rp=ret->d;
ap=&(r->d[ri]);
- nrp=ap;
- /* This 'if' denotes violation of 2*M<r^(n-1) boundary condition
- * formulated by C.D.Walter in "Montgomery exponentiation needs
- * no final subtractions." Incurred branch can disclose only
- * information about modulus length, which is not really secret. */
- if ((mont->N.d[ri-1]>>(BN_BITS2-2))!=0)
- {
- size_t m1,m2;
-
- v=bn_sub_words(rp,ap,mont->N.d,ri);
- /* this -----------------------^^ works even in al<ri case
- * thanks to zealous zeroing of top of the vector in the
- * beginning. */
-
- /* if (al==ri && !v) || al>ri) nrp=rp; else nrp=ap; */
- /* in other words if subtraction result is real, then
- * trick unconditional memcpy below to perform in-place
- * "refresh" instead of actual copy. */
- m1=0-(size_t)(((al-ri)>>(sizeof(al)*8-1))&1); /* al<ri */
- m2=0-(size_t)(((ri-al)>>(sizeof(al)*8-1))&1); /* al>ri */
- m1|=m2; /* (al!=ri) */
- m1|=(0-(size_t)v); /* (al!=ri || v) */
- m1&=~m2; /* (al!=ri || v) && !al>ri */
- nrp=(BN_ULONG *)(((size_t)rp&~m1)|((size_t)ap&m1));
- }
+ {
+ size_t m1,m2;
+
+ v=bn_sub_words(rp,ap,np,ri);
+ /* this ----------------^^ works even in al<ri case
+ * thanks to zealous zeroing of top of the vector in the
+ * beginning. */
+
+ /* if (al==ri && !v) || al>ri) nrp=rp; else nrp=ap; */
+ /* in other words if subtraction result is real, then
+ * trick unconditional memcpy below to perform in-place
+ * "refresh" instead of actual copy. */
+ m1=0-(size_t)(((al-ri)>>(sizeof(al)*8-1))&1); /* al<ri */
+ m2=0-(size_t)(((ri-al)>>(sizeof(al)*8-1))&1); /* al>ri */
+ m1|=m2; /* (al!=ri) */
+ m1|=(0-(size_t)v); /* (al!=ri || v) */
+ m1&=~m2; /* (al!=ri || v) && !al>ri */
+ nrp=(BN_ULONG *)(((size_t)rp&~m1)|((size_t)ap&m1));
+ }
/* 'i<ri' is chosen to eliminate dependency on input data, even
* though it results in redundant copy in al<ri case. */