
+  the last fuse line written!)
+* Lock the unused fuse lines
+
+The command to employ is the "fuse prog" command previously enabled by setting
+the corresponding configuration option.
+
+For the trusted boot, the fuse prog command has a special syntax, since the
+ARMADA SoC demands that whole fuse lines (64 bit values) have to be written as
+a whole. The fuse prog command itself allows lists of 32 bit words to be
+written at a time, but this is translated to a series of single 32 bit write
+operations to the fuse line, where the individual 32 bit words are identified
+by a "word" counter that is increased for each write.
+
+To work around this restriction, we interpret each line to have three "words"
+(0-2): The first and second words are the values to be written to the fuse
+line, and the third is a lock flag, which is supposed to lock the fuse line
+when set to 1. Writes to the first and second words are memoized between
+function calls, and the fuse line is only really written and locked (on writing
+the third word) if both words were previously set, so that "incomplete" writes
+are prevented. An exception to this is a single write to the third word (index
+2) without previously writing neither the first nor the second word, which
+locks the fuse line without setting any value; this is needed to lock the
+unused fuse lines.
+
+As an example, to write the value 0011223344556677 to fuse line 10, we would
+use the following command:
+
+fuse prog -y 10 0 00112233 44556677 1
+
+Here 10 is the fuse line number, 0 is the index of the first word to be
+written, 00112233 and 44556677 are the values to be written to the fuse line
+(first and second word) and the trailing 1 is the value for the third word
+responsible for locking the line.
+
+A "lock-only" command would look like this:
+
+fuse prog -y 11 2 1
+
+Here 11 is the fuse number, 2 is the index of the first word to be written
+(notice that we only write to word 2 here; the third word for fuse line
+locking), and the 1 is the value for the word we are writing to.
+
+WARNING: According to application note [4], the VHV pin of the SoC must be
+connected to a 1.8V source during eFuse programming, but *must* be disconnected
+for normal operation. The AN [4] describes a software-controlled circuit (based
+on a N-channel or P-channel FET and a free GPIO pin of the SoC) to achieve
+this, but a jumper-based circuit should suffice as well. Regardless of the
+chosen circuit, the issue needs to be addressed accordingly!
+
+7. Work to be done
+------------------
+
+* Add the ability to populate more than one CSK
+* Test secure debug
+* Test on Armada XP
+
+8. Bibliography
+---------------
+
+[1] ARMADA(R) 38x Family High-Performance Single/Dual CPU System on Chip
+    Functional Specification; MV-S109094-00, Rev. C; August 2, 2015,
+    Preliminary
+[2] AN-383: ARMADA(R) 38x Families Secure Boot Mode Support; MV-S302501-00
+    Rev.  A; March 11, 2015, Preliminary
+[3] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
+    Specifications Version 2.1; February 2003;
+    https://www.ietf.org/rfc/rfc3447.txt
+[4] AN-389: ARMADA(R) VHV Power; MV-S302545-00 Rev. B; January 28, 2016,
+    Released
+[5] Marvell Armada 38x U-Boot support; November 25, 2015;
+    https://github.com/MarvellEmbeddedProcessors/u-boot-marvell
+
+2017-01-05, Mario Six <mario.six@gdsys.cc>
index cefcedf683ca6698bb5ace7de77f444f9eb453c8..f5ac6313e1f1b6867a2340b8fdf7bd045588971c 100644 (file)
@@ -142,8 +142,12 @@ ifdef CONFIG_SYS_U_BOOT_OFFS
 HOSTCFLAGS_kwbimage.o += -DCONFIG_SYS_U_BOOT_OFFS=$(CONFIG_SYS_U_BOOT_OFFS)
 endif
 
+ifneq ($(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X),)
+HOSTCFLAGS_kwbimage.o += -DCONFIG_KWB_SECURE
+endif
+
 # MXSImage needs LibSSL
-ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_FIT_SIGNATURE),)
+ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X)$(CONFIG_FIT_SIGNATURE),)
 HOSTLOADLIBES_mkimage += \
        $(shell pkg-config --libs libssl libcrypto 2> /dev/null || echo "-lssl -lcrypto")
 
index 9aa9c7491a39d78626179561d657917b64751e4c..93797c99da76604961493e3a7674aa618cd829fb 100644 (file)
@@ -1,30 +1,47 @@
 /*
  * Image manipulator for Marvell SoCs
- *  supports Kirkwood, Dove, Armada 370, and Armada XP
+ *  supports Kirkwood, Dove, Armada 370, Armada XP, and Armada 38x
  *
  * (C) Copyright 2013 Thomas Petazzoni
  * <thomas.petazzoni@free-electrons.com>
  *
  * SPDX-License-Identifier:    GPL-2.0+
  *
- * Not implemented: support for the register headers and secure
- * headers in v1 images
+ * Not implemented: support for the register headers in v1 images
  */
 
 #include "imagetool.h"
 #include <limits.h>
 #include <image.h>
+#include <stdarg.h>
 #include <stdint.h>
 #include "kwbimage.h"
 
+#ifdef CONFIG_KWB_SECURE
+#include <openssl/rsa.h>
+#include <openssl/pem.h>
+#include <openssl/err.h>
+#include <openssl/evp.h>
+#endif
+
 static struct image_cfg_element *image_cfg;
 static int cfgn;
+#ifdef CONFIG_KWB_SECURE
+static int verbose_mode;
+#endif
 
 struct boot_mode {
        unsigned int id;
        const char *name;
 };
 
+/*
+ * SHA2-256 hash
+ */
+struct hash_v1 {
+       uint8_t hash[32];
+};
+
 struct boot_mode boot_modes[] = {
        { 0x4D, "i2c"  },
        { 0x5A, "spi"  },
@@ -70,6 +87,16 @@ enum image_cfg_type {
        IMAGE_CFG_DATA,
        IMAGE_CFG_BAUDRATE,
        IMAGE_CFG_DEBUG,
+       IMAGE_CFG_KAK,
+       IMAGE_CFG_CSK,
+       IMAGE_CFG_CSK_INDEX,
+       IMAGE_CFG_JTAG_DELAY,
+       IMAGE_CFG_BOX_ID,
+       IMAGE_CFG_FLASH_ID,
+       IMAGE_CFG_SEC_COMMON_IMG,
+       IMAGE_CFG_SEC_SPECIALIZED_IMG,
+       IMAGE_CFG_SEC_BOOT_DEV,
+       IMAGE_CFG_SEC_FUSE_DUMP,
 
        IMAGE_CFG_COUNT
 } type;
@@ -88,6 +115,16 @@ static const char * const id_strs[] = {
        [IMAGE_CFG_DATA] = "DATA",
        [IMAGE_CFG_BAUDRATE] = "BAUDRATE",
        [IMAGE_CFG_DEBUG] = "DEBUG",
+       [IMAGE_CFG_KAK] = "KAK",
+       [IMAGE_CFG_CSK] = "CSK",
+       [IMAGE_CFG_CSK_INDEX] = "CSK_INDEX",
+       [IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY",
+       [IMAGE_CFG_BOX_ID] = "BOX_ID",
+       [IMAGE_CFG_FLASH_ID] = "FLASH_ID",
+       [IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG",
+       [IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG",
+       [IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV",
+       [IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP"
 };
 
 struct image_cfg_element {
@@ -110,6 +147,14 @@ struct image_cfg_element {
                struct ext_hdr_v0_reg regdata;
                unsigned int baudrate;
                unsigned int debug;
+               const char *key_name;
+               int csk_idx;
+               uint8_t jtag_delay;
+               uint32_t boxid;
+               uint32_t flashid;
+               bool sec_specialized_img;
+               unsigned int sec_boot_dev;
+               const char *name;
        };
 };
 
@@ -178,6 +223,32 @@ image_count_options(unsigned int optiontype)
        return count;
 }
 
+#if defined(CONFIG_KWB_SECURE)
+
+static int image_get_csk_index(void)
+{
+       struct image_cfg_element *e;
+
+       e = image_find_option(IMAGE_CFG_CSK_INDEX);
+       if (!e)
+               return -1;
+
+       return e->csk_idx;
+}
+
+static bool image_get_spezialized_img(void)
+{
+       struct image_cfg_element *e;
+
+       e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG);
+       if (!e)
+               return false;
+
+       return e->sec_specialized_img;
+}
+
+#endif
+
 /*
  * Compute a 8-bit checksum of a memory area. This algorithm follows
  * the requirements of the Marvell SoC BootROM specifications.
@@ -245,6 +316,493 @@ static uint8_t baudrate_to_option(unsigned int baudrate)
        }
 }
 
+#if defined(CONFIG_KWB_SECURE)
+static void kwb_msg(const char *fmt, ...)
+{
+       if (verbose_mode) {
+               va_list ap;
+
+               va_start(ap, fmt);
+               vfprintf(stdout, fmt, ap);
+               va_end(ap);
+       }
+}
+
+static int openssl_err(const char *msg)
+{
+       unsigned long ssl_err = ERR_get_error();
+
+       fprintf(stderr, "%s", msg);
+       fprintf(stderr, ": %s\n",
+               ERR_error_string(ssl_err, 0));
+
+       return -1;
+}
+
+static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa)
+{
+       char path[PATH_MAX];
+       RSA *rsa;
+       FILE *f;
+
+       if (!keydir)
+               keydir = ".";
+
+       snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
+       f = fopen(path, "r");
+       if (!f) {
+               fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
+                       path, strerror(errno));
+               return -ENOENT;
+       }
+
+       rsa = PEM_read_RSAPrivateKey(f, 0, NULL, "");
+       if (!rsa) {
+               openssl_err("Failure reading private key");
+               fclose(f);
+               return -EPROTO;
+       }
+       fclose(f);
+       *p_rsa = rsa;
+
+       return 0;
+}
+
+static int kwb_load_cfg_key(struct image_tool_params *params,
+                           unsigned int cfg_option, const char *key_name,
+                           RSA **p_key)
+{
+       struct image_cfg_element *e_key;
+       RSA *key;
+       int res;
+
+       *p_key = NULL;
+
+       e_key = image_find_option(cfg_option);
+       if (!e_key) {
+               fprintf(stderr, "%s not configured\n", key_name);
+               return -ENOENT;
+       }
+
+       res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key);
+       if (res < 0) {
+               fprintf(stderr, "Failed to load %s\n", key_name);
+               return -ENOENT;
+       }
+
+       *p_key = key;
+
+       return 0;
+}
+
+static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak)
+{
+       return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak);
+}
+
+static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk)
+{
+       return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk);
+}
+
+static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk,
+                                  struct hash_v1 *hash)
+{
+       EVP_MD_CTX *ctx;
+       unsigned int key_size;
+       unsigned int hash_size;
+       int ret = 0;
+
+       if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82)
+               return -EINVAL;
+
+       key_size = (pk->key[2] << 8) + pk->key[3] + 4;
+
+       ctx = EVP_MD_CTX_create();
+       if (!ctx)
+               return openssl_err("EVP context creation failed");
+
+       EVP_MD_CTX_init(ctx);
+       if (!EVP_DigestInit(ctx, EVP_sha256())) {
+               ret = openssl_err("Digest setup failed");
+               goto hash_err_ctx;
+       }
+
+       if (!EVP_DigestUpdate(ctx, pk->key, key_size)) {
+               ret = openssl_err("Hashing data failed");
+               goto hash_err_ctx;
+       }
+
+       if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) {
+               ret = openssl_err("Could not obtain hash");
+               goto hash_err_ctx;
+       }
+
+       EVP_MD_CTX_cleanup(ctx);
+
+hash_err_ctx:
+       EVP_MD_CTX_destroy(ctx);
+       return ret;
+}
+
+static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname)
+{
+       RSA *rsa;
+       const unsigned char *ptr;
+
+       if (!key || !src)
+               goto fail;
+
+       ptr = src->key;
+       rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key));
+       if (!rsa) {
+               openssl_err("error decoding public key");
+               goto fail;
+       }
+
+       return 0;
+fail:
+       fprintf(stderr, "Failed to decode %s pubkey\n", keyname);
+       return -EINVAL;
+}
+
+static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf,
+                            char *keyname)
+{
+       int size_exp, size_mod, size_seq;
+       uint8_t *cur;
+       char *errmsg = "Failed to encode %s\n";
+
+       if (!key || !key->e || !key->n || !dst) {
+               fprintf(stderr, "export pk failed: (%p, %p, %p, %p)",
+                       key, key->e, key->n, dst);
+               fprintf(stderr, errmsg, keyname);
+               return -EINVAL;
+       }
+
+       /*
+        * According to the specs, the key should be PKCS#1 DER encoded.
+        * But unfortunately the really required encoding seems to be different;
+        * it violates DER...! (But it still conformes to BER.)
+        * (Length always in long form w/ 2 byte length code; no leading zero
+        * when MSB of first byte is set...)
+        * So we cannot use the encoding func provided by OpenSSL and have to
+        * do the encoding manually.
+        */
+
+       size_exp = BN_num_bytes(key->e);
+       size_mod = BN_num_bytes(key->n);
+       size_seq = 4 + size_mod + 4 + size_exp;
+
+       if (size_mod > 256) {
+               fprintf(stderr, "export pk failed: wrong mod size: %d\n",
+                       size_mod);
+               fprintf(stderr, errmsg, keyname);
+               return -EINVAL;
+       }
+
+       if (4 + size_seq > sizeof(dst->key)) {
+               fprintf(stderr, "export pk failed: seq too large (%d, %lu)\n",
+                       4 + size_seq, sizeof(dst->key));
+               fprintf(stderr, errmsg, keyname);
+               return -ENOBUFS;
+       }
+
+       cur = dst->key;
+
+       /* PKCS#1 (RFC3447) RSAPublicKey structure */
+       *cur++ = 0x30;          /* SEQUENCE */
+       *cur++ = 0x82;
+       *cur++ = (size_seq >> 8) & 0xFF;
+       *cur++ = size_seq & 0xFF;
+       /* Modulus */
+       *cur++ = 0x02;          /* INTEGER */
+       *cur++ = 0x82;
+       *cur++ = (size_mod >> 8) & 0xFF;
+       *cur++ = size_mod & 0xFF;
+       BN_bn2bin(key->n, cur);
+       cur += size_mod;
+       /* Exponent */
+       *cur++ = 0x02;          /* INTEGER */
+       *cur++ = 0x82;
+       *cur++ = (size_exp >> 8) & 0xFF;
+       *cur++ = size_exp & 0xFF;
+       BN_bn2bin(key->e, cur);
+
+       if (hashf) {
+               struct hash_v1 pk_hash;
+               int i;
+               int ret = 0;
+
+               ret = kwb_compute_pubkey_hash(dst, &pk_hash);
+               if (ret < 0) {
+                       fprintf(stderr, errmsg, keyname);
+                       return ret;
+               }
+
+               fprintf(hashf, "SHA256 = ");
+               for (i = 0 ; i < sizeof(pk_hash.hash); ++i)
+                       fprintf(hashf, "%02X", pk_hash.hash[i]);
+               fprintf(hashf, "\n");
+       }
+
+       return 0;
+}
+
+int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame)
+{
+       EVP_PKEY *evp_key;
+       EVP_MD_CTX *ctx;
+       unsigned int sig_size;
+       int size;
+       int ret = 0;
+
+       evp_key = EVP_PKEY_new();
+       if (!evp_key)
+               return openssl_err("EVP_PKEY object creation failed");
+
+       if (!EVP_PKEY_set1_RSA(evp_key, key)) {
+               ret = openssl_err("EVP key setup failed");
+               goto err_key;
+       }
+
+       size = EVP_PKEY_size(evp_key);
+       if (size > sizeof(sig->sig)) {
+               fprintf(stderr, "Buffer to small for signature (%d bytes)\n",
+                       size);
+               ret = -ENOBUFS;
+               goto err_key;
+       }
+
+       ctx = EVP_MD_CTX_create();
+       if (!ctx) {
+               ret = openssl_err("EVP context creation failed");
+               goto err_key;
+       }
+       EVP_MD_CTX_init(ctx);
+       if (!EVP_SignInit(ctx, EVP_sha256())) {
+               ret = openssl_err("Signer setup failed");
+               goto err_ctx;
+       }
+
+       if (!EVP_SignUpdate(ctx, data, datasz)) {
+               ret = openssl_err("Signing data failed");
+               goto err_ctx;
+       }
+
+       if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) {
+               ret = openssl_err("Could not obtain signature");
+               goto err_ctx;
+       }
+
+       EVP_MD_CTX_cleanup(ctx);
+       EVP_MD_CTX_destroy(ctx);
+       EVP_PKEY_free(evp_key);
+
+       return 0;
+
+err_ctx:
+       EVP_MD_CTX_destroy(ctx);
+err_key:
+       EVP_PKEY_free(evp_key);
+       fprintf(stderr, "Failed to create %s signature\n", signame);
+       return ret;
+}
+
+int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
+              char *signame)
+{
+       EVP_PKEY *evp_key;
+       EVP_MD_CTX *ctx;
+       int size;
+       int ret = 0;
+
+       evp_key = EVP_PKEY_new();
+       if (!evp_key)
+               return openssl_err("EVP_PKEY object creation failed");
+
+       if (!EVP_PKEY_set1_RSA(evp_key, key)) {
+               ret = openssl_err("EVP key setup failed");
+               goto err_key;
+       }
+
+       size = EVP_PKEY_size(evp_key);
+       if (size > sizeof(sig->sig)) {
+               fprintf(stderr, "Invalid signature size (%d bytes)\n",
+                       size);
+               ret = -EINVAL;
+               goto err_key;
+       }
+
+       ctx = EVP_MD_CTX_create();
+       if (!ctx) {
+               ret = openssl_err("EVP context creation failed");
+               goto err_key;
+       }
+       EVP_MD_CTX_init(ctx);
+       if (!EVP_VerifyInit(ctx, EVP_sha256())) {
+               ret = openssl_err("Verifier setup failed");
+               goto err_ctx;
+       }
+
+       if (!EVP_VerifyUpdate(ctx, data, datasz)) {
+               ret = openssl_err("Hashing data failed");
+               goto err_ctx;
+       }
+
+       if (!EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key)) {
+               ret = openssl_err("Could not verify signature");
+               goto err_ctx;
+       }
+
+       EVP_MD_CTX_cleanup(ctx);
+       EVP_MD_CTX_destroy(ctx);
+       EVP_PKEY_free(evp_key);
+
+       return 0;
+
+err_ctx:
+       EVP_MD_CTX_destroy(ctx);
+err_key:
+       EVP_PKEY_free(evp_key);
+       fprintf(stderr, "Failed to verify %s signature\n", signame);
+       return ret;
+}
+
+int kwb_sign_and_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
+                       char *signame)
+{
+       if (kwb_sign(key, data, datasz, sig, signame) < 0)
+               return -1;
+
+       if (kwb_verify(key, data, datasz, sig, signame) < 0)
+               return -1;
+
+       return 0;
+}
+
+
+int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr)
+{
+       struct hash_v1 kak_pub_hash;
+       struct image_cfg_element *e;
+       unsigned int fuse_line;
+       int i, idx;
+       uint8_t *ptr;
+       uint32_t val;
+       int ret = 0;
+
+       if (!out || !sec_hdr)
+               return -EINVAL;
+
+       ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash);
+       if (ret < 0)
+               goto done;
+
+       fprintf(out, "# burn KAK pub key hash\n");
+       ptr = kak_pub_hash.hash;
+       for (fuse_line = 26; fuse_line <= 30; ++fuse_line) {
+               fprintf(out, "fuse prog -y %u 0 ", fuse_line);
+
+               for (i = 4; i-- > 0;)
+                       fprintf(out, "%02hx", (ushort)ptr[i]);
+               ptr += 4;
+               fprintf(out, " 00");
+
+               if (fuse_line < 30) {
+                       for (i = 3; i-- > 0;)
+                               fprintf(out, "%02hx", (ushort)ptr[i]);
+                       ptr += 3;
+               } else {
+                       fprintf(out, "000000");
+               }
+
+               fprintf(out, " 1\n");
+       }
+
+       fprintf(out, "# burn CSK selection\n");
+
+       idx = image_get_csk_index();
+       if (idx < 0 || idx > 15) {
+               ret = -EINVAL;
+               goto done;
+       }
+       if (idx > 0) {
+               for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line)
+                       fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n",
+                               fuse_line);
+       } else {
+               fprintf(out, "# CSK index is 0; no mods needed\n");
+       }
+
+       e = image_find_option(IMAGE_CFG_BOX_ID);
+       if (e) {
+               fprintf(out, "# set box ID\n");
+               fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid);
+       }
+
+       e = image_find_option(IMAGE_CFG_FLASH_ID);
+       if (e) {
+               fprintf(out, "# set flash ID\n");
+               fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid);
+       }
+
+       fprintf(out, "# enable secure mode ");
+       fprintf(out, "(must be the last fuse line written)\n");
+
+       val = 1;
+       e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV);
+       if (!e) {
+               fprintf(stderr, "ERROR: secured mode boot device not given\n");
+               ret = -EINVAL;
+               goto done;
+       }
+
+       if (e->sec_boot_dev > 0xff) {
+               fprintf(stderr, "ERROR: secured mode boot device invalid\n");
+               ret = -EINVAL;
+               goto done;
+       }
+
+       val |= (e->sec_boot_dev << 8);
+
+       fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val);
+
+       fprintf(out, "# lock (unused) fuse lines (0-23)s\n");
+       for (fuse_line = 0; fuse_line < 24; ++fuse_line)
+               fprintf(out, "fuse prog -y %u 2 1\n", fuse_line);
+
+       fprintf(out, "# OK, that's all :-)\n");
+
+done:
+       return ret;
+}
+
+static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr)
+{
+       int ret = 0;
+       struct image_cfg_element *e;
+
+       e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP);
+       if (!e)
+               return 0;
+
+       if (!strcmp(e->name, "a38x")) {
+               FILE *out = fopen("kwb_fuses_a38x.txt", "w+");
+
+               kwb_dump_fuse_cmds_38x(out, sec_hdr);
+               fclose(out);
+               goto done;
+       }
+
+       ret = -ENOSYS;
+
+done:
+       return ret;
+}
+
+#endif
+
 static void *image_create_v0(size_t *imagesz, struct image_tool_params *params,
                             int payloadsz)
 {
@@ -381,6 +939,14 @@ static size_t image_headersz_v1(int *hasext)
                        *hasext = 1;
        }
 
+#if defined(CONFIG_KWB_SECURE)
+       if (image_get_csk_index() >= 0) {
+               headersz += sizeof(struct secure_hdr_v1);
+               if (hasext)
+                       *hasext = 1;
+       }
+#endif
+
 #if defined(CONFIG_SYS_U_BOOT_OFFS)
        if (headersz > CONFIG_SYS_U_BOOT_OFFS) {
                fprintf(stderr,
@@ -476,14 +1042,129 @@ int add_binary_header_v1(uint8_t *cur)
        return 0;
 }
 
+#if defined(CONFIG_KWB_SECURE)
+
+int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr)
+{
+       FILE *hashf;
+       int res;
+
+       hashf = fopen("pub_kak_hash.txt", "w");
+
+       res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK");
+
+       fclose(hashf);
+
+       return res < 0 ? 1 : 0;
+}
+
+int kwb_sign_csk_with_kak(struct image_tool_params *params,
+                         struct secure_hdr_v1 *secure_hdr, RSA *csk)
+{
+       RSA *kak = NULL;
+       RSA *kak_pub = NULL;
+       int csk_idx = image_get_csk_index();
+       struct sig_v1 tmp_sig;
+
+       if (csk_idx >= 16) {
+               fprintf(stderr, "Invalid CSK index %d\n", csk_idx);
+               return 1;
+       }
+
+       if (kwb_load_kak(params, &kak) < 0)
+               return 1;
+
+       if (export_pub_kak_hash(kak, secure_hdr))
+               return 1;
+
+       if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0)
+               return 1;
+
+       if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0)
+               return 1;
+
+       if (kwb_sign_and_verify(kak, &secure_hdr->csk,
+                               sizeof(secure_hdr->csk) +
+                               sizeof(secure_hdr->csksig),
+                               &tmp_sig, "CSK") < 0)
+               return 1;
+
+       if (kwb_verify(kak_pub, &secure_hdr->csk,
+                      sizeof(secure_hdr->csk) +
+                      sizeof(secure_hdr->csksig),
+                      &tmp_sig, "CSK (2)") < 0)
+               return 1;
+
+       secure_hdr->csksig = tmp_sig;
+
+       return 0;
+}
+
+int add_secure_header_v1(struct image_tool_params *params, uint8_t *ptr,
+                        int payloadsz, size_t headersz, uint8_t *image,
+                        struct secure_hdr_v1 *secure_hdr)
+{
+       struct image_cfg_element *e_jtagdelay;
+       struct image_cfg_element *e_boxid;
+       struct image_cfg_element *e_flashid;
+       RSA *csk = NULL;
+       unsigned char *image_ptr;
+       size_t image_size;
+       struct sig_v1 tmp_sig;
+       bool specialized_img = image_get_spezialized_img();
+
+       kwb_msg("Create secure header content\n");
+
+       e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY);
+       e_boxid = image_find_option(IMAGE_CFG_BOX_ID);
+       e_flashid = image_find_option(IMAGE_CFG_FLASH_ID);
+
+       if (kwb_load_csk(params, &csk) < 0)
+               return 1;
+
+       secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE;
+       secure_hdr->headersz_msb = 0;
+       secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1));
+       if (e_jtagdelay)
+               secure_hdr->jtag_delay = e_jtagdelay->jtag_delay;
+       if (e_boxid && specialized_img)
+               secure_hdr->boxid = cpu_to_le32(e_boxid->boxid);
+       if (e_flashid && specialized_img)
+               secure_hdr->flashid = cpu_to_le32(e_flashid->flashid);
+
+       if (kwb_sign_csk_with_kak(params, secure_hdr, csk))
+               return 1;
+
+       image_ptr = ptr + headersz;
+       image_size = payloadsz - headersz;
+
+       if (kwb_sign_and_verify(csk, image_ptr, image_size,
+                               &secure_hdr->imgsig, "image") < 0)
+               return 1;
+
+       if (kwb_sign_and_verify(csk, image, headersz, &tmp_sig, "header") < 0)
+               return 1;
+
+       secure_hdr->hdrsig = tmp_sig;
+
+       kwb_dump_fuse_cmds(secure_hdr);
+
+       return 0;
+}
+#endif
+
 static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
-                            int payloadsz)
+                            uint8_t *ptr, int payloadsz)
 {
        struct image_cfg_element *e;
        struct main_hdr_v1 *main_hdr;
+#if defined(CONFIG_KWB_SECURE)
+       struct secure_hdr_v1 *secure_hdr = NULL;
+#endif
        size_t headersz;
        uint8_t *image, *cur;
        int hasext = 0;
+       uint8_t *next_ext = NULL;
 
        /*
         * Calculate the size of the header and the size of the
@@ -502,7 +1183,9 @@ static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
        memset(image, 0, headersz);
 
        main_hdr = (struct main_hdr_v1 *)image;
-       cur = image + sizeof(struct main_hdr_v1);
+       cur = image;
+       cur += sizeof(struct main_hdr_v1);
+       next_ext = &main_hdr->ext;
 
        /* Fill the main header */
        main_hdr->blocksize    =
@@ -531,9 +1214,28 @@ static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
        if (e)
                main_hdr->flags = e->debug ? 0x1 : 0;
 
+#if defined(CONFIG_KWB_SECURE)
+       if (image_get_csk_index() >= 0) {
+               /*
+                * only reserve the space here; we fill the header later since
+                * we need the header to be complete to compute the signatures
+                */
+               secure_hdr = (struct secure_hdr_v1 *)cur;
+               cur += sizeof(struct secure_hdr_v1);
+               next_ext = &secure_hdr->next;
+       }
+#endif
+       *next_ext = 1;
+
        if (add_binary_header_v1(cur))
                return NULL;
 
+#if defined(CONFIG_KWB_SECURE)
+       if (secure_hdr && add_secure_header_v1(params, ptr, payloadsz,
+                                              headersz, image, secure_hdr))
+               return NULL;
+#endif
+
        /* Calculate and set the header checksum */
        main_hdr->checksum = image_checksum8(main_hdr, headersz);
 
@@ -645,6 +1347,36 @@ static int image_create_config_parse_oneline(char *line,
        case IMAGE_CFG_DEBUG:
                el->debug = strtoul(value1, NULL, 10);
                break;
+       case IMAGE_CFG_KAK:
+               el->key_name = strdup(value1);
+               break;
+       case IMAGE_CFG_CSK:
+               el->key_name = strdup(value1);
+               break;
+       case IMAGE_CFG_CSK_INDEX:
+               el->csk_idx = strtol(value1, NULL, 0);
+               break;
+       case IMAGE_CFG_JTAG_DELAY:
+               el->jtag_delay = strtoul(value1, NULL, 0);
+               break;
+       case IMAGE_CFG_BOX_ID:
+               el->boxid = strtoul(value1, NULL, 0);
+               break;
+       case IMAGE_CFG_FLASH_ID:
+               el->flashid = strtoul(value1, NULL, 0);
+               break;
+       case IMAGE_CFG_SEC_SPECIALIZED_IMG:
+               el->sec_specialized_img = true;
+               break;
+       case IMAGE_CFG_SEC_COMMON_IMG:
+               el->sec_specialized_img = false;
+               break;
+       case IMAGE_CFG_SEC_BOOT_DEV:
+               el->sec_boot_dev = strtoul(value1, NULL, 0);
+               break;
+       case IMAGE_CFG_SEC_FUSE_DUMP:
+               el->name = strdup(value1);
+               break;
        default:
                fprintf(stderr, unknown_msg, line);
        }
@@ -804,7 +1536,7 @@ static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd,
                break;
 
        case 1:
-               image = image_create_v1(&headersz, params, sbuf->st_size);
+               image = image_create_v1(&headersz, params, ptr, sbuf->st_size);
                break;
 
        default:
index 01c2f1f3238b57e4e9b78029c6331cf2b02abb5c..20f4d0d9dd7f7e6f5e8069fdfc6a7446a850f874 100644 (file)
@@ -113,6 +113,43 @@ struct opt_hdr_v1 {
        char     data[0];
 };
 
+/*
+ * Public Key data in DER format
+ */
+struct pubkey_der_v1 {
+       uint8_t key[524];
+};
+
+/*
+ * Signature (RSA 2048)
+ */
+struct sig_v1 {
+       uint8_t sig[256];
+};
+
+/*
+ * Structure of secure header (Armada 38x)
+ */
+struct secure_hdr_v1 {
+       uint8_t  headertype;            /* 0x0 */
+       uint8_t  headersz_msb;          /* 0x1 */
+       uint16_t headersz_lsb;          /* 0x2 - 0x3 */
+       uint32_t reserved1;             /* 0x4 - 0x7 */
+       struct pubkey_der_v1 kak;       /* 0x8 - 0x213 */
+       uint8_t  jtag_delay;            /* 0x214 */
+       uint8_t  reserved2;             /* 0x215 */
+       uint16_t reserved3;             /* 0x216 - 0x217 */
+       uint32_t boxid;                 /* 0x218 - 0x21B */
+       uint32_t flashid;               /* 0x21C - 0x21F */
+       struct sig_v1 hdrsig;           /* 0x220 - 0x31F */
+       struct sig_v1 imgsig;           /* 0x320 - 0x41F */
+       struct pubkey_der_v1 csk[16];   /* 0x420 - 0x24DF */
+       struct sig_v1 csksig;           /* 0x24E0 - 0x25DF */
+       uint8_t  next;                  /* 0x25E0 */
+       uint8_t  reserved4;             /* 0x25E1 */
+       uint16_t reserved5;             /* 0x25E2 - 0x25E3 */
+};
+
 /*
  * Various values for the opt_hdr_v1->headertype field, describing the
  * different types of optional headers. The "secure" header contains