RSA security bits calculation
authorPauli <paul.dale@oracle.com>
Thu, 4 Oct 2018 23:19:30 +0000 (09:19 +1000)
committerPauli <paul.dale@oracle.com>
Mon, 22 Oct 2018 22:01:48 +0000 (08:01 +1000)
NIST has updated their guidelines in appendix D of SP 800-56B rev2 (draft)
providing a formula for the number of security bits it terms of the length
of the RSA key.

This is an implementation of this formula using fixed point arithmetic.
For integers 1 .. 100,000 it rounds down to the next smaller 8 bit strength
270 times.  It never errs to the high side.  None of the rounded values occur
near any of the commonly selected lengths.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7352)

crypto/rsa/rsa_lib.c
test/rsa_test.c

index 49c34b7c36c9187cd9d15474f9ebcd13feaa0d86..3b99743281e65f24a349faae60c3253f88ad7c12 100644 (file)
@@ -163,6 +163,133 @@ void *RSA_get_ex_data(const RSA *r, int idx)
     return CRYPTO_get_ex_data(&r->ex_data, idx);
 }
 
+/*
+ * Define a scaling constant for our fixed point arithmetic.
+ * This value must be a power of two because the base two logarithm code
+ * makes this assumption.  The exponent must also be a multiple of three so
+ * that the scale factor has an exact cube root.  Finally, the scale factor
+ * should not be so large that a multiplication of two scaled numbers
+ * overflows a 64 bit unsigned integer.
+ */
+static const unsigned int scale = 1 << 18;
+static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
+
+/* Define some constants, none exceed 32 bits */
+static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
+static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
+static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
+static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
+
+/*
+ * Multiply two scale integers together and rescale the result.
+ */
+static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
+{
+    return a * b / scale;
+}
+
+/*
+ * Calculate the cube root of a 64 bit scaled integer.
+ * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
+ * integer, this is not guaranteed after scaling, so this function has a
+ * 64 bit return.  This uses the shifting nth root algorithm with some
+ * algebraic simplifications.
+ */
+static uint64_t icbrt64(uint64_t x)
+{
+    uint64_t r = 0;
+    uint64_t b;
+    int s;
+
+    for (s = 63; s >= 0; s -= 3) {
+        r <<= 1;
+        b = 3 * r * (r + 1) + 1;
+        if ((x >> s) >= b) {
+            x -= b << s;
+            r++;
+        }
+    }
+    return r * cbrt_scale;
+}
+
+/*
+ * Calculate the natural logarithm of a 64 bit scaled integer.
+ * This is done by calculating a base two logarithm and scaling.
+ * The maximum logarithm (base 2) is 64 and this reduces base e, so
+ * a 32 bit result should not overflow.  The argument passed must be
+ * greater than unity so we don't need to handle negative results.
+ */
+static uint32_t ilog_e(uint64_t v)
+{
+    uint32_t i, r = 0;
+
+    /*
+     * Scale down the value into the range 1 .. 2.
+     *
+     * If fractional numbers need to be processed, another loop needs
+     * to go here that checks v < scale and if so multiplies it by 2 and
+     * reduces r by scale.  This also means making r signed.
+     */
+    while (v >= 2 * scale) {
+        v >>= 1;
+        r += scale;
+    }
+    for (i = scale / 2; i != 0; i /= 2) {
+        v = mul2(v, v);
+        if (v >= 2 * scale) {
+            v >>= 1;
+            r += i;
+        }
+    }
+    r = (r * (uint64_t)scale) / log_e;
+    return r;
+}
+
+/*
+ * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
+ * Modulus Lengths.
+ *
+ * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
+ *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
+ * The two cube roots are merged together here.
+ */
+static uint16_t rsa_compute_security_bits(int n)
+{
+    uint64_t x;
+    uint32_t lx;
+    uint16_t y;
+
+    /* Look for common values as listed in SP 800-56B rev 2 Appendix D */
+    switch (n) {
+    case 2048:
+        return 112;
+    case 3072:
+        return 128;
+    case 4096:
+        return 152;
+    case 6144:
+        return 176;
+    case 8192:
+        return 200;
+    }
+    /*
+     * The first incorrect result (i.e. not accurate or off by one low) occurs
+     * for n = 699668.  The true value here is 1200.  Instead of using this n
+     * as the check threshold, the smallest n such that the correct result is
+     * 1200 is used instead.
+     */
+    if (n >= 687737)
+        return 1200;
+    if (n < 8)
+        return 0;
+
+    x = n * (uint64_t)log_2;
+    lx = ilog_e(x);
+    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
+                   / log_2);
+    return (y + 4) & ~7;
+}
+
 int RSA_security_bits(const RSA *rsa)
 {
     int bits = BN_num_bits(rsa->n);
@@ -174,7 +301,7 @@ int RSA_security_bits(const RSA *rsa)
         if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits))
             return 0;
     }
-    return BN_security_bits(bits, -1);
+    return rsa_compute_security_bits(bits);
 }
 
 int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
index 2ad4de4734cd2c32f6ffb74bf9c07e34e60c983b..25709e418cad6d89f330d61600e0318a8cccb2b9 100644 (file)
@@ -329,10 +329,70 @@ err:
     return ret;
 }
 
+static const struct {
+    int bits;
+    unsigned int r;
+} rsa_security_bits_cases[] = {
+    /* NIST SP 800-56B rev 2 (draft) Appendix D Table 5 */
+    { 2048,     112 },
+    { 3072,     128 },
+    { 4096,     152 },
+    { 6144,     176 },
+    { 8192,     200 },
+    /* Older values */
+    { 256,      40  },
+    { 512,      56  },
+    { 1024,     80  },
+    /* Slightly different value to the 256 that NIST lists in their tables */
+    { 15360,    264 },
+    /* Some other values */
+    { 8888,     208 },
+    { 2468,     120 },
+    { 13456,    248 }
+};
+
+static int test_rsa_security_bit(int n)
+{
+    static const unsigned char vals[8] = {
+        0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40
+    };
+    RSA *key = RSA_new();
+    const int bits = rsa_security_bits_cases[n].bits;
+    const int result = rsa_security_bits_cases[n].r;
+    const int bytes = (bits + 7) / 8;
+    int r = 0;
+    unsigned char num[2000];
+
+    if (!TEST_ptr(key) || !TEST_int_le(bytes, (int)sizeof(num)))
+        goto err;
+
+    /*
+     * It is necessary to set the RSA key in order to ask for the strength.
+     * A BN of an appropriate size is created, in general it won't have the
+     * properties necessary for RSA to function.  This is okay here since
+     * the RSA key is never used.
+     */
+    memset(num, vals[bits % 8], bytes);
+
+    /*
+     * The 'e' parameter is set to the same value as 'n'.  This saves having
+     * an extra BN to hold a sensible value for 'e'.  This is safe since the
+     * RSA key is not used.  The 'd' parameter can be NULL safely.
+     */
+    if (TEST_true(RSA_set0_key(key, BN_bin2bn(num, bytes, NULL),
+                               BN_bin2bn(num, bytes, NULL), NULL))
+            && TEST_uint_eq(RSA_security_bits(key), result))
+        r = 1;
+err:
+    RSA_free(key);
+    return r;
+}
+
 int setup_tests(void)
 {
     ADD_ALL_TESTS(test_rsa_pkcs1, 3);
     ADD_ALL_TESTS(test_rsa_oaep, 3);
+    ADD_ALL_TESTS(test_rsa_security_bit, OSSL_NELEM(rsa_security_bits_cases));
     return 1;
 }
 #endif