--- /dev/null
+#
+# Copyright (C) 2017 NXP Semiconductors
+# Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+What is NVMe
+============
+
+NVM Express (NVMe) is a register level interface that allows host software to
+communicate with a non-volatile memory subsystem. This interface is optimized
+for enterprise and client solid state drives, typically attached to the PCI
+express interface. It is a scalable host controller interface designed to
+address the needs of enterprise and client systems that utilize PCI express
+based solid state drives (SSD). The interface provides optimized command
+submission and completion paths. It includes support for parallel operation by
+supporting up to 64K I/O queues with up to 64K commands per I/O queue.
+
+The device is comprised of some number of controllers, where each controller
+is comprised of some number of namespaces, where each namespace is comprised
+of some number of logical blocks. A namespace is a quantity of non-volatile
+memory that is formatted into logical blocks. An NVMe namespace is equivalent
+to a SCSI LUN. Each namespace is operated as an independent "device".
+
+How it works
+------------
+There is an NVMe uclass driver (driver name "nvme"), an NVMe host controller
+driver (driver name "nvme") and an NVMe namespace block driver (driver name
+"nvme-blk"). The host controller driver is supposed to probe the hardware and
+do necessary initialization to put the controller into a ready state at which
+it is able to scan all available namespaces attached to it. Scanning namespace
+is triggered by the NVMe uclass driver and the actual work is done in the NVMe
+namespace block driver.
+
+Status
+------
+It only support basic block read/write functions in the NVMe driver.
+
+Config options
+--------------
+CONFIG_NVME Enable NVMe device support
source "drivers/net/Kconfig"
+source "drivers/nvme/Kconfig"
+
source "drivers/pci/Kconfig"
source "drivers/pcmcia/Kconfig"
obj-$(CONFIG_FPGA) += fpga/
obj-y += misc/
obj-$(CONFIG_MMC) += mmc/
+obj-$(CONFIG_NVME) += nvme/
obj-y += pcmcia/
obj-y += dfu/
obj-$(CONFIG_X86) += pch/
--- /dev/null
+#
+# Copyright (C) 2017, Bin Meng <bmeng.cn@gmail.com>
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+config NVME
+ bool "NVM Express device support"
+ depends on BLK && PCI
+ help
+ This option enables support for NVM Express devices.
+ It supports basic functions of NVMe (read/write).
--- /dev/null
+#
+# Copyright (C) 2017, Bin Meng <bmeng.cn@gmail.com>
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+obj-y += nvme-uclass.o nvme.o
--- /dev/null
+/*
+ * Copyright (C) 2017 NXP Semiconductors
+ * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <errno.h>
+#include <dm.h>
+#include <dm/device.h>
+#include "nvme.h"
+
+static int nvme_info_init(struct uclass *uc)
+{
+ struct nvme_info *info = (struct nvme_info *)uc->priv;
+
+ info->ns_num = 0;
+ info->ndev_num = 0;
+ INIT_LIST_HEAD(&info->dev_list);
+ nvme_info = info;
+
+ return 0;
+}
+
+static int nvme_uclass_post_probe(struct udevice *udev)
+{
+ char name[20];
+ char *str;
+ struct udevice *ns_udev;
+ int i, ret;
+ struct nvme_dev *ndev = dev_get_priv(udev);
+
+ /* Create a blk device for each namespace */
+ for (i = 0; i < ndev->nn; i++) {
+ sprintf(name, "nvme-blk#%d", nvme_info->ns_num);
+ str = strdup(name);
+ if (!str)
+ return -ENOMEM;
+
+ /* The real blksz and size will be set by nvme_blk_probe() */
+ ret = blk_create_device(udev, "nvme-blk", str, IF_TYPE_NVME,
+ nvme_info->ns_num++, 512, 0, &ns_udev);
+ if (ret) {
+ free(str);
+ nvme_info->ns_num--;
+
+ return ret;
+ }
+ device_set_name_alloced(ns_udev);
+ }
+
+ return 0;
+}
+
+UCLASS_DRIVER(nvme) = {
+ .name = "nvme",
+ .id = UCLASS_NVME,
+ .init = nvme_info_init,
+ .post_probe = nvme_uclass_post_probe,
+ .priv_auto_alloc_size = sizeof(struct nvme_info),
+};
--- /dev/null
+/*
+ * Copyright (C) 2017 NXP Semiconductors
+ * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <dm.h>
+#include <errno.h>
+#include <memalign.h>
+#include <pci.h>
+#include <dm/device-internal.h>
+#include "nvme.h"
+
+struct nvme_info *nvme_info;
+
+#define NVME_Q_DEPTH 2
+#define NVME_AQ_DEPTH 2
+#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
+#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
+#define ADMIN_TIMEOUT 60
+#define IO_TIMEOUT 30
+#define MAX_PRP_POOL 512
+
+/*
+ * An NVM Express queue. Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+ struct nvme_dev *dev;
+ struct nvme_command *sq_cmds;
+ struct nvme_completion *cqes;
+ wait_queue_head_t sq_full;
+ u32 __iomem *q_db;
+ u16 q_depth;
+ s16 cq_vector;
+ u16 sq_head;
+ u16 sq_tail;
+ u16 cq_head;
+ u16 qid;
+ u8 cq_phase;
+ u8 cqe_seen;
+ unsigned long cmdid_data[];
+};
+
+static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
+{
+ u32 bit = enabled ? NVME_CSTS_RDY : 0;
+
+ while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit)
+ udelay(10000);
+
+ return 0;
+}
+
+static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
+ int total_len, u64 dma_addr)
+{
+ u32 page_size = dev->page_size;
+ int offset = dma_addr & (page_size - 1);
+ u64 *prp_pool;
+ int length = total_len;
+ int i, nprps;
+ length -= (page_size - offset);
+
+ if (length <= 0) {
+ *prp2 = 0;
+ return 0;
+ }
+
+ if (length)
+ dma_addr += (page_size - offset);
+
+ if (length <= page_size) {
+ *prp2 = dma_addr;
+ return 0;
+ }
+
+ nprps = DIV_ROUND_UP(length, page_size);
+
+ if (nprps > dev->prp_entry_num) {
+ free(dev->prp_pool);
+ dev->prp_pool = malloc(nprps << 3);
+ if (!dev->prp_pool) {
+ printf("Error: malloc prp_pool fail\n");
+ return -ENOMEM;
+ }
+ dev->prp_entry_num = nprps;
+ }
+
+ prp_pool = dev->prp_pool;
+ i = 0;
+ while (nprps) {
+ if (i == ((page_size >> 3) - 1)) {
+ *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
+ page_size);
+ i = 0;
+ prp_pool += page_size;
+ }
+ *(prp_pool + i++) = cpu_to_le64(dma_addr);
+ dma_addr += page_size;
+ nprps--;
+ }
+ *prp2 = (ulong)dev->prp_pool;
+
+ return 0;
+}
+
+static __le16 nvme_get_cmd_id(void)
+{
+ static unsigned short cmdid;
+
+ return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
+}
+
+static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
+{
+ u64 start = (ulong)&nvmeq->cqes[index];
+ u64 stop = start + sizeof(struct nvme_completion);
+
+ invalidate_dcache_range(start, stop);
+
+ return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
+}
+
+/**
+ * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
+ *
+ * @nvmeq: The queue to use
+ * @cmd: The command to send
+ */
+static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
+{
+ u16 tail = nvmeq->sq_tail;
+
+ memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
+ flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
+ (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
+
+ if (++tail == nvmeq->q_depth)
+ tail = 0;
+ writel(tail, nvmeq->q_db);
+ nvmeq->sq_tail = tail;
+}
+
+static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
+ struct nvme_command *cmd,
+ u32 *result, unsigned timeout)
+{
+ u16 head = nvmeq->cq_head;
+ u16 phase = nvmeq->cq_phase;
+ u16 status;
+ ulong start_time;
+ ulong timeout_us = timeout * 100000;
+
+ cmd->common.command_id = nvme_get_cmd_id();
+ nvme_submit_cmd(nvmeq, cmd);
+
+ start_time = timer_get_us();
+
+ for (;;) {
+ status = nvme_read_completion_status(nvmeq, head);
+ if ((status & 0x01) == phase)
+ break;
+ if (timeout_us > 0 && (timer_get_us() - start_time)
+ >= timeout_us)
+ return -ETIMEDOUT;
+ }
+
+ status >>= 1;
+ if (status) {
+ printf("ERROR: status = %x, phase = %d, head = %d\n",
+ status, phase, head);
+ status = 0;
+ if (++head == nvmeq->q_depth) {
+ head = 0;
+ phase = !phase;
+ }
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+ nvmeq->cq_head = head;
+ nvmeq->cq_phase = phase;
+
+ return -EIO;
+ }
+
+ if (result)
+ *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
+
+ if (++head == nvmeq->q_depth) {
+ head = 0;
+ phase = !phase;
+ }
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+ nvmeq->cq_head = head;
+ nvmeq->cq_phase = phase;
+
+ return status;
+}
+
+static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
+ u32 *result)
+{
+ return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
+}
+
+static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
+ int qid, int depth)
+{
+ struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
+ if (!nvmeq)
+ return NULL;
+ memset(nvmeq, 0, sizeof(*nvmeq));
+
+ nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
+ if (!nvmeq->cqes)
+ goto free_nvmeq;
+ memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
+
+ nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
+ if (!nvmeq->sq_cmds)
+ goto free_queue;
+ memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
+
+ nvmeq->dev = dev;
+
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ nvmeq->q_depth = depth;
+ nvmeq->qid = qid;
+ dev->queue_count++;
+ dev->queues[qid] = nvmeq;
+
+ return nvmeq;
+
+ free_queue:
+ free((void *)nvmeq->cqes);
+ free_nvmeq:
+ free(nvmeq);
+
+ return NULL;
+}
+
+static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(id);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+ return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+ return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int nvme_enable_ctrl(struct nvme_dev *dev)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config |= NVME_CC_ENABLE;
+ writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
+
+ return nvme_wait_ready(dev, true);
+}
+
+static int nvme_disable_ctrl(struct nvme_dev *dev)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config &= ~NVME_CC_ENABLE;
+ writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
+
+ return nvme_wait_ready(dev, false);
+}
+
+static void nvme_free_queue(struct nvme_queue *nvmeq)
+{
+ free((void *)nvmeq->cqes);
+ free(nvmeq->sq_cmds);
+ free(nvmeq);
+}
+
+static void nvme_free_queues(struct nvme_dev *dev, int lowest)
+{
+ int i;
+
+ for (i = dev->queue_count - 1; i >= lowest; i--) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+ dev->queue_count--;
+ dev->queues[i] = NULL;
+ nvme_free_queue(nvmeq);
+ }
+}
+
+static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+
+ nvmeq->sq_tail = 0;
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
+ flush_dcache_range((ulong)nvmeq->cqes,
+ (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
+ dev->online_queues++;
+}
+
+static int nvme_configure_admin_queue(struct nvme_dev *dev)
+{
+ int result;
+ u32 aqa;
+ u64 cap = nvme_readq(&dev->bar->cap);
+ struct nvme_queue *nvmeq;
+ /* most architectures use 4KB as the page size */
+ unsigned page_shift = 12;
+ unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
+ unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
+
+ if (page_shift < dev_page_min) {
+ debug("Device minimum page size (%u) too large for host (%u)\n",
+ 1 << dev_page_min, 1 << page_shift);
+ return -ENODEV;
+ }
+
+ if (page_shift > dev_page_max) {
+ debug("Device maximum page size (%u) smaller than host (%u)\n",
+ 1 << dev_page_max, 1 << page_shift);
+ page_shift = dev_page_max;
+ }
+
+ result = nvme_disable_ctrl(dev);
+ if (result < 0)
+ return result;
+
+ nvmeq = dev->queues[0];
+ if (!nvmeq) {
+ nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
+ if (!nvmeq)
+ return -ENOMEM;
+ }
+
+ aqa = nvmeq->q_depth - 1;
+ aqa |= aqa << 16;
+ aqa |= aqa << 16;
+
+ dev->page_size = 1 << page_shift;
+
+ dev->ctrl_config = NVME_CC_CSS_NVM;
+ dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
+ dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
+ dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
+
+ writel(aqa, &dev->bar->aqa);
+ nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
+ nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
+
+ result = nvme_enable_ctrl(dev);
+ if (result)
+ goto free_nvmeq;
+
+ nvmeq->cq_vector = 0;
+
+ nvme_init_queue(dev->queues[0], 0);
+
+ return result;
+
+ free_nvmeq:
+ nvme_free_queues(dev, 0);
+
+ return result;
+}
+
+static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
+
+ memset(&c, 0, sizeof(c));
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
+ c.create_cq.cqid = cpu_to_le16(qid);
+ c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_cq.cq_flags = cpu_to_le16(flags);
+ c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
+
+ memset(&c, 0, sizeof(c));
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
+ c.create_sq.sqid = cpu_to_le16(qid);
+ c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_sq.sq_flags = cpu_to_le16(flags);
+ c.create_sq.cqid = cpu_to_le16(qid);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+int nvme_identify(struct nvme_dev *dev, unsigned nsid,
+ unsigned cns, dma_addr_t dma_addr)
+{
+ struct nvme_command c;
+ u32 page_size = dev->page_size;
+ int offset = dma_addr & (page_size - 1);
+ int length = sizeof(struct nvme_id_ctrl);
+
+ memset(&c, 0, sizeof(c));
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(nsid);
+ c.identify.prp1 = cpu_to_le64(dma_addr);
+
+ length -= (page_size - offset);
+ if (length <= 0) {
+ c.identify.prp2 = 0;
+ } else {
+ dma_addr += (page_size - offset);
+ c.identify.prp2 = dma_addr;
+ }
+
+ c.identify.cns = cpu_to_le32(cns);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_get_features;
+ c.features.nsid = cpu_to_le32(nsid);
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+
+ return nvme_submit_admin_cmd(dev, &c, result);
+}
+
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_set_features;
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+ c.features.dword11 = cpu_to_le32(dword11);
+
+ return nvme_submit_admin_cmd(dev, &c, result);
+}
+
+static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+ int result;
+
+ nvmeq->cq_vector = qid - 1;
+ result = nvme_alloc_cq(dev, qid, nvmeq);
+ if (result < 0)
+ goto release_cq;
+
+ result = nvme_alloc_sq(dev, qid, nvmeq);
+ if (result < 0)
+ goto release_sq;
+
+ nvme_init_queue(nvmeq, qid);
+
+ return result;
+
+ release_sq:
+ nvme_delete_sq(dev, qid);
+ release_cq:
+ nvme_delete_cq(dev, qid);
+
+ return result;
+}
+
+static int nvme_set_queue_count(struct nvme_dev *dev, int count)
+{
+ int status;
+ u32 result;
+ u32 q_count = (count - 1) | ((count - 1) << 16);
+
+ status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
+ q_count, 0, &result);
+
+ if (status < 0)
+ return status;
+ if (status > 1)
+ return 0;
+
+ return min(result & 0xffff, result >> 16) + 1;
+}
+
+static void nvme_create_io_queues(struct nvme_dev *dev)
+{
+ unsigned int i;
+
+ for (i = dev->queue_count; i <= dev->max_qid; i++)
+ if (!nvme_alloc_queue(dev, i, dev->q_depth))
+ break;
+
+ for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
+ if (nvme_create_queue(dev->queues[i], i))
+ break;
+}
+
+static int nvme_setup_io_queues(struct nvme_dev *dev)
+{
+ int nr_io_queues;
+ int result;
+
+ nr_io_queues = 1;
+ result = nvme_set_queue_count(dev, nr_io_queues);
+ if (result <= 0)
+ return result;
+
+ if (result < nr_io_queues)
+ nr_io_queues = result;
+
+ dev->max_qid = nr_io_queues;
+
+ /* Free previously allocated queues */
+ nvme_free_queues(dev, nr_io_queues + 1);
+ nvme_create_io_queues(dev);
+
+ return 0;
+}
+
+static int nvme_get_info_from_identify(struct nvme_dev *dev)
+{
+ u16 vendor, device;
+ struct nvme_id_ctrl buf, *ctrl = &buf;
+ int ret;
+ int shift = NVME_CAP_MPSMIN(nvme_readq(&dev->bar->cap)) + 12;
+
+ ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
+ if (ret)
+ return -EIO;
+
+ dev->nn = le32_to_cpu(ctrl->nn);
+ dev->vwc = ctrl->vwc;
+ memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
+ memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
+ memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
+ if (ctrl->mdts)
+ dev->max_transfer_shift = (ctrl->mdts + shift);
+
+ /* Apply quirk stuff */
+ dm_pci_read_config16(dev->pdev, PCI_VENDOR_ID, &vendor);
+ dm_pci_read_config16(dev->pdev, PCI_DEVICE_ID, &device);
+ if ((vendor == PCI_VENDOR_ID_INTEL) &&
+ (device == 0x0953) && ctrl->vs[3]) {
+ unsigned int max_transfer_shift;
+ dev->stripe_size = (ctrl->vs[3] + shift);
+ max_transfer_shift = (ctrl->vs[3] + 18);
+ if (dev->max_transfer_shift) {
+ dev->max_transfer_shift = min(max_transfer_shift,
+ dev->max_transfer_shift);
+ } else {
+ dev->max_transfer_shift = max_transfer_shift;
+ }
+ }
+
+ return 0;
+}
+
+int nvme_scan_namespace(void)
+{
+ struct uclass *uc;
+ struct udevice *dev;
+ int ret;
+
+ ret = uclass_get(UCLASS_NVME, &uc);
+ if (ret)
+ return ret;
+
+ uclass_foreach_dev(dev, uc) {
+ ret = device_probe(dev);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nvme_blk_probe(struct udevice *udev)
+{
+ struct nvme_dev *ndev = dev_get_priv(udev->parent);
+ struct blk_desc *desc = dev_get_uclass_platdata(udev);
+ struct nvme_ns *ns = dev_get_priv(udev);
+ u8 flbas;
+ u16 vendor;
+ struct nvme_id_ns buf, *id = &buf;
+
+ memset(ns, 0, sizeof(*ns));
+ ns->dev = ndev;
+ ns->ns_id = desc->devnum - ndev->blk_dev_start + 1;
+ if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
+ return -EIO;
+
+ flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
+ ns->flbas = flbas;
+ ns->lba_shift = id->lbaf[flbas].ds;
+ ns->mode_select_num_blocks = le64_to_cpu(id->nuse);
+ ns->mode_select_block_len = 1 << ns->lba_shift;
+ list_add(&ns->list, &ndev->namespaces);
+
+ desc->lba = ns->mode_select_num_blocks;
+ desc->log2blksz = ns->lba_shift;
+ desc->blksz = 1 << ns->lba_shift;
+ desc->bdev = udev;
+ dm_pci_read_config16(ndev->pdev, PCI_VENDOR_ID, &vendor);
+ sprintf(desc->vendor, "0x%.4x", vendor);
+ memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
+ memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
+ part_init(desc);
+
+ return 0;
+}
+
+static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
+ lbaint_t blkcnt, void *buffer)
+{
+ struct nvme_ns *ns = dev_get_priv(udev);
+ struct nvme_dev *dev = ns->dev;
+ struct nvme_command c;
+ struct blk_desc *desc = dev_get_uclass_platdata(udev);
+ int status;
+ u64 prp2;
+ u64 total_len = blkcnt << desc->log2blksz;
+ u64 temp_len = total_len;
+
+ u64 slba = blknr;
+ u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
+ u64 total_lbas = blkcnt;
+
+ c.rw.opcode = nvme_cmd_read;
+ c.rw.flags = 0;
+ c.rw.nsid = cpu_to_le32(ns->ns_id);
+ c.rw.control = 0;
+ c.rw.dsmgmt = 0;
+ c.rw.reftag = 0;
+ c.rw.apptag = 0;
+ c.rw.appmask = 0;
+ c.rw.metadata = 0;
+
+ while (total_lbas) {
+ if (total_lbas < lbas) {
+ lbas = (u16)total_lbas;
+ total_lbas = 0;
+ } else {
+ total_lbas -= lbas;
+ }
+
+ if (nvme_setup_prps
+ (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
+ return -EIO;
+ c.rw.slba = cpu_to_le64(slba);
+ slba += lbas;
+ c.rw.length = cpu_to_le16(lbas - 1);
+ c.rw.prp1 = cpu_to_le64((ulong)buffer);
+ c.rw.prp2 = cpu_to_le64(prp2);
+ status = nvme_submit_sync_cmd(dev->queues[1],
+ &c, NULL, IO_TIMEOUT);
+ if (status)
+ break;
+ temp_len -= lbas << ns->lba_shift;
+ buffer += lbas << ns->lba_shift;
+ }
+
+ return (total_len - temp_len) >> desc->log2blksz;
+}
+
+static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
+ lbaint_t blkcnt, const void *buffer)
+{
+ struct nvme_ns *ns = dev_get_priv(udev);
+ struct nvme_dev *dev = ns->dev;
+ struct nvme_command c;
+ struct blk_desc *desc = dev_get_uclass_platdata(udev);
+ int status;
+ u64 prp2;
+ u64 total_len = blkcnt << desc->log2blksz;
+ u64 temp_len = total_len;
+
+ u64 slba = blknr;
+ u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
+ u64 total_lbas = blkcnt;
+
+ c.rw.opcode = nvme_cmd_write;
+ c.rw.flags = 0;
+ c.rw.nsid = cpu_to_le32(ns->ns_id);
+ c.rw.control = 0;
+ c.rw.dsmgmt = 0;
+ c.rw.reftag = 0;
+ c.rw.apptag = 0;
+ c.rw.appmask = 0;
+ c.rw.metadata = 0;
+
+ while (total_lbas) {
+ if (total_lbas < lbas) {
+ lbas = (u16)total_lbas;
+ total_lbas = 0;
+ } else {
+ total_lbas -= lbas;
+ }
+
+ if (nvme_setup_prps
+ (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
+ return -EIO;
+ c.rw.slba = cpu_to_le64(slba);
+ slba += lbas;
+ c.rw.length = cpu_to_le16(lbas - 1);
+ c.rw.prp1 = cpu_to_le64((ulong)buffer);
+ c.rw.prp2 = cpu_to_le64(prp2);
+ status = nvme_submit_sync_cmd(dev->queues[1],
+ &c, NULL, IO_TIMEOUT);
+ if (status)
+ break;
+ temp_len -= lbas << ns->lba_shift;
+ buffer += lbas << ns->lba_shift;
+ }
+
+ return (total_len - temp_len) >> desc->log2blksz;
+}
+
+static const struct blk_ops nvme_blk_ops = {
+ .read = nvme_blk_read,
+ .write = nvme_blk_write,
+};
+
+U_BOOT_DRIVER(nvme_blk) = {
+ .name = "nvme-blk",
+ .id = UCLASS_BLK,
+ .probe = nvme_blk_probe,
+ .ops = &nvme_blk_ops,
+ .priv_auto_alloc_size = sizeof(struct nvme_ns),
+};
+
+static int nvme_bind(struct udevice *udev)
+{
+ char name[20];
+ sprintf(name, "nvme#%d", nvme_info->ndev_num++);
+
+ return device_set_name(udev, name);
+}
+
+static int nvme_probe(struct udevice *udev)
+{
+ int ret;
+ struct nvme_dev *ndev = dev_get_priv(udev);
+ u64 cap;
+
+ ndev->pdev = pci_get_controller(udev);
+ ndev->instance = trailing_strtol(udev->name);
+
+ INIT_LIST_HEAD(&ndev->namespaces);
+ ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
+ PCI_REGION_MEM);
+ if (readl(&ndev->bar->csts) == -1) {
+ ret = -ENODEV;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+
+ ndev->queues = malloc(2 * sizeof(struct nvme_queue));
+ if (!ndev->queues) {
+ ret = -ENOMEM;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+ memset(ndev->queues, 0, sizeof(2 * sizeof(struct nvme_queue)));
+
+ ndev->prp_pool = malloc(MAX_PRP_POOL);
+ if (!ndev->prp_pool) {
+ ret = -ENOMEM;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+ ndev->prp_entry_num = MAX_PRP_POOL >> 3;
+
+ cap = nvme_readq(&ndev->bar->cap);
+ ndev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
+ ndev->db_stride = 1 << NVME_CAP_STRIDE(cap);
+ ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
+
+ ret = nvme_configure_admin_queue(ndev);
+ if (ret)
+ goto free_queue;
+
+ ret = nvme_setup_io_queues(ndev);
+ if (ret)
+ goto free_queue;
+
+ nvme_get_info_from_identify(ndev);
+ ndev->blk_dev_start = nvme_info->ns_num;
+ list_add(&ndev->node, &nvme_info->dev_list);
+
+ return 0;
+
+free_queue:
+ free((void *)ndev->queues);
+free_nvme:
+ return ret;
+}
+
+U_BOOT_DRIVER(nvme) = {
+ .name = "nvme",
+ .id = UCLASS_NVME,
+ .bind = nvme_bind,
+ .probe = nvme_probe,
+ .priv_auto_alloc_size = sizeof(struct nvme_dev),
+};
+
+struct pci_device_id nvme_supported[] = {
+ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0953) },
+ {}
+};
+
+U_BOOT_PCI_DEVICE(nvme, nvme_supported);
--- /dev/null
+/*
+ * Copyright (C) 2017 NXP Semiconductors
+ * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#ifndef __DRIVER_NVME_H__
+#define __DRIVER_NVME_H__
+
+#include <asm/io.h>
+
+struct nvme_id_power_state {
+ __le16 max_power; /* centiwatts */
+ __u8 rsvd2;
+ __u8 flags;
+ __le32 entry_lat; /* microseconds */
+ __le32 exit_lat; /* microseconds */
+ __u8 read_tput;
+ __u8 read_lat;
+ __u8 write_tput;
+ __u8 write_lat;
+ __le16 idle_power;
+ __u8 idle_scale;
+ __u8 rsvd19;
+ __le16 active_power;
+ __u8 active_work_scale;
+ __u8 rsvd23[9];
+};
+
+enum {
+ NVME_PS_FLAGS_MAX_POWER_SCALE = 1 << 0,
+ NVME_PS_FLAGS_NON_OP_STATE = 1 << 1,
+};
+
+struct nvme_id_ctrl {
+ __le16 vid;
+ __le16 ssvid;
+ char sn[20];
+ char mn[40];
+ char fr[8];
+ __u8 rab;
+ __u8 ieee[3];
+ __u8 mic;
+ __u8 mdts;
+ __u16 cntlid;
+ __u32 ver;
+ __u8 rsvd84[172];
+ __le16 oacs;
+ __u8 acl;
+ __u8 aerl;
+ __u8 frmw;
+ __u8 lpa;
+ __u8 elpe;
+ __u8 npss;
+ __u8 avscc;
+ __u8 apsta;
+ __le16 wctemp;
+ __le16 cctemp;
+ __u8 rsvd270[242];
+ __u8 sqes;
+ __u8 cqes;
+ __u8 rsvd514[2];
+ __le32 nn;
+ __le16 oncs;
+ __le16 fuses;
+ __u8 fna;
+ __u8 vwc;
+ __le16 awun;
+ __le16 awupf;
+ __u8 nvscc;
+ __u8 rsvd531;
+ __le16 acwu;
+ __u8 rsvd534[2];
+ __le32 sgls;
+ __u8 rsvd540[1508];
+ struct nvme_id_power_state psd[32];
+ __u8 vs[1024];
+};
+
+enum {
+ NVME_CTRL_ONCS_COMPARE = 1 << 0,
+ NVME_CTRL_ONCS_WRITE_UNCORRECTABLE = 1 << 1,
+ NVME_CTRL_ONCS_DSM = 1 << 2,
+ NVME_CTRL_VWC_PRESENT = 1 << 0,
+};
+
+struct nvme_lbaf {
+ __le16 ms;
+ __u8 ds;
+ __u8 rp;
+};
+
+struct nvme_id_ns {
+ __le64 nsze;
+ __le64 ncap;
+ __le64 nuse;
+ __u8 nsfeat;
+ __u8 nlbaf;
+ __u8 flbas;
+ __u8 mc;
+ __u8 dpc;
+ __u8 dps;
+ __u8 nmic;
+ __u8 rescap;
+ __u8 fpi;
+ __u8 rsvd33;
+ __le16 nawun;
+ __le16 nawupf;
+ __le16 nacwu;
+ __le16 nabsn;
+ __le16 nabo;
+ __le16 nabspf;
+ __u16 rsvd46;
+ __le64 nvmcap[2];
+ __u8 rsvd64[40];
+ __u8 nguid[16];
+ __u8 eui64[8];
+ struct nvme_lbaf lbaf[16];
+ __u8 rsvd192[192];
+ __u8 vs[3712];
+};
+
+enum {
+ NVME_NS_FEAT_THIN = 1 << 0,
+ NVME_NS_FLBAS_LBA_MASK = 0xf,
+ NVME_NS_FLBAS_META_EXT = 0x10,
+ NVME_LBAF_RP_BEST = 0,
+ NVME_LBAF_RP_BETTER = 1,
+ NVME_LBAF_RP_GOOD = 2,
+ NVME_LBAF_RP_DEGRADED = 3,
+ NVME_NS_DPC_PI_LAST = 1 << 4,
+ NVME_NS_DPC_PI_FIRST = 1 << 3,
+ NVME_NS_DPC_PI_TYPE3 = 1 << 2,
+ NVME_NS_DPC_PI_TYPE2 = 1 << 1,
+ NVME_NS_DPC_PI_TYPE1 = 1 << 0,
+ NVME_NS_DPS_PI_FIRST = 1 << 3,
+ NVME_NS_DPS_PI_MASK = 0x7,
+ NVME_NS_DPS_PI_TYPE1 = 1,
+ NVME_NS_DPS_PI_TYPE2 = 2,
+ NVME_NS_DPS_PI_TYPE3 = 3,
+};
+
+struct nvme_smart_log {
+ __u8 critical_warning;
+ __u8 temperature[2];
+ __u8 avail_spare;
+ __u8 spare_thresh;
+ __u8 percent_used;
+ __u8 rsvd6[26];
+ __u8 data_units_read[16];
+ __u8 data_units_written[16];
+ __u8 host_reads[16];
+ __u8 host_writes[16];
+ __u8 ctrl_busy_time[16];
+ __u8 power_cycles[16];
+ __u8 power_on_hours[16];
+ __u8 unsafe_shutdowns[16];
+ __u8 media_errors[16];
+ __u8 num_err_log_entries[16];
+ __le32 warning_temp_time;
+ __le32 critical_comp_time;
+ __le16 temp_sensor[8];
+ __u8 rsvd216[296];
+};
+
+enum {
+ NVME_SMART_CRIT_SPARE = 1 << 0,
+ NVME_SMART_CRIT_TEMPERATURE = 1 << 1,
+ NVME_SMART_CRIT_RELIABILITY = 1 << 2,
+ NVME_SMART_CRIT_MEDIA = 1 << 3,
+ NVME_SMART_CRIT_VOLATILE_MEMORY = 1 << 4,
+};
+
+struct nvme_lba_range_type {
+ __u8 type;
+ __u8 attributes;
+ __u8 rsvd2[14];
+ __u64 slba;
+ __u64 nlb;
+ __u8 guid[16];
+ __u8 rsvd48[16];
+};
+
+enum {
+ NVME_LBART_TYPE_FS = 0x01,
+ NVME_LBART_TYPE_RAID = 0x02,
+ NVME_LBART_TYPE_CACHE = 0x03,
+ NVME_LBART_TYPE_SWAP = 0x04,
+
+ NVME_LBART_ATTRIB_TEMP = 1 << 0,
+ NVME_LBART_ATTRIB_HIDE = 1 << 1,
+};
+
+struct nvme_reservation_status {
+ __le32 gen;
+ __u8 rtype;
+ __u8 regctl[2];
+ __u8 resv5[2];
+ __u8 ptpls;
+ __u8 resv10[13];
+ struct {
+ __le16 cntlid;
+ __u8 rcsts;
+ __u8 resv3[5];
+ __le64 hostid;
+ __le64 rkey;
+ } regctl_ds[];
+};
+
+/* I/O commands */
+
+enum nvme_opcode {
+ nvme_cmd_flush = 0x00,
+ nvme_cmd_write = 0x01,
+ nvme_cmd_read = 0x02,
+ nvme_cmd_write_uncor = 0x04,
+ nvme_cmd_compare = 0x05,
+ nvme_cmd_write_zeroes = 0x08,
+ nvme_cmd_dsm = 0x09,
+ nvme_cmd_resv_register = 0x0d,
+ nvme_cmd_resv_report = 0x0e,
+ nvme_cmd_resv_acquire = 0x11,
+ nvme_cmd_resv_release = 0x15,
+};
+
+struct nvme_common_command {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __le32 cdw2[2];
+ __le64 metadata;
+ __le64 prp1;
+ __le64 prp2;
+ __le32 cdw10[6];
+};
+
+struct nvme_rw_command {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __u64 rsvd2;
+ __le64 metadata;
+ __le64 prp1;
+ __le64 prp2;
+ __le64 slba;
+ __le16 length;
+ __le16 control;
+ __le32 dsmgmt;
+ __le32 reftag;
+ __le16 apptag;
+ __le16 appmask;
+};
+
+enum {
+ NVME_RW_LR = 1 << 15,
+ NVME_RW_FUA = 1 << 14,
+ NVME_RW_DSM_FREQ_UNSPEC = 0,
+ NVME_RW_DSM_FREQ_TYPICAL = 1,
+ NVME_RW_DSM_FREQ_RARE = 2,
+ NVME_RW_DSM_FREQ_READS = 3,
+ NVME_RW_DSM_FREQ_WRITES = 4,
+ NVME_RW_DSM_FREQ_RW = 5,
+ NVME_RW_DSM_FREQ_ONCE = 6,
+ NVME_RW_DSM_FREQ_PREFETCH = 7,
+ NVME_RW_DSM_FREQ_TEMP = 8,
+ NVME_RW_DSM_LATENCY_NONE = 0 << 4,
+ NVME_RW_DSM_LATENCY_IDLE = 1 << 4,
+ NVME_RW_DSM_LATENCY_NORM = 2 << 4,
+ NVME_RW_DSM_LATENCY_LOW = 3 << 4,
+ NVME_RW_DSM_SEQ_REQ = 1 << 6,
+ NVME_RW_DSM_COMPRESSED = 1 << 7,
+ NVME_RW_PRINFO_PRCHK_REF = 1 << 10,
+ NVME_RW_PRINFO_PRCHK_APP = 1 << 11,
+ NVME_RW_PRINFO_PRCHK_GUARD = 1 << 12,
+ NVME_RW_PRINFO_PRACT = 1 << 13,
+};
+
+struct nvme_dsm_cmd {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __u64 rsvd2[2];
+ __le64 prp1;
+ __le64 prp2;
+ __le32 nr;
+ __le32 attributes;
+ __u32 rsvd12[4];
+};
+
+enum {
+ NVME_DSMGMT_IDR = 1 << 0,
+ NVME_DSMGMT_IDW = 1 << 1,
+ NVME_DSMGMT_AD = 1 << 2,
+};
+
+struct nvme_dsm_range {
+ __le32 cattr;
+ __le32 nlb;
+ __le64 slba;
+};
+
+/* Admin commands */
+
+enum nvme_admin_opcode {
+ nvme_admin_delete_sq = 0x00,
+ nvme_admin_create_sq = 0x01,
+ nvme_admin_get_log_page = 0x02,
+ nvme_admin_delete_cq = 0x04,
+ nvme_admin_create_cq = 0x05,
+ nvme_admin_identify = 0x06,
+ nvme_admin_abort_cmd = 0x08,
+ nvme_admin_set_features = 0x09,
+ nvme_admin_get_features = 0x0a,
+ nvme_admin_async_event = 0x0c,
+ nvme_admin_activate_fw = 0x10,
+ nvme_admin_download_fw = 0x11,
+ nvme_admin_format_nvm = 0x80,
+ nvme_admin_security_send = 0x81,
+ nvme_admin_security_recv = 0x82,
+};
+
+enum {
+ NVME_QUEUE_PHYS_CONTIG = (1 << 0),
+ NVME_CQ_IRQ_ENABLED = (1 << 1),
+ NVME_SQ_PRIO_URGENT = (0 << 1),
+ NVME_SQ_PRIO_HIGH = (1 << 1),
+ NVME_SQ_PRIO_MEDIUM = (2 << 1),
+ NVME_SQ_PRIO_LOW = (3 << 1),
+ NVME_FEAT_ARBITRATION = 0x01,
+ NVME_FEAT_POWER_MGMT = 0x02,
+ NVME_FEAT_LBA_RANGE = 0x03,
+ NVME_FEAT_TEMP_THRESH = 0x04,
+ NVME_FEAT_ERR_RECOVERY = 0x05,
+ NVME_FEAT_VOLATILE_WC = 0x06,
+ NVME_FEAT_NUM_QUEUES = 0x07,
+ NVME_FEAT_IRQ_COALESCE = 0x08,
+ NVME_FEAT_IRQ_CONFIG = 0x09,
+ NVME_FEAT_WRITE_ATOMIC = 0x0a,
+ NVME_FEAT_ASYNC_EVENT = 0x0b,
+ NVME_FEAT_AUTO_PST = 0x0c,
+ NVME_FEAT_SW_PROGRESS = 0x80,
+ NVME_FEAT_HOST_ID = 0x81,
+ NVME_FEAT_RESV_MASK = 0x82,
+ NVME_FEAT_RESV_PERSIST = 0x83,
+ NVME_LOG_ERROR = 0x01,
+ NVME_LOG_SMART = 0x02,
+ NVME_LOG_FW_SLOT = 0x03,
+ NVME_LOG_RESERVATION = 0x80,
+ NVME_FWACT_REPL = (0 << 3),
+ NVME_FWACT_REPL_ACTV = (1 << 3),
+ NVME_FWACT_ACTV = (2 << 3),
+};
+
+struct nvme_identify {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __u64 rsvd2[2];
+ __le64 prp1;
+ __le64 prp2;
+ __le32 cns;
+ __u32 rsvd11[5];
+};
+
+struct nvme_features {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __u64 rsvd2[2];
+ __le64 prp1;
+ __le64 prp2;
+ __le32 fid;
+ __le32 dword11;
+ __u32 rsvd12[4];
+};
+
+struct nvme_create_cq {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __u32 rsvd1[5];
+ __le64 prp1;
+ __u64 rsvd8;
+ __le16 cqid;
+ __le16 qsize;
+ __le16 cq_flags;
+ __le16 irq_vector;
+ __u32 rsvd12[4];
+};
+
+struct nvme_create_sq {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __u32 rsvd1[5];
+ __le64 prp1;
+ __u64 rsvd8;
+ __le16 sqid;
+ __le16 qsize;
+ __le16 sq_flags;
+ __le16 cqid;
+ __u32 rsvd12[4];
+};
+
+struct nvme_delete_queue {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __u32 rsvd1[9];
+ __le16 qid;
+ __u16 rsvd10;
+ __u32 rsvd11[5];
+};
+
+struct nvme_abort_cmd {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __u32 rsvd1[9];
+ __le16 sqid;
+ __u16 cid;
+ __u32 rsvd11[5];
+};
+
+struct nvme_download_firmware {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __u32 rsvd1[5];
+ __le64 prp1;
+ __le64 prp2;
+ __le32 numd;
+ __le32 offset;
+ __u32 rsvd12[4];
+};
+
+struct nvme_format_cmd {
+ __u8 opcode;
+ __u8 flags;
+ __u16 command_id;
+ __le32 nsid;
+ __u64 rsvd2[4];
+ __le32 cdw10;
+ __u32 rsvd11[5];
+};
+
+struct nvme_command {
+ union {
+ struct nvme_common_command common;
+ struct nvme_rw_command rw;
+ struct nvme_identify identify;
+ struct nvme_features features;
+ struct nvme_create_cq create_cq;
+ struct nvme_create_sq create_sq;
+ struct nvme_delete_queue delete_queue;
+ struct nvme_download_firmware dlfw;
+ struct nvme_format_cmd format;
+ struct nvme_dsm_cmd dsm;
+ struct nvme_abort_cmd abort;
+ };
+};
+
+enum {
+ NVME_SC_SUCCESS = 0x0,
+ NVME_SC_INVALID_OPCODE = 0x1,
+ NVME_SC_INVALID_FIELD = 0x2,
+ NVME_SC_CMDID_CONFLICT = 0x3,
+ NVME_SC_DATA_XFER_ERROR = 0x4,
+ NVME_SC_POWER_LOSS = 0x5,
+ NVME_SC_INTERNAL = 0x6,
+ NVME_SC_ABORT_REQ = 0x7,
+ NVME_SC_ABORT_QUEUE = 0x8,
+ NVME_SC_FUSED_FAIL = 0x9,
+ NVME_SC_FUSED_MISSING = 0xa,
+ NVME_SC_INVALID_NS = 0xb,
+ NVME_SC_CMD_SEQ_ERROR = 0xc,
+ NVME_SC_SGL_INVALID_LAST = 0xd,
+ NVME_SC_SGL_INVALID_COUNT = 0xe,
+ NVME_SC_SGL_INVALID_DATA = 0xf,
+ NVME_SC_SGL_INVALID_METADATA = 0x10,
+ NVME_SC_SGL_INVALID_TYPE = 0x11,
+ NVME_SC_LBA_RANGE = 0x80,
+ NVME_SC_CAP_EXCEEDED = 0x81,
+ NVME_SC_NS_NOT_READY = 0x82,
+ NVME_SC_RESERVATION_CONFLICT = 0x83,
+ NVME_SC_CQ_INVALID = 0x100,
+ NVME_SC_QID_INVALID = 0x101,
+ NVME_SC_QUEUE_SIZE = 0x102,
+ NVME_SC_ABORT_LIMIT = 0x103,
+ NVME_SC_ABORT_MISSING = 0x104,
+ NVME_SC_ASYNC_LIMIT = 0x105,
+ NVME_SC_FIRMWARE_SLOT = 0x106,
+ NVME_SC_FIRMWARE_IMAGE = 0x107,
+ NVME_SC_INVALID_VECTOR = 0x108,
+ NVME_SC_INVALID_LOG_PAGE = 0x109,
+ NVME_SC_INVALID_FORMAT = 0x10a,
+ NVME_SC_FIRMWARE_NEEDS_RESET = 0x10b,
+ NVME_SC_INVALID_QUEUE = 0x10c,
+ NVME_SC_FEATURE_NOT_SAVEABLE = 0x10d,
+ NVME_SC_FEATURE_NOT_CHANGEABLE = 0x10e,
+ NVME_SC_FEATURE_NOT_PER_NS = 0x10f,
+ NVME_SC_FW_NEEDS_RESET_SUBSYS = 0x110,
+ NVME_SC_BAD_ATTRIBUTES = 0x180,
+ NVME_SC_INVALID_PI = 0x181,
+ NVME_SC_READ_ONLY = 0x182,
+ NVME_SC_WRITE_FAULT = 0x280,
+ NVME_SC_READ_ERROR = 0x281,
+ NVME_SC_GUARD_CHECK = 0x282,
+ NVME_SC_APPTAG_CHECK = 0x283,
+ NVME_SC_REFTAG_CHECK = 0x284,
+ NVME_SC_COMPARE_FAILED = 0x285,
+ NVME_SC_ACCESS_DENIED = 0x286,
+ NVME_SC_DNR = 0x4000,
+};
+
+struct nvme_completion {
+ __le32 result; /* Used by admin commands to return data */
+ __u32 rsvd;
+ __le16 sq_head; /* how much of this queue may be reclaimed */
+ __le16 sq_id; /* submission queue that generated this entry */
+ __u16 command_id; /* of the command which completed */
+ __le16 status; /* did the command fail, and if so, why? */
+};
+
+struct nvme_user_io {
+ __u8 opcode;
+ __u8 flags;
+ __u16 control;
+ __u16 nblocks;
+ __u16 rsvd;
+ __u64 metadata;
+ __u64 addr;
+ __u64 slba;
+ __u32 dsmgmt;
+ __u32 reftag;
+ __u16 apptag;
+ __u16 appmask;
+};
+
+struct nvme_passthru_cmd {
+ __u8 opcode;
+ __u8 flags;
+ __u16 rsvd1;
+ __u32 nsid;
+ __u32 cdw2;
+ __u32 cdw3;
+ __u64 metadata;
+ __u64 addr;
+ __u32 metadata_len;
+ __u32 data_len;
+ __u32 cdw10;
+ __u32 cdw11;
+ __u32 cdw12;
+ __u32 cdw13;
+ __u32 cdw14;
+ __u32 cdw15;
+ __u32 timeout_ms;
+ __u32 result;
+};
+
+/*
+ * Registers should always be accessed with double word or quad word
+ * accesses. Registers with 64-bit address pointers should be written
+ * to with dword accesses by writing the low dword first (ptr[0]),
+ * then the high dword (ptr[1]) second.
+ */
+static inline u64 nvme_readq(__le64 volatile *regs)
+{
+#if BITS_PER_LONG == 64
+ return readq(regs);
+#else
+ __u32 *ptr = (__u32 *)regs;
+ u64 val_lo = readl(ptr);
+ u64 val_hi = readl(ptr + 1);
+
+ return val_lo + (val_hi << 32);
+#endif
+}
+
+static inline void nvme_writeq(const u64 val, __le64 volatile *regs)
+{
+#if BITS_PER_LONG == 64
+ writeq(val, regs);
+#else
+ __u32 *ptr = (__u32 *)regs;
+ u32 val_lo = lower_32_bits(val);
+ u32 val_hi = upper_32_bits(val);
+ writel(val_lo, ptr);
+ writel(val_hi, ptr + 1);
+#endif
+}
+
+struct nvme_bar {
+ __u64 cap; /* Controller Capabilities */
+ __u32 vs; /* Version */
+ __u32 intms; /* Interrupt Mask Set */
+ __u32 intmc; /* Interrupt Mask Clear */
+ __u32 cc; /* Controller Configuration */
+ __u32 rsvd1; /* Reserved */
+ __u32 csts; /* Controller Status */
+ __u32 rsvd2; /* Reserved */
+ __u32 aqa; /* Admin Queue Attributes */
+ __u64 asq; /* Admin SQ Base Address */
+ __u64 acq; /* Admin CQ Base Address */
+};
+
+#define NVME_CAP_MQES(cap) ((cap) & 0xffff)
+#define NVME_CAP_TIMEOUT(cap) (((cap) >> 24) & 0xff)
+#define NVME_CAP_STRIDE(cap) (((cap) >> 32) & 0xf)
+#define NVME_CAP_MPSMIN(cap) (((cap) >> 48) & 0xf)
+#define NVME_CAP_MPSMAX(cap) (((cap) >> 52) & 0xf)
+
+#define NVME_VS(major, minor) (((major) << 16) | ((minor) << 8))
+
+enum {
+ NVME_CC_ENABLE = 1 << 0,
+ NVME_CC_CSS_NVM = 0 << 4,
+ NVME_CC_MPS_SHIFT = 7,
+ NVME_CC_ARB_RR = 0 << 11,
+ NVME_CC_ARB_WRRU = 1 << 11,
+ NVME_CC_ARB_VS = 7 << 11,
+ NVME_CC_SHN_NONE = 0 << 14,
+ NVME_CC_SHN_NORMAL = 1 << 14,
+ NVME_CC_SHN_ABRUPT = 2 << 14,
+ NVME_CC_SHN_MASK = 3 << 14,
+ NVME_CC_IOSQES = 6 << 16,
+ NVME_CC_IOCQES = 4 << 20,
+ NVME_CSTS_RDY = 1 << 0,
+ NVME_CSTS_CFS = 1 << 1,
+ NVME_CSTS_SHST_NORMAL = 0 << 2,
+ NVME_CSTS_SHST_OCCUR = 1 << 2,
+ NVME_CSTS_SHST_CMPLT = 2 << 2,
+ NVME_CSTS_SHST_MASK = 3 << 2,
+};
+
+/* Represents an NVM Express device. Each nvme_dev is a PCI function. */
+struct nvme_dev {
+ struct list_head node;
+ struct nvme_queue **queues;
+ u32 __iomem *dbs;
+ unsigned int cardnum;
+ struct udevice *pdev;
+ pci_dev_t pci_dev;
+ int instance;
+ uint8_t *hw_addr;
+ unsigned queue_count;
+ unsigned online_queues;
+ unsigned max_qid;
+ int q_depth;
+ u32 db_stride;
+ u32 ctrl_config;
+ struct nvme_bar __iomem *bar;
+ struct list_head namespaces;
+ const char *name;
+ char serial[20];
+ char model[40];
+ char firmware_rev[8];
+ u32 max_transfer_shift;
+ u32 stripe_size;
+ u32 page_size;
+ u16 oncs;
+ u16 abort_limit;
+ u8 event_limit;
+ u8 vwc;
+ u64 *prp_pool;
+ u32 prp_entry_num;
+ u32 nn;
+ u32 blk_dev_start;
+};
+
+struct nvme_info {
+ int ns_num; /*the number of nvme namespaces*/
+ int ndev_num; /*the number of nvme devices*/
+ struct list_head dev_list;
+};
+
+/*
+ * The nvme_iod describes the data in an I/O, including the list of PRP
+ * entries. You can't see it in this data structure because C doesn't let
+ * me express that. Use nvme_alloc_iod to ensure there's enough space
+ * allocated to store the PRP list.
+ */
+struct nvme_iod {
+ unsigned long private; /* For the use of the submitter of the I/O */
+ int npages; /* In the PRP list. 0 means small pool in use */
+ int offset; /* Of PRP list */
+ int nents; /* Used in scatterlist */
+ int length; /* Of data, in bytes */
+ dma_addr_t first_dma;
+};
+
+/*
+ * An NVM Express namespace is equivalent to a SCSI LUN.
+ * Each namespace is operated as an independent "device".
+ */
+struct nvme_ns {
+ struct list_head list;
+ struct nvme_dev *dev;
+ unsigned ns_id;
+ int devnum;
+ int lba_shift;
+ u16 ms;
+ u8 flbas;
+ u8 pi_type;
+ u64 mode_select_num_blocks;
+ u32 mode_select_block_len;
+};
+
+extern struct nvme_info *nvme_info;
+
+#endif /* __DRIVER_NVME_H__ */
--- /dev/null
+/*
+ * Copyright (C) 2017 NXP Semiconductors
+ * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#ifndef __NVME_H__
+#define __NVME_H__
+
+struct nvme_dev;
+
+/**
+ * nvme_identify - identify controller or namespace capabilities and status
+ *
+ * This issues an identify command to the NVMe controller to return a data
+ * buffer that describes the controller or namespace capabilities and status.
+ *
+ * @dev: NVMe controller device
+ * @nsid: 0 for controller, namespace id for namespace to identify
+ * @cns: 1 for controller, 0 for namespace
+ * @dma_addr: dma buffer address to store the identify result
+ * @return: 0 on success, -ETIMEDOUT on command execution timeout,
+ * -EIO on command execution fails
+ */
+int nvme_identify(struct nvme_dev *dev, unsigned nsid,
+ unsigned cns, dma_addr_t dma_addr);
+
+/**
+ * nvme_get_features - retrieve the attributes of the feature specified
+ *
+ * This retrieves the attributes of the feature specified.
+ *
+ * @dev: NVMe controller device
+ * @fid: feature id to provide data
+ * @nsid: namespace id the command applies to
+ * @dma_addr: data structure used as part of the specified feature
+ * @result: command-specific result in the completion queue entry
+ * @return: 0 on success, -ETIMEDOUT on command execution timeout,
+ * -EIO on command execution fails
+ */
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+ dma_addr_t dma_addr, u32 *result);
+
+/**
+ * nvme_set_features - specify the attributes of the feature indicated
+ *
+ * This specifies the attributes of the feature indicated.
+ *
+ * @dev: NVMe controller device
+ * @fid: feature id to provide data
+ * @dword11: command-specific input parameter
+ * @dma_addr: data structure used as part of the specified feature
+ * @result: command-specific result in the completion queue entry
+ * @return: 0 on success, -ETIMEDOUT on command execution timeout,
+ * -EIO on command execution fails
+ */
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+ dma_addr_t dma_addr, u32 *result);
+
+/**
+ * nvme_scan_namespace - scan all namespaces attached to NVMe controllers
+ *
+ * This probes all registered NVMe uclass device drivers in the system,
+ * and tries to find all namespaces attached to the NVMe controllers.
+ *
+ * @return: 0 on success, -ve on error
+ */
+int nvme_scan_namespace(void);
+
+#endif /* __NVME_H__ */