* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
* a[1]*b[1]
*/
+/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t)
{
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
+ fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
# endif
# ifdef BN_MUL_COMBA
# if 0
/* n+tn is the word length
* t needs to be n*4 is size, as does r */
+/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
int tna, int tnb, BN_ULONG *t)
{
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
- tna, n, tnb, n);
+ fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
+ n, tna, n, tnb);
# endif
if (n < 8)
{
for (;;)
{
i/=2;
- if (i <= tna && tna == tnb)
+ /* these simplified conditions work
+ * exclusively because difference
+ * between tna and tnb is 1 or 0 */
+ if (i < tna || i < tnb)
{
- bn_mul_recursive(&(r[n2]),
+ bn_mul_part_recursive(&(r[n2]),
&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
break;
}
- else if (i < tna || i < tnb)
+ else if (i == tna || i == tnb)
{
- bn_mul_part_recursive(&(r[n2]),
+ bn_mul_recursive(&(r[n2]),
&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
break;