Rewrite of NAND code based on what is in 2.6.12 Linux kernel
authorWolfgang Denk <wd@pollux.denx.de>
Wed, 17 Aug 2005 10:55:25 +0000 (12:55 +0200)
committerWolfgang Denk <wd@pollux.denx.de>
Wed, 17 Aug 2005 10:55:25 +0000 (12:55 +0200)
Patch by Ladislav Michl, 29 Jun 2005

18 files changed:
CHANGELOG
common/cmd_nand.c
drivers/nand/Makefile [new file with mode: 0644]
drivers/nand/diskonchip.c [new file with mode: 0644]
drivers/nand/nand.c [new file with mode: 0644]
drivers/nand/nand_base.c [new file with mode: 0644]
drivers/nand/nand_bbt.c [new file with mode: 0644]
drivers/nand/nand_ecc.c [new file with mode: 0644]
drivers/nand/nand_ids.c [new file with mode: 0644]
fs/jffs2/jffs2_nand_1pass.c [new file with mode: 0644]
fs/jffs2/jffs2_nand_private.h [new file with mode: 0644]
include/linux/mtd/compat.h [new file with mode: 0644]
include/linux/mtd/mtd-abi.h [new file with mode: 0644]
include/linux/mtd/mtd.h [new file with mode: 0644]
include/linux/mtd/nand.h
include/linux/mtd/nand_ecc.h [new file with mode: 0644]
include/linux/mtd/nand_ids.h
include/nand.h [new file with mode: 0644]

index cd2697abb7c2591d7a9a44b70f9afa118d028a9e..5e7016137a9cad09cc5c7a7803ba8f0ab1f87afa 100644 (file)
--- a/CHANGELOG
+++ b/CHANGELOG
@@ -1,3 +1,10 @@
+======================================================================
+Changes for U-Boot 1.1.4:
+======================================================================
+
+* Rewrite of NAND code based on what is in 2.6.12 Linux kernel
+  Patch by Ladislav Michl, 29 Jun 2005
+
 ======================================================================
 Changes for U-Boot 1.1.3:
 ======================================================================
index 449991785c66407ca5f34a04dd0b569f488c833c..ae4c68ac1f4a200cd341f277c51739ac2febc1b6 100644 (file)
@@ -1,18 +1,15 @@
 /*
- * Driver for NAND support, Rick Bronson
- * borrowed heavily from:
- * (c) 1999 Machine Vision Holdings, Inc.
- * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
- *
- * Added 16-bit nand support
- * (C) 2004 Texas Instruments
+ * Rick Bronson and Pantelis Antoniou
  */
 
 #include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
 #include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
 #include <watchdog.h>
+#include <malloc.h>
+#include <asm/byteorder.h>
 
 #ifdef CONFIG_SHOW_BOOT_PROGRESS
 # include <status_led.h>
 # define SHOW_BOOT_PROGRESS(arg)
 #endif
 
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ids.h>
 #include <jffs2/jffs2.h>
+#include <nand.h>
 
-#ifdef CONFIG_OMAP1510
-void archflashwp(void *archdata, int wp);
-#endif
+extern nand_info_t nand_info[];       /* info for NAND chips */
 
-#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))
+static int nand_dump_oob(nand_info_t *nand, ulong off)
+{
+       return 0;
+}
 
-/*
- * Definition of the out of band configuration structure
- */
-struct nand_oob_config {
-       int ecc_pos[6];         /* position of ECC bytes inside oob */
-       int badblock_pos;       /* position of bad block flag inside oob -1 = inactive */
-       int eccvalid_pos;       /* position of ECC valid flag inside oob -1 = inactive */
-} oob_config = { {0}, 0, 0};
-
-#undef NAND_DEBUG
-#undef PSYCHO_DEBUG
-
-/* ****************** WARNING *********************
- * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
- * erase (or at least attempt to erase) blocks that are marked
- * bad. This can be very handy if you are _sure_ that the block
- * is OK, say because you marked a good block bad to test bad
- * block handling and you are done testing, or if you have
- * accidentally marked blocks bad.
- *
- * Erasing factory marked bad blocks is a _bad_ idea. If the
- * erase succeeds there is no reliable way to find them again,
- * and attempting to program or erase bad blocks can affect
- * the data in _other_ (good) blocks.
- */
-#define         ALLOW_ERASE_BAD_DEBUG 0
+static int nand_dump(nand_info_t *nand, ulong off)
+{
+       int i;
+       u_char *buf, *p;
+
+       buf = malloc(nand->oobblock + nand->oobsize);
+       if (!buf) {
+               puts("No memory for page buffer\n");
+               return 1;
+       }
+       off &= ~(nand->oobblock - 1);
+       i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
+       if (i < 0) {
+               printf("Error (%d) reading page %08x\n", i, off);
+               free(buf);
+               return 1;
+       }
+       printf("Page %08x dump:\n", off);
+       i = nand->oobblock >> 4; p = buf;
+       while (i--) {
+               printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
+                       "  %02x %02x %02x %02x %02x %02x %02x %02x\n",
+                       p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
+                       p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
+               p += 16;
+       }
+       puts("OOB:\n");
+       i = nand->oobsize >> 3;
+       while (i--) {
+               printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
+                       p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+               p += 8;
+       }
+       free(buf);
 
-#define CONFIG_MTD_NAND_ECC  /* enable ECC */
-#define CONFIG_MTD_NAND_ECC_JFFS2
+       return 0;
+}
 
-/* bits for nand_rw() `cmd'; or together as needed */
-#define NANDRW_READ    0x01
-#define NANDRW_WRITE   0x00
-#define NANDRW_JFFS2   0x02
-#define NANDRW_JFFS2_SKIP      0x04
+/* ------------------------------------------------------------------------- */
 
-/*
- * Function Prototypes
- */
-static void nand_print(struct nand_chip *nand);
-int nand_rw (struct nand_chip* nand, int cmd,
-           size_t start, size_t len,
-           size_t * retlen, u_char * buf);
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
-                size_t * retlen, u_char *buf, u_char *ecc_code);
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
-                          size_t * retlen, const u_char * buf, u_char * ecc_code);
-static void nand_print_bad(struct nand_chip *nand);
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
-                size_t * retlen, u_char * buf);
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
-                size_t * retlen, const u_char * buf);
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
-#ifdef CONFIG_MTD_NAND_ECC
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+static void
+arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
+{
+       *off = 0;
+       *size = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
+       if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
+               int part_num;
+               struct part_info *part;
+               const char *partstr;
+
+               if (argc >= 2)
+                       partstr = argv[1];
+               else
+                       partstr = getenv("partition");
+
+               if (partstr)
+                       part_num = (int)simple_strtoul(partstr, NULL, 10);
+               else
+                       part_num = 0;
+
+               part = jffs2_part_info(part_num);
+               if (part == NULL) {
+                       printf("\nInvalid partition %d\n", part_num);
+                       return;
+               }
+               *size = part->size;
+               *off = (ulong)part->offset;
+       } else
 #endif
+       {
+               if (argc >= 1)
+                       *off = (ulong)simple_strtoul(argv[0], NULL, 16);
+               else
+                       *off = 0;
 
-struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+               if (argc >= 2)
+                       *size = (ulong)simple_strtoul(argv[1], NULL, 16);
+               else
+                       *size = totsize - *off;
 
-/* Current NAND Device */
-static int curr_device = -1;
+       }
 
-/* ------------------------------------------------------------------------- */
+}
 
-int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
 {
-    int rcode = 0;
+       int i, dev, ret;
+       ulong addr, off, size;
+       char *cmd, *s;
+       nand_info_t *nand;
 
-    switch (argc) {
-    case 0:
-    case 1:
-       printf ("Usage:\n%s\n", cmdtp->usage);
-       return 1;
-    case 2:
-       if (strcmp(argv[1],"info") == 0) {
-               int i;
+       /* at least two arguments please */
+       if (argc < 2)
+               goto usage;
 
-               putc ('\n');
+       cmd = argv[1];
 
-               for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
-                       if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
-                               continue; /* list only known devices */
-                       printf ("Device %d: ", i);
-                       nand_print(&nand_dev_desc[i]);
-               }
-               return 0;
+       if (strcmp(cmd, "info") == 0) {
 
-       } else if (strcmp(argv[1],"device") == 0) {
-               if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
-                       puts ("\nno devices available\n");
-                       return 1;
+               putc('\n');
+               for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+                       if (nand_info[i].name)
+                               printf("Device %d: %s\n", i, nand_info[i].name);
                }
-               printf ("\nDevice %d: ", curr_device);
-               nand_print(&nand_dev_desc[curr_device]);
                return 0;
+       }
 
-       } else if (strcmp(argv[1],"bad") == 0) {
-               if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
-                       puts ("\nno devices available\n");
+       if (strcmp(cmd, "device") == 0) {
+
+               if (argc < 3) {
+                       if ((nand_curr_device < 0) ||
+                           (nand_curr_device >= CFG_MAX_NAND_DEVICE))
+                               puts("\nno devices available\n");
+                       else
+                               printf("\nDevice %d: %s\n", nand_curr_device,
+                                       nand_info[nand_curr_device].name);
+                       return 0;
+               }
+               dev = (int)simple_strtoul(argv[2], NULL, 10);
+               if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+                       puts("No such device\n");
                        return 1;
                }
-               printf ("\nDevice %d bad blocks:\n", curr_device);
-               nand_print_bad(&nand_dev_desc[curr_device]);
+               printf("Device %d: %s", dev, nand_info[dev].name);
+               puts("... is now current device\n");
+               nand_curr_device = dev;
                return 0;
+       }
+
+       if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
+           strncmp(cmd, "dump", 4) != 0 &&
+           strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+           && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
+           && strcmp(cmd, "markbad") != 0
+#endif
+           )
+               goto usage;
 
+       /* the following commands operate on the current device */
+       if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
+           !nand_info[nand_curr_device].name) {
+               puts("\nno devices available\n");
+               return 1;
        }
-       printf ("Usage:\n%s\n", cmdtp->usage);
-       return 1;
-    case 3:
-       if (strcmp(argv[1],"device") == 0) {
-               int dev = (int)simple_strtoul(argv[2], NULL, 10);
+       nand = &nand_info[nand_curr_device];
 
-               printf ("\nDevice %d: ", dev);
-               if (dev >= CFG_MAX_NAND_DEVICE) {
-                       puts ("unknown device\n");
-                       return 1;
-               }
-               nand_print(&nand_dev_desc[dev]);
-               /*nand_print (dev);*/
+       if (strcmp(cmd, "bad") == 0) {
+               printf("\nDevice %d bad blocks:\n", nand_curr_device);
+               for (off = 0; off < nand->size; off += nand->erasesize)
+                       if (nand_block_isbad(nand, off))
+                               printf("  %08x\n", off);
+               return 0;
+       }
+
+       if (strcmp(cmd, "erase") == 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+           || strcmp(cmd, "scrub") == 0
+#endif
+           ) {
 
-               if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+#ifdef CONFIG_MTD_NAND_UNSAFE
+               i = strcmp(cmd, "scrub") == 0;  /* 1 scrub, 0 = erase */
+#endif
+
+               arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
+               if (off == 0 && size == 0)
                        return 1;
-               }
 
-               curr_device = dev;
+               printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
+#ifdef CONFIG_MTD_NAND_UNSAFE
+                      i ? "scrub" :
+#endif
+                      "erase",
+                      nand_curr_device, off, size);
 
-               puts ("... is now current device\n");
+#ifdef CONFIG_MTD_NAND_UNSAFE
+               if (i)
+                       ret = nand_scrub(nand, off, size);
+               else
+#endif
+                       ret = nand_erase(nand, off, size);
 
-               return 0;
+               printf("%s\n", ret ? "ERROR" : "OK");
+
+               return ret == 0 ? 0 : 1;
        }
-       else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
-               struct nand_chip* nand = &nand_dev_desc[curr_device];
-               ulong off = 0;
-               ulong size = nand->totlen;
-               int ret;
 
-               printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
-                       curr_device, off, size);
+       if (strncmp(cmd, "dump", 4) == 0) {
+               if (argc < 3)
+                       goto usage;
 
-               ret = nand_erase (nand, off, size, 1);
+               s = strchr(cmd, '.');
+               off = (int)simple_strtoul(argv[2], NULL, 16);
 
-               printf("%s\n", ret ? "ERROR" : "OK");
+               if (s != NULL && strcmp(s, ".oob") == 0)
+                       ret = nand_dump_oob(nand, off);
+               else
+                       ret = nand_dump(nand, off);
+
+               return ret == 0 ? 1 : 0;
 
-               return ret;
        }
 
-       printf ("Usage:\n%s\n", cmdtp->usage);
-       return 1;
-    default:
-       /* at least 4 args */
-
-       if (strncmp(argv[1], "read", 4) == 0 ||
-           strncmp(argv[1], "write", 5) == 0) {
-               ulong addr = simple_strtoul(argv[2], NULL, 16);
-               ulong off  = simple_strtoul(argv[3], NULL, 16);
-               ulong size = simple_strtoul(argv[4], NULL, 16);
-               int cmd    = (strncmp(argv[1], "read", 4) == 0) ?
-                               NANDRW_READ : NANDRW_WRITE;
-               int ret, total;
-               char* cmdtail = strchr(argv[1], '.');
-
-               if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
-                       /* read out-of-band data */
-                       if (cmd & NANDRW_READ) {
-                               ret = nand_read_oob(nand_dev_desc + curr_device,
-                                                   off, size, &total,
-                                                   (u_char*)addr);
-                       }
-                       else {
-                               ret = nand_write_oob(nand_dev_desc + curr_device,
-                                                    off, size, &total,
-                                                    (u_char*)addr);
-                       }
-                       return ret;
-               }
-               else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
-                       cmd |= NANDRW_JFFS2;    /* skip bad blocks */
-               else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
-                       cmd |= NANDRW_JFFS2;    /* skip bad blocks (on read too) */
-                       if (cmd & NANDRW_READ)
-                               cmd |= NANDRW_JFFS2_SKIP;       /* skip bad blocks (on read too) */
-               }
-#ifdef SXNI855T
-               /* need ".e" same as ".j" for compatibility with older units */
-               else if (cmdtail && !strcmp(cmdtail, ".e"))
-                       cmd |= NANDRW_JFFS2;    /* skip bad blocks */
-#endif
-#ifdef CFG_NAND_SKIP_BAD_DOT_I
-               /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
-               /* ".i" for image -> read skips bad block (no 0xff) */
-               else if (cmdtail && !strcmp(cmdtail, ".i"))
-                       cmd |= NANDRW_JFFS2;    /* skip bad blocks (on read too) */
-                       if (cmd & NANDRW_READ)
-                               cmd |= NANDRW_JFFS2_SKIP;       /* skip bad blocks (on read too) */
-#endif /* CFG_NAND_SKIP_BAD_DOT_I */
-               else if (cmdtail) {
-                       printf ("Usage:\n%s\n", cmdtp->usage);
+       /* read write */
+       if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
+               if (argc < 4)
+                       goto usage;
+/*
+               s = strchr(cmd, '.');
+               clean = CLEAN_NONE;
+               if (s != NULL) {
+                       if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
+                           || strcmp(s, ".i"))
+                               clean = CLEAN_JFFS2;
+               }
+*/
+               addr = (ulong)simple_strtoul(argv[2], NULL, 16);
+
+               arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
+               if (off == 0 && size == 0)
                        return 1;
-               }
 
-               printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
-                       (cmd & NANDRW_READ) ? "read" : "write",
-                       curr_device, off, size);
+               i = strncmp(cmd, "read", 4) == 0;       /* 1 = read, 0 = write */
+               printf("\nNAND %s: device %d offset %u, size %u ... ",
+                      i ? "read" : "write", nand_curr_device, off, size);
 
-               ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
-                            &total, (u_char*)addr);
+               if (i)
+                       ret = nand_read(nand, off, &size, (u_char *)addr);
+               else
+                       ret = nand_write(nand, off, &size, (u_char *)addr);
 
-               printf (" %d bytes %s: %s\n", total,
-                       (cmd & NANDRW_READ) ? "read" : "written",
-                       ret ? "ERROR" : "OK");
+               printf(" %d bytes %s: %s\n", size,
+                      i ? "read" : "written", ret ? "ERROR" : "OK");
 
-               return ret;
-       } else if (strcmp(argv[1],"erase") == 0 &&
-                  (argc == 4 || strcmp("clean", argv[2]) == 0)) {
-               int clean = argc == 5;
-               ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
-               ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
-               int ret;
+               return ret == 0 ? 0 : 1;
+       }
+#ifdef CONFIG_MTD_NAND_UNSAFE
+       if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
+               if (argc < 3)
+                       goto usage;
 
-               printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
-                       curr_device, off, size);
+               i = strcmp(cmd, "biterr") == 0;
 
-               ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
+               off = (int)simple_strtoul(argv[2], NULL, 16);
 
-               printf("%s\n", ret ? "ERROR" : "OK");
+               if (i)
+                       ret = nand_make_bit_error(nand, off);
+               else
+                       ret = nand_mark_bad(nand, off);
 
-               return ret;
-       } else {
-               printf ("Usage:\n%s\n", cmdtp->usage);
-               rcode = 1;
+               return ret == 0 ? 0 : 1;
        }
+#endif
 
-       return rcode;
-    }
+usage:
+       printf("Usage:\n%s\n", cmdtp->usage);
+       return 1;
 }
 
-U_BOOT_CMD(
-       nand,   5,      1,      do_nand,
+U_BOOT_CMD(nand, 5, 1, do_nand,
        "nand    - NAND sub-system\n",
-       "info  - show available NAND devices\n"
-       "nand device [dev] - show or set current device\n"
-       "nand read[.jffs2[s]]  addr off size\n"
-       "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
+       "info                  - show available NAND devices\n"
+       "nand device [dev]     - show or set current device\n"
+       "nand read[.jffs2]     - addr off size\n"
+       "nand write[.jffs2]    - addr off size - read/write `size' bytes starting\n"
        "    at offset `off' to/from memory address `addr'\n"
        "nand erase [clean] [off size] - erase `size' bytes from\n"
        "    offset `off' (entire device if not specified)\n"
        "nand bad - show bad blocks\n"
-       "nand read.oob addr off size - read out-of-band data\n"
-       "nand write.oob addr off size - read out-of-band data\n"
-);
+       "nand dump[.oob] off - dump page\n"
+       "nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
+       "nand markbad off - mark bad block at offset (UNSAFE)\n"
+       "nand biterr off - make a bit error at offset (UNSAFE)\n");
 
-int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
 {
        char *boot_device = NULL;
        char *ep;
        int dev;
-       ulong cnt;
-       ulong addr;
-       ulong offset = 0;
+       int r;
+       ulong addr, cnt, offset = 0;
        image_header_t *hdr;
-       int rcode = 0;
+       nand_info_t *nand;
+
        switch (argc) {
        case 1:
                addr = CFG_LOAD_ADDR;
-               boot_device = getenv ("bootdevice");
+               boot_device = getenv("bootdevice");
                break;
        case 2:
                addr = simple_strtoul(argv[1], NULL, 16);
-               boot_device = getenv ("bootdevice");
+               boot_device = getenv("bootdevice");
                break;
        case 3:
                addr = simple_strtoul(argv[1], NULL, 16);
@@ -315,55 +334,53 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
                offset = simple_strtoul(argv[3], NULL, 16);
                break;
        default:
-               printf ("Usage:\n%s\n", cmdtp->usage);
-               SHOW_BOOT_PROGRESS (-1);
+               printf("Usage:\n%s\n", cmdtp->usage);
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
        if (!boot_device) {
-               puts ("\n** No boot device **\n");
-               SHOW_BOOT_PROGRESS (-1);
+               puts("\n** No boot device **\n");
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
        dev = simple_strtoul(boot_device, &ep, 16);
 
-       if ((dev >= CFG_MAX_NAND_DEVICE) ||
-           (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
-               printf ("\n** Device %d not available\n", dev);
-               SHOW_BOOT_PROGRESS (-1);
+       if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+               printf("\n** Device %d not available\n", dev);
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
-       printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
-               dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
-               offset);
+       nand = &nand_info[dev];
+       printf("\nLoading from device %d: %s (offset 0x%lx)\n",
+              dev, nand->name, offset);
 
-       if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
-                   SECTORSIZE, NULL, (u_char *)addr)) {
-               printf ("** Read error on %d\n", dev);
-               SHOW_BOOT_PROGRESS (-1);
+       cnt = nand->oobblock;
+       r = nand_read(nand, offset, &cnt, (u_char *) addr);
+       if (r) {
+               printf("** Read error on %d\n", dev);
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
-       hdr = (image_header_t *)addr;
-
-       if (ntohl(hdr->ih_magic) == IH_MAGIC) {
+       hdr = (image_header_t *) addr;
 
-               print_image_hdr (hdr);
-
-               cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
-               cnt -= SECTORSIZE;
-       } else {
-               printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
-               SHOW_BOOT_PROGRESS (-1);
+       if (ntohl(hdr->ih_magic) != IH_MAGIC) {
+               printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
-       if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
-                   NULL, (u_char *)(addr+SECTORSIZE))) {
-               printf ("** Read error on %d\n", dev);
-               SHOW_BOOT_PROGRESS (-1);
+       print_image_hdr(hdr);
+
+       cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+
+       r = nand_read(nand, offset, &cnt, (u_char *) addr);
+       if (r) {
+               printf("** Read error on %d\n", dev);
+               SHOW_BOOT_PROGRESS(-1);
                return 1;
        }
 
@@ -372,1526 +389,24 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
        load_addr = addr;
 
        /* Check if we should attempt an auto-start */
-       if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
+       if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
                char *local_args[2];
-               extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
+               extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
 
                local_args[0] = argv[0];
                local_args[1] = NULL;
 
-               printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
-
-               do_bootm (cmdtp, 0, 1, local_args);
-               rcode = 1;
-       }
-       return rcode;
-}
-
-U_BOOT_CMD(
-       nboot,  4,      1,      do_nandboot,
-       "nboot   - boot from NAND device\n",
-       "loadAddr dev\n"
-);
+               printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
 
-/* returns 0 if block containing pos is OK:
- *             valid erase block and
- *             not marked bad, or no bad mark position is specified
- * returns 1 if marked bad or otherwise invalid
- */
-int check_block (struct nand_chip *nand, unsigned long pos)
-{
-       int retlen;
-       uint8_t oob_data;
-       uint16_t oob_data16[6];
-       int page0 = pos & (-nand->erasesize);
-       int page1 = page0 + nand->oobblock;
-       int badpos = oob_config.badblock_pos;
-
-       if (pos >= nand->totlen)
+               do_bootm(cmdtp, 0, 1, local_args);
                return 1;
-
-       if (badpos < 0)
-               return 0;       /* no way to check, assume OK */
-
-       if (nand->bus16) {
-               if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
-                   || (oob_data16[2] & 0xff00) != 0xff00)
-                       return 1;
-               if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
-                   || (oob_data16[2] & 0xff00) != 0xff00)
-                       return 1;
-       } else {
-               /* Note - bad block marker can be on first or second page */
-               if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
-                   || oob_data != 0xff
-                   || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
-                   || oob_data != 0xff)
-                       return 1;
-       }
-
-       return 0;
-}
-
-/* print bad blocks in NAND flash */
-static void nand_print_bad(struct nand_chip* nand)
-{
-       unsigned long pos;
-
-       for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
-               if (check_block(nand, pos))
-                       printf(" 0x%8.8lx\n", pos);
-       }
-       puts("\n");
-}
-
-/* cmd: 0: NANDRW_WRITE                        write, fail on bad block
- *     1: NANDRW_READ                  read, fail on bad block
- *     2: NANDRW_WRITE | NANDRW_JFFS2  write, skip bad blocks
- *     3: NANDRW_READ | NANDRW_JFFS2   read, data all 0xff for bad blocks
- *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
- */
-int nand_rw (struct nand_chip* nand, int cmd,
-           size_t start, size_t len,
-           size_t * retlen, u_char * buf)
-{
-       int ret = 0, n, total = 0;
-       char eccbuf[6];
-       /* eblk (once set) is the start of the erase block containing the
-        * data being processed.
-        */
-       unsigned long eblk = ~0;        /* force mismatch on first pass */
-       unsigned long erasesize = nand->erasesize;
-
-       while (len) {
-               if ((start & (-erasesize)) != eblk) {
-                       /* have crossed into new erase block, deal with
-                        * it if it is sure marked bad.
-                        */
-                       eblk = start & (-erasesize); /* start of block */
-                       if (check_block(nand, eblk)) {
-                               if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
-                                       while (len > 0 &&
-                                              start - eblk < erasesize) {
-                                               *(buf++) = 0xff;
-                                               ++start;
-                                               ++total;
-                                               --len;
-                                       }
-                                       continue;
-                               } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
-                                       start += erasesize;
-                                       continue;
-                               } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
-                                       /* skip bad block */
-                                       start += erasesize;
-                                       continue;
-                               } else {
-                                       ret = 1;
-                                       break;
-                               }
-                       }
-               }
-               /* The ECC will not be calculated correctly if
-                  less than 512 is written or read */
-               /* Is request at least 512 bytes AND it starts on a proper boundry */
-               if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
-                       printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
-
-               if (cmd & NANDRW_READ) {
-                       ret = nand_read_ecc(nand, start,
-                                          min(len, eblk + erasesize - start),
-                                          &n, (u_char*)buf, eccbuf);
-               } else {
-                       ret = nand_write_ecc(nand, start,
-                                           min(len, eblk + erasesize - start),
-                                           &n, (u_char*)buf, eccbuf);
-               }
-
-               if (ret)
-                       break;
-
-               start  += n;
-               buf   += n;
-               total += n;
-               len   -= n;
-       }
-       if (retlen)
-               *retlen = total;
-
-       return ret;
-}
-
-static void nand_print(struct nand_chip *nand)
-{
-       if (nand->numchips > 1) {
-               printf("%s at 0x%lx,\n"
-                      "\t  %d chips %s, size %d MB, \n"
-                      "\t  total size %ld MB, sector size %ld kB\n",
-                      nand->name, nand->IO_ADDR, nand->numchips,
-                      nand->chips_name, 1 << (nand->chipshift - 20),
-                      nand->totlen >> 20, nand->erasesize >> 10);
-       }
-       else {
-               printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
-               print_size(nand->totlen, ", ");
-               print_size(nand->erasesize, " sector)\n");
-       }
-}
-
-/* ------------------------------------------------------------------------- */
-
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
-{
-       /* This is inline, to optimise the common case, where it's ready instantly */
-       int ret = 0;
-
-#ifdef NAND_NO_RB      /* in config file, shorter delays currently wrap accesses */
-       if(ale_wait)
-               NAND_WAIT_READY(nand);  /* do the worst case 25us wait */
-       else
-               udelay(10);
-#else  /* has functional r/b signal */
-       NAND_WAIT_READY(nand);
-#endif
-       return ret;
-}
-
-/* NanD_Command: Send a flash command to the flash chip */
-
-static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
-{
-       unsigned long nandptr = nand->IO_ADDR;
-
-       /* Assert the CLE (Command Latch Enable) line to the flash chip */
-       NAND_CTL_SETCLE(nandptr);
-
-       /* Send the command */
-       WRITE_NAND_COMMAND(command, nandptr);
-
-       /* Lower the CLE line */
-       NAND_CTL_CLRCLE(nandptr);
-
-#ifdef NAND_NO_RB
-       if(command == NAND_CMD_RESET){
-               u_char ret_val;
-               NanD_Command(nand, NAND_CMD_STATUS);
-               do {
-                       ret_val = READ_NAND(nandptr);/* wait till ready */
-               } while((ret_val & 0x40) != 0x40);
-       }
-#endif
-       return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_Address: Set the current address for the flash chip */
-
-static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
-{
-       unsigned long nandptr;
-       int i;
-
-       nandptr = nand->IO_ADDR;
-
-       /* Assert the ALE (Address Latch Enable) line to the flash chip */
-       NAND_CTL_SETALE(nandptr);
-
-       /* Send the address */
-       /* Devices with 256-byte page are addressed as:
-        * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
-        * there is no device on the market with page256
-        * and more than 24 bits.
-        * Devices with 512-byte page are addressed as:
-        * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
-        * 25-31 is sent only if the chip support it.
-        * bit 8 changes the read command to be sent
-        * (NAND_CMD_READ0 or NAND_CMD_READ1).
-        */
-
-       if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
-               WRITE_NAND_ADDRESS(ofs, nandptr);
-
-       ofs = ofs >> nand->page_shift;
-
-       if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
-               for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
-                       WRITE_NAND_ADDRESS(ofs, nandptr);
-               }
-       }
-
-       /* Lower the ALE line */
-       NAND_CTL_CLRALE(nandptr);
-
-       /* Wait for the chip to respond */
-       return NanD_WaitReady(nand, 1);
-}
-
-/* NanD_SelectChip: Select a given flash chip within the current floor */
-
-static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
-{
-       /* Wait for it to be ready */
-       return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
-
-static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
-{
-       int mfr, id, i;
-
-       NAND_ENABLE_CE(nand);  /* set pin low */
-       /* Reset the chip */
-       if (NanD_Command(nand, NAND_CMD_RESET)) {
-#ifdef NAND_DEBUG
-               printf("NanD_Command (reset) for %d,%d returned true\n",
-                      floor, chip);
-#endif
-               NAND_DISABLE_CE(nand);  /* set pin high */
-               return 0;
-       }
-
-       /* Read the NAND chip ID: 1. Send ReadID command */
-       if (NanD_Command(nand, NAND_CMD_READID)) {
-#ifdef NAND_DEBUG
-               printf("NanD_Command (ReadID) for %d,%d returned true\n",
-                      floor, chip);
-#endif
-               NAND_DISABLE_CE(nand);  /* set pin high */
-               return 0;
-       }
-
-       /* Read the NAND chip ID: 2. Send address byte zero */
-       NanD_Address(nand, ADDR_COLUMN, 0);
-
-       /* Read the manufacturer and device id codes from the device */
-
-       mfr = READ_NAND(nand->IO_ADDR);
-
-       id = READ_NAND(nand->IO_ADDR);
-
-       NAND_DISABLE_CE(nand);  /* set pin high */
-
-#ifdef NAND_DEBUG
-       printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
-#endif
-       if (mfr == 0xff || mfr == 0) {
-               /* No response - return failure */
-               return 0;
-       }
-
-       /* Check it's the same as the first chip we identified.
-        * M-Systems say that any given nand_chip device should only
-        * contain _one_ type of flash part, although that's not a
-        * hardware restriction. */
-       if (nand->mfr) {
-               if (nand->mfr == mfr && nand->id == id) {
-                       return 1;       /* This is another the same the first */
-               } else {
-                       printf("Flash chip at floor %d, chip %d is different:\n",
-                              floor, chip);
-               }
-       }
-
-       /* Print and store the manufacturer and ID codes. */
-       for (i = 0; nand_flash_ids[i].name != NULL; i++) {
-               if (mfr == nand_flash_ids[i].manufacture_id &&
-                   id == nand_flash_ids[i].model_id) {
-#ifdef NAND_DEBUG
-                       printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
-                              "Chip ID: 0x%2.2X (%s)\n", mfr, id,
-                              nand_flash_ids[i].name);
-#endif
-                       if (!nand->mfr) {
-                               nand->mfr = mfr;
-                               nand->id = id;
-                               nand->chipshift =
-                                   nand_flash_ids[i].chipshift;
-                               nand->page256 = nand_flash_ids[i].page256;
-                               nand->eccsize = 256;
-                               if (nand->page256) {
-                                       nand->oobblock = 256;
-                                       nand->oobsize = 8;
-                                       nand->page_shift = 8;
-                               } else {
-                                       nand->oobblock = 512;
-                                       nand->oobsize = 16;
-                                       nand->page_shift = 9;
-                               }
-                               nand->pageadrlen = nand_flash_ids[i].pageadrlen;
-                               nand->erasesize  = nand_flash_ids[i].erasesize;
-                               nand->chips_name = nand_flash_ids[i].name;
-                               nand->bus16      = nand_flash_ids[i].bus16;
-                               return 1;
-                       }
-                       return 0;
-               }
-       }
-
-
-#ifdef NAND_DEBUG
-       /* We haven't fully identified the chip. Print as much as we know. */
-       printf("Unknown flash chip found: %2.2X %2.2X\n",
-              id, mfr);
-#endif
-
-       return 0;
-}
-
-/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
-
-static void NanD_ScanChips(struct nand_chip *nand)
-{
-       int floor, chip;
-       int numchips[NAND_MAX_FLOORS];
-       int maxchips = NAND_MAX_CHIPS;
-       int ret = 1;
-
-       nand->numchips = 0;
-       nand->mfr = 0;
-       nand->id = 0;
-
-
-       /* For each floor, find the number of valid chips it contains */
-       for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
-               ret = 1;
-               numchips[floor] = 0;
-               for (chip = 0; chip < maxchips && ret != 0; chip++) {
-
-                       ret = NanD_IdentChip(nand, floor, chip);
-                       if (ret) {
-                               numchips[floor]++;
-                               nand->numchips++;
-                       }
-               }
-       }
-
-       /* If there are none at all that we recognise, bail */
-       if (!nand->numchips) {
-#ifdef NAND_DEBUG
-               puts ("No NAND flash chips recognised.\n");
-#endif
-               return;
-       }
-
-       /* Allocate an array to hold the information for each chip */
-       nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
-       if (!nand->chips) {
-               puts ("No memory for allocating chip info structures\n");
-               return;
-       }
-
-       ret = 0;
-
-       /* Fill out the chip array with {floor, chipno} for each
-        * detected chip in the device. */
-       for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
-               for (chip = 0; chip < numchips[floor]; chip++) {
-                       nand->chips[ret].floor = floor;
-                       nand->chips[ret].chip = chip;
-                       nand->chips[ret].curadr = 0;
-                       nand->chips[ret].curmode = 0x50;
-                       ret++;
-               }
-       }
-
-       /* Calculate and print the total size of the device */
-       nand->totlen = nand->numchips * (1 << nand->chipshift);
-
-#ifdef NAND_DEBUG
-       printf("%d flash chips found. Total nand_chip size: %ld MB\n",
-              nand->numchips, nand->totlen >> 20);
-#endif
-}
-
-/* we need to be fast here, 1 us per read translates to 1 second per meg */
-static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
-{
-       unsigned long nandptr = nand->IO_ADDR;
-
-       NanD_Command (nand, NAND_CMD_READ0);
-
-       if (nand->bus16) {
-               u16 val;
-
-               while (cntr >= 16) {
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       cntr -= 16;
-               }
-
-               while (cntr > 0) {
-                       val = READ_NAND (nandptr);
-                       *data_buf++ = val & 0xff;
-                       *data_buf++ = val >> 8;
-                       cntr -= 2;
-               }
-       } else {
-               while (cntr >= 16) {
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       *data_buf++ = READ_NAND (nandptr);
-                       cntr -= 16;
-               }
-
-               while (cntr > 0) {
-                       *data_buf++ = READ_NAND (nandptr);
-                       cntr--;
-               }
-       }
-}
-
-/*
- * NAND read with ECC
- */
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
-                size_t * retlen, u_char *buf, u_char *ecc_code)
-{
-       int col, page;
-       int ecc_status = 0;
-#ifdef CONFIG_MTD_NAND_ECC
-       int j;
-       int ecc_failed = 0;
-       u_char *data_poi;
-       u_char ecc_calc[6];
-#endif
-
-       /* Do not allow reads past end of device */
-       if ((start + len) > nand->totlen) {
-               printf ("%s: Attempt read beyond end of device %x %x %x\n",
-                       __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
-               *retlen = 0;
-               return -1;
        }
-
-       /* First we calculate the starting page */
-       /*page = shr(start, nand->page_shift);*/
-       page = start >> nand->page_shift;
-
-       /* Get raw starting column */
-       col = start & (nand->oobblock - 1);
-
-       /* Initialize return value */
-       *retlen = 0;
-
-       /* Select the NAND device */
-       NAND_ENABLE_CE(nand);  /* set pin low */
-
-       /* Loop until all data read */
-       while (*retlen < len) {
-
-#ifdef CONFIG_MTD_NAND_ECC
-               /* Do we have this page in cache ? */
-               if (nand->cache_page == page)
-                       goto readdata;
-               /* Send the read command */
-               NanD_Command(nand, NAND_CMD_READ0);
-               if (nand->bus16) {
-                       NanD_Address(nand, ADDR_COLUMN_PAGE,
-                                    (page << nand->page_shift) + (col >> 1));
-               } else {
-                       NanD_Address(nand, ADDR_COLUMN_PAGE,
-                                    (page << nand->page_shift) + col);
-               }
-
-               /* Read in a page + oob data */
-               NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
-
-               /* copy data into cache, for read out of cache and if ecc fails */
-               if (nand->data_cache) {
-                       memcpy (nand->data_cache, nand->data_buf,
-                               nand->oobblock + nand->oobsize);
-               }
-
-               /* Pick the ECC bytes out of the oob data */
-               for (j = 0; j < 6; j++) {
-                       ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
-               }
-
-               /* Calculate the ECC and verify it */
-               /* If block was not written with ECC, skip ECC */
-               if (oob_config.eccvalid_pos != -1 &&
-                   (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
-
-                       nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
-                       switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
-                       case -1:
-                               printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
-                               ecc_failed++;
-                               break;
-                       case 1:
-                       case 2: /* transfer ECC corrected data to cache */
-                               if (nand->data_cache)
-                                       memcpy (nand->data_cache, nand->data_buf, 256);
-                               break;
-                       }
-               }
-
-               if (oob_config.eccvalid_pos != -1 &&
-                   nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
-
-                       nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
-                       switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
-                       case -1:
-                               printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
-                               ecc_failed++;
-                               break;
-                       case 1:
-                       case 2: /* transfer ECC corrected data to cache */
-                               if (nand->data_cache)
-                                       memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
-                               break;
-                       }
-               }
-readdata:
-               /* Read the data from ECC data buffer into return buffer */
-               data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
-               data_poi += col;
-               if ((*retlen + (nand->oobblock - col)) >= len) {
-                       memcpy (buf + *retlen, data_poi, len - *retlen);
-                       *retlen = len;
-               } else {
-                       memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
-                       *retlen += nand->oobblock - col;
-               }
-               /* Set cache page address, invalidate, if ecc_failed */
-               nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
-
-               ecc_status += ecc_failed;
-               ecc_failed = 0;
-
-#else
-               /* Send the read command */
-               NanD_Command(nand, NAND_CMD_READ0);
-               if (nand->bus16) {
-                       NanD_Address(nand, ADDR_COLUMN_PAGE,
-                                    (page << nand->page_shift) + (col >> 1));
-               } else {
-                       NanD_Address(nand, ADDR_COLUMN_PAGE,
-                                    (page << nand->page_shift) + col);
-               }
-
-               /* Read the data directly into the return buffer */
-               if ((*retlen + (nand->oobblock - col)) >= len) {
-                       NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
-                       *retlen = len;
-                       /* We're done */
-                       continue;
-               } else {
-                       NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
-                       *retlen += nand->oobblock - col;
-                       }
-#endif
-               /* For subsequent reads align to page boundary. */
-               col = 0;
-               /* Increment page address */
-               page++;
-       }
-
-       /* De-select the NAND device */
-       NAND_DISABLE_CE(nand);  /* set pin high */
-
-       /*
-        * Return success, if no ECC failures, else -EIO
-        * fs driver will take care of that, because
-        * retlen == desired len and result == -EIO
-        */
-       return ecc_status ? -1 : 0;
-}
-
-/*
- *     Nand_page_program function is used for write and writev !
- */
-static int nand_write_page (struct nand_chip *nand,
-                           int page, int col, int last, u_char * ecc_code)
-{
-
-       int i;
-       unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef CONFIG_MTD_NAND_ECC
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-       int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
-#endif
-#endif
-       /* pad oob area */
-       for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
-               nand->data_buf[i] = 0xff;
-
-#ifdef CONFIG_MTD_NAND_ECC
-       /* Zero out the ECC array */
-       for (i = 0; i < 6; i++)
-               ecc_code[i] = 0x00;
-
-       /* Read back previous written data, if col > 0 */
-       if (col) {
-               NanD_Command (nand, NAND_CMD_READ0);
-               if (nand->bus16) {
-                       NanD_Address (nand, ADDR_COLUMN_PAGE,
-                                     (page << nand->page_shift) + (col >> 1));
-               } else {
-                       NanD_Address (nand, ADDR_COLUMN_PAGE,
-                                     (page << nand->page_shift) + col);
-               }
-
-               if (nand->bus16) {
-                       u16 val;
-
-                       for (i = 0; i < col; i += 2) {
-                               val = READ_NAND (nandptr);
-                               nand->data_buf[i] = val & 0xff;
-                               nand->data_buf[i + 1] = val >> 8;
-                       }
-               } else {
-                       for (i = 0; i < col; i++)
-                               nand->data_buf[i] = READ_NAND (nandptr);
-               }
-       }
-
-       /* Calculate and write the ECC if we have enough data */
-       if ((col < nand->eccsize) && (last >= nand->eccsize)) {
-               nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
-               for (i = 0; i < 3; i++) {
-                       nand->data_buf[(nand->oobblock +
-                                       oob_config.ecc_pos[i])] = ecc_code[i];
-               }
-               if (oob_config.eccvalid_pos != -1) {
-                       nand->data_buf[nand->oobblock +
-                                      oob_config.eccvalid_pos] = 0xf0;
-               }
-       }
-
-       /* Calculate and write the second ECC if we have enough data */
-       if ((nand->oobblock == 512) && (last == nand->oobblock)) {
-               nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
-               for (i = 3; i < 6; i++) {
-                       nand->data_buf[(nand->oobblock +
-                                       oob_config.ecc_pos[i])] = ecc_code[i];
-               }
-               if (oob_config.eccvalid_pos != -1) {
-                       nand->data_buf[nand->oobblock +
-                                      oob_config.eccvalid_pos] &= 0x0f;
-               }
-       }
-#endif
-       /* Prepad for partial page programming !!! */
-       for (i = 0; i < col; i++)
-               nand->data_buf[i] = 0xff;
-
-       /* Postpad for partial page programming !!! oob is already padded */
-       for (i = last; i < nand->oobblock; i++)
-               nand->data_buf[i] = 0xff;
-
-       /* Send command to begin auto page programming */
-       NanD_Command (nand, NAND_CMD_READ0);
-       NanD_Command (nand, NAND_CMD_SEQIN);
-       if (nand->bus16) {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + (col >> 1));
-       } else {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + col);
-       }
-
-       /* Write out complete page of data */
-       if (nand->bus16) {
-               for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
-                       WRITE_NAND (nand->data_buf[i] +
-                                   (nand->data_buf[i + 1] << 8),
-                                   nand->IO_ADDR);
-               }
-       } else {
-               for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
-                       WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
-       }
-
-       /* Send command to actually program the data */
-       NanD_Command (nand, NAND_CMD_PAGEPROG);
-       NanD_Command (nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-       {
-               u_char ret_val;
-
-               do {
-                       ret_val = READ_NAND (nandptr);  /* wait till ready */
-               } while ((ret_val & 0x40) != 0x40);
-       }
-#endif
-       /* See if device thinks it succeeded */
-       if (READ_NAND (nand->IO_ADDR) & 0x01) {
-               printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
-                       page);
-               return -1;
-       }
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-       /*
-        * The NAND device assumes that it is always writing to
-        * a cleanly erased page. Hence, it performs its internal
-        * write verification only on bits that transitioned from
-        * 1 to 0. The device does NOT verify the whole page on a
-        * byte by byte basis. It is possible that the page was
-        * not completely erased or the page is becoming unusable
-        * due to wear. The read with ECC would catch the error
-        * later when the ECC page check fails, but we would rather
-        * catch it early in the page write stage. Better to write
-        * no data than invalid data.
-        */
-
-       /* Send command to read back the page */
-       if (col < nand->eccsize)
-               NanD_Command (nand, NAND_CMD_READ0);
-       else
-               NanD_Command (nand, NAND_CMD_READ1);
-       if (nand->bus16) {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + (col >> 1));
-       } else {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + col);
-       }
-
-       /* Loop through and verify the data */
-       if (nand->bus16) {
-               for (i = col; i < last; i = +2) {
-                       if ((nand->data_buf[i] +
-                            (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
-                               printf ("%s: Failed write verify, page 0x%08x ",
-                                       __FUNCTION__, page);
-                               return -1;
-                       }
-               }
-       } else {
-               for (i = col; i < last; i++) {
-                       if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
-                               printf ("%s: Failed write verify, page 0x%08x ",
-                                       __FUNCTION__, page);
-                               return -1;
-                       }
-               }
-       }
-
-#ifdef CONFIG_MTD_NAND_ECC
-       /*
-        * We also want to check that the ECC bytes wrote
-        * correctly for the same reasons stated above.
-        */
-       NanD_Command (nand, NAND_CMD_READOOB);
-       if (nand->bus16) {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + (col >> 1));
-       } else {
-               NanD_Address (nand, ADDR_COLUMN_PAGE,
-                             (page << nand->page_shift) + col);
-       }
-       if (nand->bus16) {
-               for (i = 0; i < nand->oobsize; i += 2) {
-                       u16 val;
-
-                       val = READ_NAND (nand->IO_ADDR);
-                       nand->data_buf[i] = val & 0xff;
-                       nand->data_buf[i + 1] = val >> 8;
-               }
-       } else {
-               for (i = 0; i < nand->oobsize; i++) {
-                       nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
-               }
-       }
-       for (i = 0; i < ecc_bytes; i++) {
-               if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
-                       printf ("%s: Failed ECC write "
-                               "verify, page 0x%08x, "
-                               "%6i bytes were succesful\n",
-                               __FUNCTION__, page, i);
-                       return -1;
-               }
-       }
-#endif /* CONFIG_MTD_NAND_ECC */
-#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
        return 0;
 }
 
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
-                          size_t * retlen, const u_char * buf, u_char * ecc_code)
-{
-       int i, page, col, cnt, ret = 0;
-
-       /* Do not allow write past end of device */
-       if ((to + len) > nand->totlen) {
-               printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
-               return -1;
-       }
-
-       /* Shift to get page */
-       page = ((int) to) >> nand->page_shift;
-
-       /* Get the starting column */
-       col = to & (nand->oobblock - 1);
-
-       /* Initialize return length value */
-       *retlen = 0;
-
-       /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
-       archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
-       NAND_WP_OFF();
-#endif
-
-       NAND_ENABLE_CE(nand);  /* set pin low */
-
-       /* Check the WP bit */
-       NanD_Command(nand, NAND_CMD_STATUS);
-       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-               printf ("%s: Device is write protected!!!\n", __FUNCTION__);
-               ret = -1;
-               goto out;
-       }
-
-       /* Loop until all data is written */
-       while (*retlen < len) {
-               /* Invalidate cache, if we write to this page */
-               if (nand->cache_page == page)
-                       nand->cache_page = -1;
-
-               /* Write data into buffer */
-               if ((col + len) >= nand->oobblock) {
-                       for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
-                               nand->data_buf[i] = buf[(*retlen + cnt)];
-                       }
-               } else {
-                       for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
-                               nand->data_buf[i] = buf[(*retlen + cnt)];
-                       }
-               }
-               /* We use the same function for write and writev !) */
-               ret = nand_write_page (nand, page, col, i, ecc_code);
-               if (ret)
-                       goto out;
-
-               /* Next data start at page boundary */
-               col = 0;
-
-               /* Update written bytes count */
-               *retlen += cnt;
-
-               /* Increment page address */
-               page++;
-       }
-
-       /* Return happy */
-       *retlen = len;
-
-out:
-       /* De-select the NAND device */
-       NAND_DISABLE_CE(nand);  /* set pin high */
-#ifdef CONFIG_OMAP1510
-       archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
-       NAND_WP_ON();
-#endif
-
-       return ret;
-}
-
-/* read from the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
-                        size_t * retlen, u_char * buf)
-{
-       int len256 = 0;
-       struct Nand *mychip;
-       int ret = 0;
-
-       mychip = &nand->chips[ofs >> nand->chipshift];
-
-       /* update address for 2M x 8bit devices. OOB starts on the second */
-       /* page to maintain compatibility with nand_read_ecc. */
-       if (nand->page256) {
-               if (!(ofs & 0x8))
-                       ofs += 0x100;
-               else
-                       ofs -= 0x8;
-       }
-
-       NAND_ENABLE_CE(nand);  /* set pin low */
-       NanD_Command(nand, NAND_CMD_READOOB);
-       if (nand->bus16) {
-               NanD_Address(nand, ADDR_COLUMN_PAGE,
-                            ((ofs >> nand->page_shift) << nand->page_shift) +
-                               ((ofs & (nand->oobblock - 1)) >> 1));
-       } else {
-               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-       }
-
-       /* treat crossing 8-byte OOB data for 2M x 8bit devices */
-       /* Note: datasheet says it should automaticaly wrap to the */
-       /*       next OOB block, but it didn't work here. mf.      */
-       if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
-               len256 = (ofs | 0x7) + 1 - ofs;
-               NanD_ReadBuf(nand, buf, len256);
-
-               NanD_Command(nand, NAND_CMD_READOOB);
-               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
-       }
-
-       NanD_ReadBuf(nand, &buf[len256], len - len256);
-
-       *retlen = len;
-       /* Reading the full OOB data drops us off of the end of the page,
-        * causing the flash device to go into busy mode, so we need
-        * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
-
-       ret = NanD_WaitReady(nand, 1);
-       NAND_DISABLE_CE(nand);  /* set pin high */
-
-       return ret;
-
-}
-
-/* write to the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
-                 size_t * retlen, const u_char * buf)
-{
-       int len256 = 0;
-       int i;
-       unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef PSYCHO_DEBUG
-       printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
-              (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
-              buf[8], buf[9], buf[14],buf[15]);
-#endif
-
-       NAND_ENABLE_CE(nand);  /* set pin low to enable chip */
-
-       /* Reset the chip */
-       NanD_Command(nand, NAND_CMD_RESET);
-
-       /* issue the Read2 command to set the pointer to the Spare Data Area. */
-       NanD_Command(nand, NAND_CMD_READOOB);
-       if (nand->bus16) {
-               NanD_Address(nand, ADDR_COLUMN_PAGE,
-                            ((ofs >> nand->page_shift) << nand->page_shift) +
-                               ((ofs & (nand->oobblock - 1)) >> 1));
-       } else {
-               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-       }
-
-       /* update address for 2M x 8bit devices. OOB starts on the second */
-       /* page to maintain compatibility with nand_read_ecc. */
-       if (nand->page256) {
-               if (!(ofs & 0x8))
-                       ofs += 0x100;
-               else
-                       ofs -= 0x8;
-       }
-
-       /* issue the Serial Data In command to initial the Page Program process */
-       NanD_Command(nand, NAND_CMD_SEQIN);
-       if (nand->bus16) {
-               NanD_Address(nand, ADDR_COLUMN_PAGE,
-                            ((ofs >> nand->page_shift) << nand->page_shift) +
-                               ((ofs & (nand->oobblock - 1)) >> 1));
-       } else {
-               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-       }
-
-       /* treat crossing 8-byte OOB data for 2M x 8bit devices */
-       /* Note: datasheet says it should automaticaly wrap to the */
-       /*       next OOB block, but it didn't work here. mf.      */
-       if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
-               len256 = (ofs | 0x7) + 1 - ofs;
-               for (i = 0; i < len256; i++)
-                       WRITE_NAND(buf[i], nandptr);
-
-               NanD_Command(nand, NAND_CMD_PAGEPROG);
-               NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-               { u_char ret_val;
-                       do {
-                               ret_val = READ_NAND(nandptr); /* wait till ready */
-                       } while ((ret_val & 0x40) != 0x40);
-               }
-#endif
-               if (READ_NAND(nandptr) & 1) {
-                       puts ("Error programming oob data\n");
-                       /* There was an error */
-                       NAND_DISABLE_CE(nand);  /* set pin high */
-                       *retlen = 0;
-                       return -1;
-               }
-               NanD_Command(nand, NAND_CMD_SEQIN);
-               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
-       }
-
-       if (nand->bus16) {
-               for (i = len256; i < len; i += 2) {
-                       WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
-               }
-       } else {
-               for (i = len256; i < len; i++)
-                       WRITE_NAND(buf[i], nandptr);
-       }
-
-       NanD_Command(nand, NAND_CMD_PAGEPROG);
-       NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-       {       u_char ret_val;
-               do {
-                       ret_val = READ_NAND(nandptr); /* wait till ready */
-               } while ((ret_val & 0x40) != 0x40);
-       }
-#endif
-       if (READ_NAND(nandptr) & 1) {
-               puts ("Error programming oob data\n");
-               /* There was an error */
-               NAND_DISABLE_CE(nand);  /* set pin high */
-               *retlen = 0;
-               return -1;
-       }
-
-       NAND_DISABLE_CE(nand);  /* set pin high */
-       *retlen = len;
-       return 0;
-
-}
-
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
-{
-       /* This is defined as a structure so it will work on any system
-        * using native endian jffs2 (the default).
-        */
-       static struct jffs2_unknown_node clean_marker = {
-               JFFS2_MAGIC_BITMASK,
-               JFFS2_NODETYPE_CLEANMARKER,
-               8               /* 8 bytes in this node */
-       };
-       unsigned long nandptr;
-       struct Nand *mychip;
-       int ret = 0;
-
-       if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
-               printf ("Offset and size must be sector aligned, erasesize = %d\n",
-                       (int) nand->erasesize);
-               return -1;
-       }
-
-       nandptr = nand->IO_ADDR;
-
-       /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
-       archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
-       NAND_WP_OFF();
-#endif
-    NAND_ENABLE_CE(nand);  /* set pin low */
-
-       /* Check the WP bit */
-       NanD_Command(nand, NAND_CMD_STATUS);
-       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-               printf ("nand_write_ecc: Device is write protected!!!\n");
-               ret = -1;
-               goto out;
-       }
-
-       /* Check the WP bit */
-       NanD_Command(nand, NAND_CMD_STATUS);
-       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-               printf ("%s: Device is write protected!!!\n", __FUNCTION__);
-               ret = -1;
-               goto out;
-       }
-
-       /* FIXME: Do nand in the background. Use timers or schedule_task() */
-       while(len) {
-               /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
-               mychip = &nand->chips[ofs >> nand->chipshift];
-
-               /* always check for bad block first, genuine bad blocks
-                * should _never_  be erased.
-                */
-               if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
-                       /* Select the NAND device */
-                       NAND_ENABLE_CE(nand);  /* set pin low */
-
-                       NanD_Command(nand, NAND_CMD_ERASE1);
-                       NanD_Address(nand, ADDR_PAGE, ofs);
-                       NanD_Command(nand, NAND_CMD_ERASE2);
-
-                       NanD_Command(nand, NAND_CMD_STATUS);
-
-#ifdef NAND_NO_RB
-                       {       u_char ret_val;
-                               do {
-                                       ret_val = READ_NAND(nandptr); /* wait till ready */
-                               } while ((ret_val & 0x40) != 0x40);
-                       }
-#endif
-                       if (READ_NAND(nandptr) & 1) {
-                               printf ("%s: Error erasing at 0x%lx\n",
-                                       __FUNCTION__, (long)ofs);
-                               /* There was an error */
-                               ret = -1;
-                               goto out;
-                       }
-                       if (clean) {
-                               int n;  /* return value not used */
-                               int p, l;
-
-                               /* clean marker position and size depend
-                                * on the page size, since 256 byte pages
-                                * only have 8 bytes of oob data
-                                */
-                               if (nand->page256) {
-                                       p = NAND_JFFS2_OOB8_FSDAPOS;
-                                       l = NAND_JFFS2_OOB8_FSDALEN;
-                               } else {
-                                       p = NAND_JFFS2_OOB16_FSDAPOS;
-                                       l = NAND_JFFS2_OOB16_FSDALEN;
-                               }
-
-                               ret = nand_write_oob(nand, ofs + p, l, &n,
-                                                    (u_char *)&clean_marker);
-                               /* quit here if write failed */
-                               if (ret)
-                                       goto out;
-                       }
-               }
-               ofs += nand->erasesize;
-               len -= nand->erasesize;
-       }
-
-out:
-       /* De-select the NAND device */
-       NAND_DISABLE_CE(nand);  /* set pin high */
-#ifdef CONFIG_OMAP1510
-       archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
-       NAND_WP_ON();
-#endif
-
-       return ret;
-}
-
-static inline int nandcheck(unsigned long potential, unsigned long physadr)
-{
-       return 0;
-}
-
-unsigned long nand_probe(unsigned long physadr)
-{
-       struct nand_chip *nand = NULL;
-       int i = 0, ChipID = 1;
-
-#ifdef CONFIG_MTD_NAND_ECC_JFFS2
-       oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
-       oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
-       oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
-       oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
-       oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
-       oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
-       oob_config.eccvalid_pos = 4;
-#else
-       oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
-       oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
-       oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
-       oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
-       oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
-       oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
-       oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
-#endif
-       oob_config.badblock_pos = 5;
-
-       for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
-               if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
-                       nand = &nand_dev_desc[i];
-                       break;
-               }
-       }
-       if (!nand)
-               return (0);
-
-       memset((char *)nand, 0, sizeof(struct nand_chip));
-
-       nand->IO_ADDR = physadr;
-       nand->cache_page = -1;  /* init the cache page */
-       NanD_ScanChips(nand);
-
-       if (nand->totlen == 0) {
-               /* no chips found, clean up and quit */
-               memset((char *)nand, 0, sizeof(struct nand_chip));
-               nand->ChipID = NAND_ChipID_UNKNOWN;
-               return (0);
-       }
-
-       nand->ChipID = ChipID;
-       if (curr_device == -1)
-               curr_device = i;
-
-       nand->data_buf = malloc (nand->oobblock + nand->oobsize);
-       if (!nand->data_buf) {
-               puts ("Cannot allocate memory for data structures.\n");
-               return (0);
-       }
-
-       return (nand->totlen);
-}
-
-#ifdef CONFIG_MTD_NAND_ECC
-/*
- * Pre-calculated 256-way 1 byte column parity
- */
-static const u_char nand_ecc_precalc_table[] = {
-       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
-       0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
-       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
-       0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
-       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
-       0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
-       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
-       0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
-       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
-       0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
-       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
-       0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
-       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
-       0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
-       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
-       0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
-       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
-       0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
-       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
-       0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
-       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
-       0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
-       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
-       0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
-       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
-       0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
-       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
-       0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
-       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
-       0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
-       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
-       0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
-};
-
-
-/*
- * Creates non-inverted ECC code from line parity
- */
-static void nand_trans_result(u_char reg2, u_char reg3,
-       u_char *ecc_code)
-{
-       u_char a, b, i, tmp1, tmp2;
-
-       /* Initialize variables */
-       a = b = 0x80;
-       tmp1 = tmp2 = 0;
-
-       /* Calculate first ECC byte */
-       for (i = 0; i < 4; i++) {
-               if (reg3 & a)           /* LP15,13,11,9 --> ecc_code[0] */
-                       tmp1 |= b;
-               b >>= 1;
-               if (reg2 & a)           /* LP14,12,10,8 --> ecc_code[0] */
-                       tmp1 |= b;
-               b >>= 1;
-               a >>= 1;
-       }
-
-       /* Calculate second ECC byte */
-       b = 0x80;
-       for (i = 0; i < 4; i++) {
-               if (reg3 & a)           /* LP7,5,3,1 --> ecc_code[1] */
-                       tmp2 |= b;
-               b >>= 1;
-               if (reg2 & a)           /* LP6,4,2,0 --> ecc_code[1] */
-                       tmp2 |= b;
-               b >>= 1;
-               a >>= 1;
-       }
-
-       /* Store two of the ECC bytes */
-       ecc_code[0] = tmp1;
-       ecc_code[1] = tmp2;
-}
-
-/*
- * Calculate 3 byte ECC code for 256 byte block
- */
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
-{
-       u_char idx, reg1, reg3;
-       int j;
-
-       /* Initialize variables */
-       reg1 = reg3 = 0;
-       ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
-
-       /* Build up column parity */
-       for(j = 0; j < 256; j++) {
-
-               /* Get CP0 - CP5 from table */
-               idx = nand_ecc_precalc_table[dat[j]];
-               reg1 ^= idx;
-
-               /* All bit XOR = 1 ? */
-               if (idx & 0x40) {
-                       reg3 ^= (u_char) j;
-               }
-       }
-
-       /* Create non-inverted ECC code from line parity */
-       nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
-
-       /* Calculate final ECC code */
-       ecc_code[0] = ~ecc_code[0];
-       ecc_code[1] = ~ecc_code[1];
-       ecc_code[2] = ((~reg1) << 2) | 0x03;
-}
-
-/*
- * Detect and correct a 1 bit error for 256 byte block
- */
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
-{
-       u_char a, b, c, d1, d2, d3, add, bit, i;
-
-       /* Do error detection */
-       d1 = calc_ecc[0] ^ read_ecc[0];
-       d2 = calc_ecc[1] ^ read_ecc[1];
-       d3 = calc_ecc[2] ^ read_ecc[2];
-
-       if ((d1 | d2 | d3) == 0) {
-               /* No errors */
-               return 0;
-       } else {
-               a = (d1 ^ (d1 >> 1)) & 0x55;
-               b = (d2 ^ (d2 >> 1)) & 0x55;
-               c = (d3 ^ (d3 >> 1)) & 0x54;
-
-               /* Found and will correct single bit error in the data */
-               if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
-                       c = 0x80;
-                       add = 0;
-                       a = 0x80;
-                       for (i=0; i<4; i++) {
-                               if (d1 & c)
-                                       add |= a;
-                               c >>= 2;
-                               a >>= 1;
-                       }
-                       c = 0x80;
-                       for (i=0; i<4; i++) {
-                               if (d2 & c)
-                                       add |= a;
-                               c >>= 2;
-                               a >>= 1;
-                       }
-                       bit = 0;
-                       b = 0x04;
-                       c = 0x80;
-                       for (i=0; i<3; i++) {
-                               if (d3 & c)
-                                       bit |= b;
-                               c >>= 2;
-                               b >>= 1;
-                       }
-                       b = 0x01;
-                       a = dat[add];
-                       a ^= (b << bit);
-                       dat[add] = a;
-                       return 1;
-               }
-               else {
-                       i = 0;
-                       while (d1) {
-                               if (d1 & 0x01)
-                                       ++i;
-                               d1 >>= 1;
-                       }
-                       while (d2) {
-                               if (d2 & 0x01)
-                                       ++i;
-                               d2 >>= 1;
-                       }
-                       while (d3) {
-                               if (d3 & 0x01)
-                                       ++i;
-                               d3 >>= 1;
-                       }
-                       if (i == 1) {
-                               /* ECC Code Error Correction */
-                               read_ecc[0] = calc_ecc[0];
-                               read_ecc[1] = calc_ecc[1];
-                               read_ecc[2] = calc_ecc[2];
-                               return 2;
-                       }
-                       else {
-                               /* Uncorrectable Error */
-                               return -1;
-                       }
-               }
-       }
-
-       /* Should never happen */
-       return -1;
-}
-
-#endif
-
-#ifdef CONFIG_JFFS2_NAND
-
-int read_jffs2_nand(size_t start, size_t len,
-                   size_t * retlen, u_char * buf, int nanddev)
-{
-       return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
-                      start, len, retlen, buf);
-}
+U_BOOT_CMD(nboot, 4, 1, do_nandboot,
+       "nboot   - boot from NAND device\n", "loadAddr dev\n");
 
-#endif /* CONFIG_JFFS2_NAND */
 
+#endif                         /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
 
-#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
diff --git a/drivers/nand/Makefile b/drivers/nand/Makefile
new file mode 100644 (file)
index 0000000..3906bf9
--- /dev/null
@@ -0,0 +1,17 @@
+include $(TOPDIR)/config.mk
+
+LIB := libnand.a
+
+OBJS := nand.o nand_base.o nand_ids.o nand_ecc.o nand_bbt.o
+all:   $(LIB)
+
+$(LIB):        $(OBJS)
+       $(AR) crv $@ $(OBJS)
+
+#########################################################################
+
+.depend:       Makefile $(OBJS:.o=.c)
+               $(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@
+
+sinclude .depend
+
diff --git a/drivers/nand/diskonchip.c b/drivers/nand/diskonchip.c
new file mode 100644 (file)
index 0000000..02135c3
--- /dev/null
@@ -0,0 +1,1782 @@
+/* 
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ * 
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *  
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+       0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 
+       0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+       0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 
+       0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 
+       0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /*  CONFIG_MTD_DOCPROBE_HIGH */
+       0xc8000, 0xca000, 0xcc000, 0xce000, 
+       0xd0000, 0xd2000, 0xd4000, 0xd6000,
+       0xd8000, 0xda000, 0xdc000, 0xde000, 
+       0xe0000, 0xe2000, 0xe4000, 0xe6000, 
+       0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+       0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+       0x2f000000,
+        0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+        0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+       0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+       void __iomem *virtadr;
+       unsigned long physadr;
+       u_char ChipID;
+       u_char CDSNControl;
+       int chips_per_floor; /* The number of chips detected on each floor */
+       int curfloor;
+       int curchip;
+       int mh0_page;
+       int mh1_page;
+       struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+   MediaHeader.  The spec says to just keep going, I think, but that's just
+   silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+   page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+   page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/* 
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+       int i, j, nerr, errpos[8];
+       uint8_t parity;
+       uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+       /* Convert the ecc bytes into words */
+       ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+       ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+       ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+       ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+       parity = ecc[1];
+
+       /* Initialize the syndrom buffer */
+       for (i = 0; i < NROOTS; i++)
+               s[i] = ds[0];
+       /* 
+        *  Evaluate 
+        *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+        *  where x = alpha^(FCR + i)
+        */
+       for(j = 1; j < NROOTS; j++) {
+               if(ds[j] == 0)
+                       continue;
+               tmp = rs->index_of[ds[j]];
+               for(i = 0; i < NROOTS; i++)
+                       s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+       }
+
+       /* Calc s[i] = s[i] / alpha^(v + i) */
+       for (i = 0; i < NROOTS; i++) {
+               if (syn[i])
+                       syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+       }
+       /* Call the decoder library */
+       nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+       /* Incorrectable errors ? */
+       if (nerr < 0)
+               return nerr;
+
+       /* 
+        * Correct the errors. The bitpositions are a bit of magic,
+        * but they are given by the design of the de/encoder circuit
+        * in the DoC ASIC's.
+        */
+       for(i = 0;i < nerr; i++) {
+               int index, bitpos, pos = 1015 - errpos[i];
+               uint8_t val;
+               if (pos >= NB_DATA && pos < 1019)
+                       continue;
+               if (pos < NB_DATA) {
+                       /* extract bit position (MSB first) */
+                       pos = 10 * (NB_DATA - 1 - pos) - 6;
+                       /* now correct the following 10 bits. At most two bytes
+                          can be modified since pos is even */
+                       index = (pos >> 3) ^ 1;
+                       bitpos = pos & 7;
+                       if ((index >= 0 && index < SECTOR_SIZE) || 
+                           index == (SECTOR_SIZE + 1)) {
+                               val = (uint8_t) (errval[i] >> (2 + bitpos));
+                               parity ^= val;
+                               if (index < SECTOR_SIZE)
+                                       data[index] ^= val;
+                       }
+                       index = ((pos >> 3) + 1) ^ 1;
+                       bitpos = (bitpos + 10) & 7;
+                       if (bitpos == 0)
+                               bitpos = 8;
+                       if ((index >= 0 && index < SECTOR_SIZE) || 
+                           index == (SECTOR_SIZE + 1)) {
+                               val = (uint8_t)(errval[i] << (8 - bitpos));
+                               parity ^= val;
+                               if (index < SECTOR_SIZE)
+                                       data[index] ^= val;
+                       }
+               }
+       }
+       /* If the parity is wrong, no rescue possible */
+       return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+       volatile char dummy;
+       int i;
+       
+       for (i = 0; i < cycles; i++) {
+               if (DoC_is_Millennium(doc))
+                       dummy = ReadDOC(doc->virtadr, NOP);
+               else if (DoC_is_MillenniumPlus(doc))
+                       dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+               else
+                       dummy = ReadDOC(doc->virtadr, DOCStatus);
+       }
+       
+}
+
+#define CDSN_CTRL_FR_B_MASK    (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+        void __iomem *docptr = doc->virtadr;
+       unsigned long timeo = jiffies + (HZ * 10);
+
+       if(debug) printk("_DoC_WaitReady...\n");
+       /* Out-of-line routine to wait for chip response */
+       if (DoC_is_MillenniumPlus(doc)) {
+               while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+                       if (time_after(jiffies, timeo)) {
+                               printk("_DoC_WaitReady timed out.\n");
+                               return -EIO;
+                       }
+                       udelay(1);
+                       cond_resched();
+               }
+       } else {
+               while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+                       if (time_after(jiffies, timeo)) {
+                               printk("_DoC_WaitReady timed out.\n");
+                               return -EIO;
+                       }
+                       udelay(1);
+                       cond_resched();
+               }
+       }
+
+       return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+        void __iomem *docptr = doc->virtadr;
+       int ret = 0;
+
+       if (DoC_is_MillenniumPlus(doc)) {
+               DoC_Delay(doc, 4);
+
+               if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+                       /* Call the out-of-line routine to wait */
+                       ret = _DoC_WaitReady(doc);
+       } else {
+               DoC_Delay(doc, 4);
+
+               if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+                       /* Call the out-of-line routine to wait */
+                       ret = _DoC_WaitReady(doc);
+               DoC_Delay(doc, 2);
+       }
+
+       if(debug) printk("DoC_WaitReady OK\n");
+       return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       if(debug)printk("write_byte %02x\n", datum);
+       WriteDOC(datum, docptr, CDSNSlowIO);
+       WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       u_char ret;
+
+       ReadDOC(docptr, CDSNSlowIO);
+       DoC_Delay(doc, 2);
+       ret = ReadDOC(docptr, 2k_CDSN_IO);
+       if (debug) printk("read_byte returns %02x\n", ret);
+       return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+       if (debug)printk("writebuf of %d bytes: ", len);
+       for (i=0; i < len; i++) {
+               WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+               if (debug && i < 16)
+                       printk("%02x ", buf[i]);
+       }
+       if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       if (debug)printk("readbuf of %d bytes: ", len);
+
+       for (i=0; i < len; i++) {
+               buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+       }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+       if (unlikely((((unsigned long)buf)|len) & 3)) {
+               for (i=0; i < len; i++) {
+                       *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+               }
+       } else {
+               for (i=0; i < len; i+=4) {
+                       *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+               }
+       }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd, 
+                             const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       for (i=0; i < len; i++)
+               if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+                       return -EFAULT;
+       return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       uint16_t ret;
+
+       doc200x_select_chip(mtd, nr);
+       doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+       this->write_byte(mtd, NAND_CMD_READID);
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+       doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+       this->write_byte(mtd, 0);
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+       ret = this->read_byte(mtd) << 8;
+       ret |= this->read_byte(mtd);
+
+       if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+               /* First chip probe. See if we get same results by 32-bit access */
+               union {
+                       uint32_t dword;
+                       uint8_t byte[4];
+               } ident;
+               void __iomem *docptr = doc->virtadr;
+
+               doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+               doc2000_write_byte(mtd, NAND_CMD_READID);
+               doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+               doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+               doc2000_write_byte(mtd, 0);
+               doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+               ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+               if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+                       printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+                       this->read_buf = &doc2000_readbuf_dword;
+               }
+       }
+               
+       return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       uint16_t mfrid;
+       int i;
+
+       /* Max 4 chips per floor on DiskOnChip 2000 */
+       doc->chips_per_floor = 4;
+
+       /* Find out what the first chip is */
+       mfrid = doc200x_ident_chip(mtd, 0);
+
+       /* Find how many chips in each floor. */
+       for (i = 1; i < 4; i++) {
+               if (doc200x_ident_chip(mtd, i) != mfrid)
+                       break;
+       }
+       doc->chips_per_floor = i;
+       printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+       struct doc_priv *doc = this->priv;
+
+       int status;
+       
+       DoC_WaitReady(doc);
+       this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+       DoC_WaitReady(doc);
+       status = (int)this->read_byte(mtd);
+
+       return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       WriteDOC(datum, docptr, CDSNSlowIO);
+       WriteDOC(datum, docptr, Mil_CDSN_IO);
+       WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       //ReadDOC(docptr, CDSNSlowIO);
+       /* 11.4.5 -- delay twice to allow extended length cycle */
+       DoC_Delay(doc, 2);
+       ReadDOC(docptr, ReadPipeInit);
+       //return ReadDOC(docptr, Mil_CDSN_IO);
+       return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       for (i=0; i < len; i++)
+               WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+       /* Terminate write pipeline */
+       WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       /* Start read pipeline */
+       ReadDOC(docptr, ReadPipeInit);
+
+       for (i=0; i < len-1; i++)
+               buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+       /* Terminate read pipeline */
+       buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       /* Start read pipeline */
+       ReadDOC(docptr, ReadPipeInit);
+
+       for (i=0; i < len-1; i++)
+               if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+                       ReadDOC(docptr, LastDataRead);
+                       return i;
+               }
+       if (buf[i] != ReadDOC(docptr, LastDataRead))
+               return i;
+       return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       u_char ret;
+
+        ReadDOC(docptr, Mplus_ReadPipeInit);
+        ReadDOC(docptr, Mplus_ReadPipeInit);
+        ret = ReadDOC(docptr, Mplus_LastDataRead);
+       if (debug) printk("read_byte returns %02x\n", ret);
+       return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       if (debug)printk("writebuf of %d bytes: ", len);
+       for (i=0; i < len; i++) {
+               WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+               if (debug && i < 16)
+                       printk("%02x ", buf[i]);
+       }
+       if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       if (debug)printk("readbuf of %d bytes: ", len);
+
+       /* Start read pipeline */
+       ReadDOC(docptr, Mplus_ReadPipeInit);
+       ReadDOC(docptr, Mplus_ReadPipeInit);
+
+       for (i=0; i < len-2; i++) {
+               buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+               if (debug && i < 16)
+                       printk("%02x ", buf[i]);
+       }
+
+       /* Terminate read pipeline */
+       buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+       if (debug && i < 16)
+               printk("%02x ", buf[len-2]);
+       buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+       if (debug && i < 16)
+               printk("%02x ", buf[len-1]);
+       if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+
+       if (debug)printk("verifybuf of %d bytes: ", len);
+
+       /* Start read pipeline */
+       ReadDOC(docptr, Mplus_ReadPipeInit);
+       ReadDOC(docptr, Mplus_ReadPipeInit);
+
+       for (i=0; i < len-2; i++)
+               if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+                       ReadDOC(docptr, Mplus_LastDataRead);
+                       ReadDOC(docptr, Mplus_LastDataRead);
+                       return i;
+               }
+       if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+               return len-2;
+       if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+               return len-1;
+       return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int floor = 0;
+
+       if(debug)printk("select chip (%d)\n", chip);
+
+       if (chip == -1) {
+               /* Disable flash internally */
+               WriteDOC(0, docptr, Mplus_FlashSelect);
+               return;
+       }
+
+       floor = chip / doc->chips_per_floor;
+       chip -= (floor *  doc->chips_per_floor);
+
+       /* Assert ChipEnable and deassert WriteProtect */
+       WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+       this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+       doc->curchip = chip;
+       doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int floor = 0;
+
+       if(debug)printk("select chip (%d)\n", chip);
+
+       if (chip == -1)
+               return;
+
+       floor = chip / doc->chips_per_floor;
+       chip -= (floor *  doc->chips_per_floor);
+
+       /* 11.4.4 -- deassert CE before changing chip */
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+       WriteDOC(floor, docptr, FloorSelect);
+       WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+       doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+       doc->curchip = chip;
+       doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       switch(cmd) {
+       case NAND_CTL_SETNCE:
+               doc->CDSNControl |= CDSN_CTRL_CE;
+               break;
+       case NAND_CTL_CLRNCE:
+               doc->CDSNControl &= ~CDSN_CTRL_CE;
+               break;
+       case NAND_CTL_SETCLE:
+               doc->CDSNControl |= CDSN_CTRL_CLE;
+               break;
+       case NAND_CTL_CLRCLE:
+               doc->CDSNControl &= ~CDSN_CTRL_CLE;
+               break;
+       case NAND_CTL_SETALE:
+               doc->CDSNControl |= CDSN_CTRL_ALE;
+               break;
+       case NAND_CTL_CLRALE:
+               doc->CDSNControl &= ~CDSN_CTRL_ALE;
+               break;
+       case NAND_CTL_SETWP:
+               doc->CDSNControl |= CDSN_CTRL_WP;
+               break;
+       case NAND_CTL_CLRWP:
+               doc->CDSNControl &= ~CDSN_CTRL_WP;
+               break;
+       }
+       if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+       WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+       /* 11.4.3 -- 4 NOPs after CSDNControl write */
+       DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       /*
+        * Must terminate write pipeline before sending any commands
+        * to the device.
+        */
+       if (command == NAND_CMD_PAGEPROG) {
+               WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+               WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+       }
+
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+       }
+       WriteDOC(command, docptr, Mplus_FlashCmd);
+       WriteDOC(0, docptr, Mplus_WritePipeTerm);
+       WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+       if (column != -1 || page_addr != -1) {
+               /* Serially input address */
+               if (column != -1) {
+                       /* Adjust columns for 16 bit buswidth */
+                       if (this->options & NAND_BUSWIDTH_16)
+                               column >>= 1;
+                       WriteDOC(column, docptr, Mplus_FlashAddress);
+               }
+               if (page_addr != -1) {
+                       WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+                       WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+                       /* One more address cycle for higher density devices */
+                       if (this->chipsize & 0x0c000000) {
+                               WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+                               printk("high density\n");
+                       }
+               }
+               WriteDOC(0, docptr, Mplus_WritePipeTerm);
+               WriteDOC(0, docptr, Mplus_WritePipeTerm);
+               /* deassert ALE */
+               if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+                       WriteDOC(0, docptr, Mplus_FlashControl);
+       }
+
+       /* 
+        * program and erase have their own busy handlers
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               return;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)
+                       break;
+               udelay(this->chip_delay);
+               WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+               WriteDOC(0, docptr, Mplus_WritePipeTerm);
+               WriteDOC(0, docptr, Mplus_WritePipeTerm);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       /* This applies to read commands */
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }
+       }
+
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       if (DoC_is_MillenniumPlus(doc)) {
+               /* 11.4.2 -- must NOP four times before checking FR/B# */
+               DoC_Delay(doc, 4);
+               if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+                       if(debug)
+                               printk("not ready\n");
+                       return 0;
+               }
+               if (debug)printk("was ready\n");
+               return 1;
+       } else {
+               /* 11.4.2 -- must NOP four times before checking FR/B# */
+               DoC_Delay(doc, 4);
+               if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+                       if(debug)
+                               printk("not ready\n");
+                       return 0;
+               }
+               /* 11.4.2 -- Must NOP twice if it's ready */
+               DoC_Delay(doc, 2);
+               if (debug)printk("was ready\n");
+               return 1;
+       }
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+       /* This is our last resort if we couldn't find or create a BBT.  Just
+          pretend all blocks are good. */
+       return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       /* Prime the ECC engine */
+       switch(mode) {
+       case NAND_ECC_READ:
+               WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+               WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+               break;
+       case NAND_ECC_WRITE:
+               WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+               WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+               break;
+       }
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+       /* Prime the ECC engine */
+       switch(mode) {
+       case NAND_ECC_READ:
+               WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+               WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+               break;
+       case NAND_ECC_WRITE:
+               WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+               WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+               break;
+       }
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                                unsigned char *ecc_code)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       int i;
+       int emptymatch = 1;
+
+       /* flush the pipeline */
+       if (DoC_is_2000(doc)) {
+               WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+       } else if (DoC_is_MillenniumPlus(doc)) {
+               WriteDOC(0, docptr, Mplus_NOP);
+               WriteDOC(0, docptr, Mplus_NOP);
+               WriteDOC(0, docptr, Mplus_NOP);
+       } else {
+               WriteDOC(0, docptr, NOP);
+               WriteDOC(0, docptr, NOP);
+               WriteDOC(0, docptr, NOP);
+       }
+
+       for (i = 0; i < 6; i++) {
+               if (DoC_is_MillenniumPlus(doc))
+                       ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+               else 
+                       ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+               if (ecc_code[i] != empty_write_ecc[i])
+                       emptymatch = 0;
+       }
+       if (DoC_is_MillenniumPlus(doc))
+               WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+       else
+               WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+       /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
+       if (emptymatch) {
+               /* Note: this somewhat expensive test should not be triggered
+                  often.  It could be optimized away by examining the data in
+                  the writebuf routine, and remembering the result. */
+               for (i = 0; i < 512; i++) {
+                       if (dat[i] == 0xff) continue;
+                       emptymatch = 0;
+                       break;
+               }
+       }
+       /* If emptymatch still =1, we do have an all-0xff data buffer.
+          Return all-0xff ecc value instead of the computed one, so
+          it'll look just like a freshly-erased page. */
+       if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+       return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+       int i, ret = 0;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+       volatile u_char dummy;
+       int emptymatch = 1;
+       
+       /* flush the pipeline */
+       if (DoC_is_2000(doc)) {
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+       } else if (DoC_is_MillenniumPlus(doc)) {
+               dummy = ReadDOC(docptr, Mplus_ECCConf);
+               dummy = ReadDOC(docptr, Mplus_ECCConf);
+               dummy = ReadDOC(docptr, Mplus_ECCConf);
+       } else {
+               dummy = ReadDOC(docptr, ECCConf);
+               dummy = ReadDOC(docptr, ECCConf);
+               dummy = ReadDOC(docptr, ECCConf);
+       }
+       
+       /* Error occured ? */
+       if (dummy & 0x80) {
+               for (i = 0; i < 6; i++) {
+                       if (DoC_is_MillenniumPlus(doc))
+                               calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+                       else
+                               calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+                       if (calc_ecc[i] != empty_read_syndrome[i])
+                               emptymatch = 0;
+               }
+               /* If emptymatch=1, the read syndrome is consistent with an
+                  all-0xff data and stored ecc block.  Check the stored ecc. */
+               if (emptymatch) {
+                       for (i = 0; i < 6; i++) {
+                               if (read_ecc[i] == 0xff) continue;
+                               emptymatch = 0;
+                               break;
+                       }
+               }
+               /* If emptymatch still =1, check the data block. */
+               if (emptymatch) {
+               /* Note: this somewhat expensive test should not be triggered
+                  often.  It could be optimized away by examining the data in
+                  the readbuf routine, and remembering the result. */
+                       for (i = 0; i < 512; i++) {
+                               if (dat[i] == 0xff) continue;
+                               emptymatch = 0;
+                               break;
+                       }
+               }
+               /* If emptymatch still =1, this is almost certainly a freshly-
+                  erased block, in which case the ECC will not come out right.
+                  We'll suppress the error and tell the caller everything's
+                  OK.  Because it is. */
+               if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+               if (ret > 0)
+                       printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+       }       
+       if (DoC_is_MillenniumPlus(doc))
+               WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+       else
+               WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+       if (no_ecc_failures && (ret == -1)) {
+               printk(KERN_ERR "suppressing ECC failure\n");
+               ret = 0;
+       }
+       return ret;
+}
+               
+//u_char mydatabuf[528];
+
+static struct nand_oobinfo doc200x_oobinfo = {
+        .useecc = MTD_NANDECC_AUTOPLACE,
+        .eccbytes = 6,
+        .eccpos = {0, 1, 2, 3, 4, 5},
+        .oobfree = { {8, 8} }
+};
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+   On sucessful return, buf will contain a copy of the media header for
+   further processing.  id is the string to scan for, and will presumably be
+   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
+   header.  The page #s of the found media headers are placed in mh0_page and
+   mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+                                    const char *id, int findmirror)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+       int ret;
+       size_t retlen;
+
+       end = min(end, mtd->size); // paranoia
+       for (offs = 0; offs < end; offs += mtd->erasesize) {
+               ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+               if (retlen != mtd->oobblock) continue;
+               if (ret) {
+                       printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+                               offs);
+               }
+               if (memcmp(buf, id, 6)) continue;
+               printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+               if (doc->mh0_page == -1) {
+                       doc->mh0_page = offs >> this->page_shift;
+                       if (!findmirror) return 1;
+                       continue;
+               }
+               doc->mh1_page = offs >> this->page_shift;
+               return 2;
+       }
+       if (doc->mh0_page == -1) {
+               printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+               return 0;
+       }
+       /* Only one mediaheader was found.  We want buf to contain a
+          mediaheader on return, so we'll have to re-read the one we found. */
+       offs = doc->mh0_page << this->page_shift;
+       ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+       if (retlen != mtd->oobblock) {
+               /* Insanity.  Give up. */
+               printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+               return 0;
+       }
+       return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+                               struct mtd_partition *parts)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       int ret = 0;
+       u_char *buf;
+       struct NFTLMediaHeader *mh;
+       const unsigned psize = 1 << this->page_shift;
+       unsigned blocks, maxblocks;
+       int offs, numheaders;
+
+       buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+       if (!buf) {
+               printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+               return 0;
+       }
+       if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+       mh = (struct NFTLMediaHeader *) buf;
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//     if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+       printk(KERN_INFO "    DataOrgID        = %s\n"
+                        "    NumEraseUnits    = %d\n"
+                        "    FirstPhysicalEUN = %d\n"
+                        "    FormattedSize    = %d\n"
+                        "    UnitSizeFactor   = %d\n",
+               mh->DataOrgID, mh->NumEraseUnits,
+               mh->FirstPhysicalEUN, mh->FormattedSize,
+               mh->UnitSizeFactor);
+//#endif
+
+       blocks = mtd->size >> this->phys_erase_shift;
+       maxblocks = min(32768U, mtd->erasesize - psize);
+
+       if (mh->UnitSizeFactor == 0x00) {
+               /* Auto-determine UnitSizeFactor.  The constraints are:
+                  - There can be at most 32768 virtual blocks.
+                  - There can be at most (virtual block size - page size)
+                    virtual blocks (because MediaHeader+BBT must fit in 1).
+               */
+               mh->UnitSizeFactor = 0xff;
+               while (blocks > maxblocks) {
+                       blocks >>= 1;
+                       maxblocks = min(32768U, (maxblocks << 1) + psize);
+                       mh->UnitSizeFactor--;
+               }
+               printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+       }
+
+       /* NOTE: The lines below modify internal variables of the NAND and MTD
+          layers; variables with have already been configured by nand_scan.
+          Unfortunately, we didn't know before this point what these values
+          should be.  Thus, this code is somewhat dependant on the exact
+          implementation of the NAND layer.  */
+       if (mh->UnitSizeFactor != 0xff) {
+               this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+               mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+               printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+               blocks = mtd->size >> this->bbt_erase_shift;
+               maxblocks = min(32768U, mtd->erasesize - psize);
+       }
+
+       if (blocks > maxblocks) {
+               printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
+               goto out;
+       }
+
+       /* Skip past the media headers. */
+       offs = max(doc->mh0_page, doc->mh1_page);
+       offs <<= this->page_shift;
+       offs += mtd->erasesize;
+
+       //parts[0].name = " DiskOnChip Boot / Media Header partition";
+       //parts[0].offset = 0;
+       //parts[0].size = offs;
+
+       parts[0].name = " DiskOnChip BDTL partition";
+       parts[0].offset = offs;
+       parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+       offs += parts[0].size;
+       if (offs < mtd->size) {
+               parts[1].name = " DiskOnChip Remainder partition";
+               parts[1].offset = offs;
+               parts[1].size = mtd->size - offs;
+               ret = 2;
+               goto out;
+       }
+       ret = 1;
+out:
+       kfree(buf);
+       return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+                                struct mtd_partition *parts)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       int ret = 0;
+       u_char *buf;
+       struct INFTLMediaHeader *mh;
+       struct INFTLPartition *ip;
+       int numparts = 0;
+       int blocks;
+       int vshift, lastvunit = 0;
+       int i;
+       int end = mtd->size;
+
+       if (inftl_bbt_write)
+               end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+       buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+       if (!buf) {
+               printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+               return 0;
+       }
+
+       if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+       doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+       mh = (struct INFTLMediaHeader *) buf;
+
+       mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+       mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+       mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+       mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+       mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+       mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//     if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+       printk(KERN_INFO "    bootRecordID          = %s\n"
+                        "    NoOfBootImageBlocks   = %d\n"
+                        "    NoOfBinaryPartitions  = %d\n"
+                        "    NoOfBDTLPartitions    = %d\n"
+                        "    BlockMultiplerBits    = %d\n"
+                        "    FormatFlgs            = %d\n"
+                        "    OsakVersion           = %d.%d.%d.%d\n"
+                        "    PercentUsed           = %d\n",
+               mh->bootRecordID, mh->NoOfBootImageBlocks,
+               mh->NoOfBinaryPartitions,
+               mh->NoOfBDTLPartitions,
+               mh->BlockMultiplierBits, mh->FormatFlags,
+               ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+               ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+               ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+               ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+               mh->PercentUsed);
+//#endif
+
+       vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+       blocks = mtd->size >> vshift;
+       if (blocks > 32768) {
+               printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
+               goto out;
+       }
+
+       blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+       if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+               printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
+               goto out;
+       }
+
+       /* Scan the partitions */
+       for (i = 0; (i < 4); i++) {
+               ip = &(mh->Partitions[i]);
+               ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+               ip->firstUnit = le32_to_cpu(ip->firstUnit);
+               ip->lastUnit = le32_to_cpu(ip->lastUnit);
+               ip->flags = le32_to_cpu(ip->flags);
+               ip->spareUnits = le32_to_cpu(ip->spareUnits);
+               ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//             if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+               printk(KERN_INFO        "    PARTITION[%d] ->\n"
+                       "        virtualUnits    = %d\n"
+                       "        firstUnit       = %d\n"
+                       "        lastUnit        = %d\n"
+                       "        flags           = 0x%x\n"
+                       "        spareUnits      = %d\n",
+                       i, ip->virtualUnits, ip->firstUnit,
+                       ip->lastUnit, ip->flags,
+                       ip->spareUnits);
+//#endif
+
+/*
+               if ((i == 0) && (ip->firstUnit > 0)) {
+                       parts[0].name = " DiskOnChip IPL / Media Header partition";
+                       parts[0].offset = 0;
+                       parts[0].size = mtd->erasesize * ip->firstUnit;
+                       numparts = 1;
+               }
+*/
+
+               if (ip->flags & INFTL_BINARY)
+                       parts[numparts].name = " DiskOnChip BDK partition";
+               else
+                       parts[numparts].name = " DiskOnChip BDTL partition";
+               parts[numparts].offset = ip->firstUnit << vshift;
+               parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+               numparts++;
+               if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+               if (ip->flags & INFTL_LAST) break;
+       }
+       lastvunit++;
+       if ((lastvunit << vshift) < end) {
+               parts[numparts].name = " DiskOnChip Remainder partition";
+               parts[numparts].offset = lastvunit << vshift;
+               parts[numparts].size = end - parts[numparts].offset;
+               numparts++;
+       }
+       ret = numparts;
+out:
+       kfree(buf);
+       return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+       int ret, numparts;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       struct mtd_partition parts[2];
+
+       memset((char *) parts, 0, sizeof(parts));
+       /* On NFTL, we have to find the media headers before we can read the
+          BBTs, since they're stored in the media header eraseblocks. */
+       numparts = nftl_partscan(mtd, parts);
+       if (!numparts) return -EIO;
+       this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+                               NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+                               NAND_BBT_VERSION;
+       this->bbt_td->veroffs = 7;
+       this->bbt_td->pages[0] = doc->mh0_page + 1;
+       if (doc->mh1_page != -1) {
+               this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+                                       NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+                                       NAND_BBT_VERSION;
+               this->bbt_md->veroffs = 7;
+               this->bbt_md->pages[0] = doc->mh1_page + 1;
+       } else {
+               this->bbt_md = NULL;
+       }
+
+       /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+          At least as nand_bbt.c is currently written. */
+       if ((ret = nand_scan_bbt(mtd, NULL)))
+               return ret;
+       add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+       if (!no_autopart)
+               add_mtd_partitions(mtd, parts, numparts);
+#endif
+       return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+       int ret, numparts;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+       struct mtd_partition parts[5];
+
+       if (this->numchips > doc->chips_per_floor) {
+               printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+               return -EIO;
+       }
+
+       if (DoC_is_MillenniumPlus(doc)) {
+               this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+               if (inftl_bbt_write)
+                       this->bbt_td->options |= NAND_BBT_WRITE;
+               this->bbt_td->pages[0] = 2;
+               this->bbt_md = NULL;
+       } else {
+               this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+                                       NAND_BBT_VERSION;
+               if (inftl_bbt_write)
+                       this->bbt_td->options |= NAND_BBT_WRITE;
+               this->bbt_td->offs = 8;
+               this->bbt_td->len = 8;
+               this->bbt_td->veroffs = 7;
+               this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+               this->bbt_td->reserved_block_code = 0x01;
+               this->bbt_td->pattern = "MSYS_BBT";
+
+               this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+                                       NAND_BBT_VERSION;
+               if (inftl_bbt_write)
+                       this->bbt_md->options |= NAND_BBT_WRITE;
+               this->bbt_md->offs = 8;
+               this->bbt_md->len = 8;
+               this->bbt_md->veroffs = 7;
+               this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+               this->bbt_md->reserved_block_code = 0x01;
+               this->bbt_md->pattern = "TBB_SYSM";
+       }
+
+       /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+          At least as nand_bbt.c is currently written. */
+       if ((ret = nand_scan_bbt(mtd, NULL)))
+               return ret;
+       memset((char *) parts, 0, sizeof(parts));
+       numparts = inftl_partscan(mtd, parts);
+       /* At least for now, require the INFTL Media Header.  We could probably
+          do without it for non-INFTL use, since all it gives us is
+          autopartitioning, but I want to give it more thought. */
+       if (!numparts) return -EIO;
+       add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+       if (!no_autopart)
+               add_mtd_partitions(mtd, parts, numparts);
+#endif
+       return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+
+       this->write_byte = doc2000_write_byte;
+       this->read_byte = doc2000_read_byte;
+       this->write_buf = doc2000_writebuf;
+       this->read_buf = doc2000_readbuf;
+       this->verify_buf = doc2000_verifybuf;
+       this->scan_bbt = nftl_scan_bbt;
+
+       doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+       doc2000_count_chips(mtd);
+       mtd->name = "DiskOnChip 2000 (NFTL Model)";
+       return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+
+       this->write_byte = doc2001_write_byte;
+       this->read_byte = doc2001_read_byte;
+       this->write_buf = doc2001_writebuf;
+       this->read_buf = doc2001_readbuf;
+       this->verify_buf = doc2001_verifybuf;
+
+       ReadDOC(doc->virtadr, ChipID);
+       ReadDOC(doc->virtadr, ChipID);
+       ReadDOC(doc->virtadr, ChipID);
+       if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+               /* It's not a Millennium; it's one of the newer
+                  DiskOnChip 2000 units with a similar ASIC. 
+                  Treat it like a Millennium, except that it
+                  can have multiple chips. */
+               doc2000_count_chips(mtd);
+               mtd->name = "DiskOnChip 2000 (INFTL Model)";
+               this->scan_bbt = inftl_scan_bbt;
+               return (4 * doc->chips_per_floor);
+       } else {
+               /* Bog-standard Millennium */
+               doc->chips_per_floor = 1;
+               mtd->name = "DiskOnChip Millennium";
+               this->scan_bbt = nftl_scan_bbt;
+               return 1;
+       }
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = this->priv;
+
+       this->write_byte = NULL;
+       this->read_byte = doc2001plus_read_byte;
+       this->write_buf = doc2001plus_writebuf;
+       this->read_buf = doc2001plus_readbuf;
+       this->verify_buf = doc2001plus_verifybuf;
+       this->scan_bbt = inftl_scan_bbt;
+       this->hwcontrol = NULL;
+       this->select_chip = doc2001plus_select_chip;
+       this->cmdfunc = doc2001plus_command;
+       this->enable_hwecc = doc2001plus_enable_hwecc;
+
+       doc->chips_per_floor = 1;
+       mtd->name = "DiskOnChip Millennium Plus";
+
+       return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+       unsigned char ChipID;
+       struct mtd_info *mtd;
+       struct nand_chip *nand;
+       struct doc_priv *doc;
+       void __iomem *virtadr;
+       unsigned char save_control;
+       unsigned char tmp, tmpb, tmpc;
+       int reg, len, numchips;
+       int ret = 0;
+
+       virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+       if (!virtadr) {
+               printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+               return -EIO;
+       }
+
+       /* It's not possible to cleanly detect the DiskOnChip - the
+        * bootup procedure will put the device into reset mode, and
+        * it's not possible to talk to it without actually writing
+        * to the DOCControl register. So we store the current contents
+        * of the DOCControl register's location, in case we later decide
+        * that it's not a DiskOnChip, and want to put it back how we
+        * found it. 
+        */
+       save_control = ReadDOC(virtadr, DOCControl);
+
+       /* Reset the DiskOnChip ASIC */
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+                virtadr, DOCControl);
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+                virtadr, DOCControl);
+
+       /* Enable the DiskOnChip ASIC */
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+                virtadr, DOCControl);
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+                virtadr, DOCControl);
+
+       ChipID = ReadDOC(virtadr, ChipID);
+
+       switch(ChipID) {
+       case DOC_ChipID_Doc2k:
+               reg = DoC_2k_ECCStatus;
+               break;
+       case DOC_ChipID_DocMil:
+               reg = DoC_ECCConf;
+               break;
+       case DOC_ChipID_DocMilPlus16:
+       case DOC_ChipID_DocMilPlus32:
+       case 0:
+               /* Possible Millennium Plus, need to do more checks */
+               /* Possibly release from power down mode */
+               for (tmp = 0; (tmp < 4); tmp++)
+                       ReadDOC(virtadr, Mplus_Power);
+
+               /* Reset the Millennium Plus ASIC */
+               tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+                       DOC_MODE_BDECT;
+               WriteDOC(tmp, virtadr, Mplus_DOCControl);
+               WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+               mdelay(1);
+               /* Enable the Millennium Plus ASIC */
+               tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+                       DOC_MODE_BDECT;
+               WriteDOC(tmp, virtadr, Mplus_DOCControl);
+               WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+               mdelay(1);
+
+               ChipID = ReadDOC(virtadr, ChipID);
+
+               switch (ChipID) {
+               case DOC_ChipID_DocMilPlus16:
+                       reg = DoC_Mplus_Toggle;
+                       break;
+               case DOC_ChipID_DocMilPlus32:
+                       printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+               default:
+                       ret = -ENODEV;
+                       goto notfound;
+               }
+               break;
+
+       default:
+               ret = -ENODEV;
+               goto notfound;
+       }
+       /* Check the TOGGLE bit in the ECC register */
+       tmp  = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       if ((tmp == tmpb) || (tmp != tmpc)) {
+               printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+               ret = -ENODEV;
+               goto notfound;
+       }
+
+       for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+               unsigned char oldval;
+               unsigned char newval;
+               nand = mtd->priv;
+               doc = nand->priv;
+               /* Use the alias resolution register to determine if this is
+                  in fact the same DOC aliased to a new address.  If writes
+                  to one chip's alias resolution register change the value on
+                  the other chip, they're the same chip. */
+               if (ChipID == DOC_ChipID_DocMilPlus16) {
+                       oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+                       newval = ReadDOC(virtadr, Mplus_AliasResolution);
+               } else {
+                       oldval = ReadDOC(doc->virtadr, AliasResolution);
+                       newval = ReadDOC(virtadr, AliasResolution);
+               }
+               if (oldval != newval)
+                       continue;
+               if (ChipID == DOC_ChipID_DocMilPlus16) {
+                       WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+                       oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+                       WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
+               } else {
+                       WriteDOC(~newval, virtadr, AliasResolution);
+                       oldval = ReadDOC(doc->virtadr, AliasResolution);
+                       WriteDOC(newval, virtadr, AliasResolution); // restore it
+               }
+               newval = ~newval;
+               if (oldval == newval) {
+                       printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+                       goto notfound;
+               }
+       }
+
+       printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+       len = sizeof(struct mtd_info) +
+             sizeof(struct nand_chip) +
+             sizeof(struct doc_priv) +
+             (2 * sizeof(struct nand_bbt_descr));
+       mtd =  kmalloc(len, GFP_KERNEL);
+       if (!mtd) {
+               printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+               ret = -ENOMEM;
+               goto fail;
+       }
+       memset(mtd, 0, len);
+
+       nand                    = (struct nand_chip *) (mtd + 1);
+       doc                     = (struct doc_priv *) (nand + 1);
+       nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
+       nand->bbt_md            = nand->bbt_td + 1;
+
+       mtd->priv               = nand;
+       mtd->owner              = THIS_MODULE;
+
+       nand->priv              = doc;
+       nand->select_chip       = doc200x_select_chip;
+       nand->hwcontrol         = doc200x_hwcontrol;
+       nand->dev_ready         = doc200x_dev_ready;
+       nand->waitfunc          = doc200x_wait;
+       nand->block_bad         = doc200x_block_bad;
+       nand->enable_hwecc      = doc200x_enable_hwecc;
+       nand->calculate_ecc     = doc200x_calculate_ecc;
+       nand->correct_data      = doc200x_correct_data;
+
+       nand->autooob           = &doc200x_oobinfo;
+       nand->eccmode           = NAND_ECC_HW6_512;
+       nand->options           = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+       doc->physadr            = physadr;
+       doc->virtadr            = virtadr;
+       doc->ChipID             = ChipID;
+       doc->curfloor           = -1;
+       doc->curchip            = -1;
+       doc->mh0_page           = -1;
+       doc->mh1_page           = -1;
+       doc->nextdoc            = doclist;
+
+       if (ChipID == DOC_ChipID_Doc2k)
+               numchips = doc2000_init(mtd);
+       else if (ChipID == DOC_ChipID_DocMilPlus16)
+               numchips = doc2001plus_init(mtd);
+       else
+               numchips = doc2001_init(mtd);
+
+       if ((ret = nand_scan(mtd, numchips))) {
+               /* DBB note: i believe nand_release is necessary here, as
+                  buffers may have been allocated in nand_base.  Check with
+                  Thomas. FIX ME! */
+               /* nand_release will call del_mtd_device, but we haven't yet
+                  added it.  This is handled without incident by
+                  del_mtd_device, as far as I can tell. */
+               nand_release(mtd);
+               kfree(mtd);
+               goto fail;
+       }
+
+       /* Success! */
+       doclist = mtd;
+       return 0;
+
+notfound:
+       /* Put back the contents of the DOCControl register, in case it's not
+          actually a DiskOnChip.  */
+       WriteDOC(save_control, virtadr, DOCControl);
+fail:
+       iounmap(virtadr);
+       return ret;
+}
+
+static void release_nanddoc(void)
+{
+       struct mtd_info *mtd, *nextmtd;
+       struct nand_chip *nand;
+       struct doc_priv *doc;
+
+       for (mtd = doclist; mtd; mtd = nextmtd) {
+               nand = mtd->priv;
+               doc = nand->priv;
+
+               nextmtd = doc->nextdoc;
+               nand_release(mtd);
+               iounmap(doc->virtadr);
+               kfree(mtd);
+       }
+}
+
+static int __init init_nanddoc(void)
+{
+       int i, ret = 0;
+
+       /* We could create the decoder on demand, if memory is a concern.
+        * This way we have it handy, if an error happens 
+        *
+        * Symbolsize is 10 (bits)
+        * Primitve polynomial is x^10+x^3+1
+        * first consecutive root is 510
+        * primitve element to generate roots = 1
+        * generator polinomial degree = 4
+        */
+       rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+       if (!rs_decoder) {
+               printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+               return -ENOMEM;
+       }
+
+       if (doc_config_location) {
+               printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+               ret = doc_probe(doc_config_location);
+               if (ret < 0)
+                       goto outerr;
+       } else {
+               for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+                       doc_probe(doc_locations[i]);
+               }
+       }
+       /* No banner message any more. Print a message if no DiskOnChip
+          found, so the user knows we at least tried. */
+       if (!doclist) {
+               printk(KERN_INFO "No valid DiskOnChip devices found\n");
+               ret = -ENODEV;
+               goto outerr;
+       }
+       return 0;
+outerr:
+       free_rs(rs_decoder);
+       return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+       /* Cleanup the nand/DoC resources */
+       release_nanddoc();
+
+       /* Free the reed solomon resources */
+       if (rs_decoder) {
+               free_rs(rs_decoder);
+       }
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
diff --git a/drivers/nand/nand.c b/drivers/nand/nand.c
new file mode 100644 (file)
index 0000000..d187c89
--- /dev/null
@@ -0,0 +1,71 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <nand.h>
+
+#ifndef CFG_NAND_BASE_LIST
+#define CFG_NAND_BASE_LIST { CFG_NAND_BASE }
+#endif
+
+int nand_curr_device = -1;
+nand_info_t nand_info[CFG_MAX_NAND_DEVICE];
+
+static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE];
+static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST;
+
+static const char default_nand_name[] = "nand";
+
+extern void board_nand_init(struct nand_chip *nand);
+
+static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand,
+                          ulong base_addr)
+{
+       mtd->priv = nand;
+
+       nand->IO_ADDR_R = nand->IO_ADDR_W = base_addr;
+       board_nand_init(nand);
+
+       if (nand_scan(mtd, 1) == 0) {
+               if (!mtd->name)
+                       mtd->name = default_nand_name;
+       } else
+               mtd->name = NULL;
+
+}
+
+void nand_init(void)
+{
+       int i;
+
+       for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+               nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]);
+               if (nand_curr_device == -1)
+                       nand_curr_device = i;
+       }
+}
+
+#endif
diff --git a/drivers/nand/nand_base.c b/drivers/nand/nand_base.c
new file mode 100644 (file)
index 0000000..c423512
--- /dev/null
@@ -0,0 +1,2630 @@
+/*
+ *  drivers/mtd/nand.c
+ *
+ *  Overview:
+ *   This is the generic MTD driver for NAND flash devices. It should be
+ *   capable of working with almost all NAND chips currently available.
+ *   Basic support for AG-AND chips is provided.
+ *   
+ *     Additional technical information is available on
+ *     http://www.linux-mtd.infradead.org/tech/nand.html
+ *     
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *               2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  02-08-2004  tglx: support for strange chips, which cannot auto increment 
+ *             pages on read / read_oob
+ *
+ *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes
+ *             pointed this out, as he marked an auto increment capable chip
+ *             as NOAUTOINCR in the board driver.
+ *             Make reads over block boundaries work too
+ *
+ *  04-14-2004 tglx: first working version for 2k page size chips
+ *  
+ *  05-19-2004  tglx: Basic support for Renesas AG-AND chips
+ *
+ *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared
+ *             among multiple independend devices. Suggestions and initial patch
+ *             from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ *     David Woodhouse for adding multichip support  
+ *     
+ *     Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *     rework for 2K page size chips
+ *
+ * TODO:
+ *     Enable cached programming for 2k page size chips
+ *     Check, if mtd->ecctype should be set to MTD_ECC_HW
+ *     if we have HW ecc support.
+ *     The AG-AND chips have nice features for speed improvement,
+ *     which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/* XXX U-BOOT XXX */
+#if 0
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+#else
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <watchdog.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+
+#ifdef CONFIG_JFFS2_NAND
+#include <jffs2/jffs2.h>
+#endif
+
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 3,
+       .eccpos = {0, 1, 2},
+       .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 6,
+       .eccpos = {0, 1, 2, 3, 6, 7},
+       .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 24,
+       .eccpos = {
+               40, 41, 42, 43, 44, 45, 46, 47, 
+               48, 49, 50, 51, 52, 53, 54, 55, 
+               56, 57, 58, 59, 60, 61, 62, 63},
+       .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+                         size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+                       unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+                       unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+               struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+       u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+               
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd:       MTD device structure
+ * 
+ * Deselect, release chip lock and wake up anyone waiting on the device 
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_release_device (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* De-select the NAND device */
+       this->select_chip(mtd, -1);
+       /* Do we have a hardware controller ? */
+       if (this->controller) {
+               spin_lock(&this->controller->lock);
+               this->controller->active = NULL;
+               spin_unlock(&this->controller->lock);
+       }
+       /* Release the chip */
+       spin_lock (&this->chip_lock);
+       this->state = FL_READY;
+       wake_up (&this->wq);
+       spin_unlock (&this->chip_lock);
+}
+#else
+#define nand_release_device(mtd)       do {} while(0)
+#endif
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd:       MTD device structure
+ * @byte:      pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+       struct nand_chip *this = mtd->priv;
+       writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 16bit buswith with 
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd:       MTD device structure
+ * @byte:      pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+       struct nand_chip *this = mtd->priv;
+       writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 16bit buswith without 
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd:       MTD device structure
+ * @word:      data word to write
+ *
+ * Default write function for 16bit buswith without 
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+       struct nand_chip *this = mtd->priv;
+       writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd:       MTD device structure
+ * @chip:      chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       switch(chip) {
+       case -1:
+               this->hwcontrol(mtd, NAND_CTL_CLRNCE);  
+               break;
+       case 0:
+               this->hwcontrol(mtd, NAND_CTL_SETNCE);
+               break;
+
+       default:
+               BUG();
+       }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd:       MTD device structure
+ * @buf:       data buffer
+ * @len:       number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer to store date
+ * @len:       number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer containing the data to compare
+ * @len:       number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               if (buf[i] != readb(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd:       MTD device structure
+ * @buf:       data buffer
+ * @len:       number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+       
+       for (i=0; i<len; i++)
+               writew(p[i], this->IO_ADDR_W);
+               
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer to store date
+ * @len:       number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+
+       for (i=0; i<len; i++)
+               p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer containing the data to compare
+ * @len:       number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+
+       for (i=0; i<len; i++)
+               if (p[i] != readw(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ * @getchip:   0, if the chip is already selected
+ *
+ * Check, if the block is bad. 
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+       int page, chipnr, res = 0;
+       struct nand_chip *this = mtd->priv;
+       u16 bad;
+
+       if (getchip) {
+               page = (int)(ofs >> this->page_shift);
+               chipnr = (int)(ofs >> this->chip_shift);
+
+               /* Grab the lock and see if the device is available */
+               nand_get_device (this, mtd, FL_READING);
+
+               /* Select the NAND device */
+               this->select_chip(mtd, chipnr);
+       } else 
+               page = (int) ofs;       
+
+       if (this->options & NAND_BUSWIDTH_16) {
+               this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+               bad = cpu_to_le16(this->read_word(mtd));
+               if (this->badblockpos & 0x1)
+                       bad >>= 1;
+               if ((bad & 0xFF) != 0xff)
+                       res = 1;
+       } else {
+               this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+               if (this->read_byte(mtd) != 0xff)
+                       res = 1;
+       }
+               
+       if (getchip) {
+               /* Deselect and wake up anyone waiting on the device */
+               nand_release_device(mtd);
+       }       
+       
+       return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+       struct nand_chip *this = mtd->priv;
+       u_char buf[2] = {0, 0};
+       size_t  retlen;
+       int block;
+       
+       /* Get block number */
+       block = ((int) ofs) >> this->bbt_erase_shift;
+       this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+       /* Do we have a flash based bad block table ? */
+       if (this->options & NAND_USE_FLASH_BBT)
+               return nand_update_bbt (mtd, ofs);
+               
+       /* We write two bytes, so we dont have to mess with 16 bit access */
+       ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+       return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/** 
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd:       MTD device structure
+ * Check, if the device is write protected 
+ *
+ * The function expects, that the device is already selected 
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Check the WP bit */
+       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+       return (this->read_byte(mtd) & 0x80) ? 0 : 1; 
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ * @getchip:   0, if the chip is already selected
+ * @allowbbt:  1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+       struct nand_chip *this = mtd->priv;
+       
+       if (!this->bbt)
+               return this->block_bad(mtd, ofs, getchip);
+       
+       /* Return info from the table */
+       return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd:       MTD device structure
+ * @command:   the command to be sent
+ * @column:    the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               this->write_byte(mtd, readcmd);
+       }
+       this->write_byte(mtd, command);
+
+       /* Set ALE and clear CLE to start address cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1) {
+                       /* Adjust columns for 16 bit buswidth */
+                       if (this->options & NAND_BUSWIDTH_16)
+                               column >>= 1;
+                       this->write_byte(mtd, column);
+               }
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for devices > 32MiB */
+                       if (this->chipsize > (32 << 20))
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               return;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               udelay(this->chip_delay);
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd:       MTD device structure
+ * @command:   the command to be sent
+ * @column:    the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Emulate NAND_CMD_READOOB */
+       if (command == NAND_CMD_READOOB) {
+               column += mtd->oobblock;
+               command = NAND_CMD_READ0;
+       }
+       
+               
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /* Write out the command to the device. */
+       this->write_byte(mtd, command);
+       /* End command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1) {
+                       /* Adjust columns for 16 bit buswidth */
+                       if (this->options & NAND_BUSWIDTH_16)
+                               column >>= 1;
+                       this->write_byte(mtd, column & 0xff);
+                       this->write_byte(mtd, column >> 8);
+               }       
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for devices > 128MiB */
+                       if (this->chipsize > (128 << 20))
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_CACHEDPROG:
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               return;
+
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               udelay(this->chip_delay);
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       case NAND_CMD_READ0:
+               /* Begin command latch cycle */
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               /* Write out the start read command */
+               this->write_byte(mtd, NAND_CMD_READSTART);
+               /* End command latch cycle */
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               /* Fall through into ready check */
+               
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this:      the nand chip descriptor
+ * @mtd:       MTD device structure
+ * @new_state: the state which is requested 
+ *
+ * Get the device and lock it for exclusive access
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+       struct nand_chip *active = this;
+
+       DECLARE_WAITQUEUE (wait, current);
+
+       /* 
+        * Grab the lock and see if the device is available 
+       */
+retry:
+       /* Hardware controller shared among independend devices */
+       if (this->controller) {
+               spin_lock (&this->controller->lock);
+               if (this->controller->active)
+                       active = this->controller->active;
+               else
+                       this->controller->active = this;
+               spin_unlock (&this->controller->lock);
+       }
+       
+       if (active == this) {
+               spin_lock (&this->chip_lock);
+               if (this->state == FL_READY) {
+                       this->state = new_state;
+                       spin_unlock (&this->chip_lock);
+                       return;
+               }
+       }       
+       set_current_state (TASK_UNINTERRUPTIBLE);
+       add_wait_queue (&active->wq, &wait);
+       spin_unlock (&active->chip_lock);
+       schedule ();
+       remove_wait_queue (&active->wq, &wait);
+       goto retry;
+}
+#else
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
+#endif
+
+/**
+ * nand_wait - [DEFAULT]  wait until the command is done
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @state:     state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to 
+ * general NAND and SmartMedia specs
+ *
+*/
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+       unsigned long   timeo = jiffies;
+       int     status;
+       
+       if (state == FL_ERASING)
+                timeo += (HZ * 400) / 1000;
+       else
+                timeo += (HZ * 20) / 1000;
+
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+
+       if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+               this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+       else    
+               this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+       while (time_before(jiffies, timeo)) {           
+               /* Check, if we were interrupted */
+               if (this->state != state)
+                       return 0;
+
+               if (this->dev_ready) {
+                       if (this->dev_ready(mtd))
+                               break;  
+               } else {
+                       if (this->read_byte(mtd) & NAND_STATUS_READY)
+                               break;
+               }
+               yield ();
+       }
+       status = (int) this->read_byte(mtd);
+       return status;
+
+       return 0;
+}
+#else
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+       /* TODO */
+       return 0;
+}
+#endif
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf:   out of band data buffer
+ * @oobsel:    out of band selecttion structre
+ * @cached:    1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, 
+       u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached)
+{
+       int     i, status;
+       u_char  ecc_code[32];
+       int     eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       int     *oob_config = oobsel->eccpos;
+       int     datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+       int     eccbytes = 0;
+       
+       /* FIXME: Enable cached programming */
+       cached = 0;
+       
+       /* Send command to begin auto page programming */
+       this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+       /* Write out complete page of data, take care of eccmode */
+       switch (eccmode) {
+       /* No ecc, write all */
+       case NAND_ECC_NONE:
+               printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+               this->write_buf(mtd, this->data_poi, mtd->oobblock);
+               break;
+               
+       /* Software ecc 3/256, write all */
+       case NAND_ECC_SOFT:
+               for (; eccsteps; eccsteps--) {
+                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       for (i = 0; i < 3; i++, eccidx++)
+                               oob_buf[oob_config[eccidx]] = ecc_code[i];
+                       datidx += this->eccsize;
+               }
+               this->write_buf(mtd, this->data_poi, mtd->oobblock);
+               break;
+       default:
+               eccbytes = this->eccbytes;
+               for (; eccsteps; eccsteps--) {
+                       /* enable hardware ecc logic for write */
+                       this->enable_hwecc(mtd, NAND_ECC_WRITE);
+                       this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       for (i = 0; i < eccbytes; i++, eccidx++)
+                               oob_buf[oob_config[eccidx]] = ecc_code[i];
+                       /* If the hardware ecc provides syndromes then
+                        * the ecc code must be written immidiately after
+                        * the data bytes (words) */
+                       if (this->options & NAND_HWECC_SYNDROME)
+                               this->write_buf(mtd, ecc_code, eccbytes);
+                       datidx += this->eccsize;
+               }
+               break;
+       }
+                                                                               
+       /* Write out OOB data */
+       if (this->options & NAND_HWECC_SYNDROME)
+               this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+       else 
+               this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+       /* Send command to actually program the data */
+       this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+       if (!cached) {
+               /* call wait ready function */
+               status = this->waitfunc (mtd, this, FL_WRITING);
+               /* See if device thinks it succeeded */
+               if (status & 0x01) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+                       return -EIO;
+               }
+       } else {
+               /* FIXME: Implement cached programming ! */
+               /* wait until cache is ready*/
+               // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+       }
+       return 0;       
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages:  number of pages to verify
+ * @oob_buf:   out of band data buffer
+ * @oobsel:    out of band selecttion structre
+ * @chipnr:    number of the current chip
+ * @oobmode:   1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that 
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased 
+ * or the page is becoming unusable due to wear. The read with ECC would catch 
+ * the error later when the ECC page check fails, but we would rather catch 
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+       u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+       int     i, j, datidx = 0, oobofs = 0, res = -EIO;
+       int     eccsteps = this->eccsteps;
+       int     hweccbytes; 
+       u_char  oobdata[64];
+
+       hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+       /* Send command to read back the first page */
+       this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+       for(;;) {
+               for (j = 0; j < eccsteps; j++) {
+                       /* Loop through and verify the data */
+                       if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+                       datidx += mtd->eccsize;
+                       /* Have we a hw generator layout ? */
+                       if (!hweccbytes)
+                               continue;
+                       if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+                       oobofs += hweccbytes;
+               }
+
+               /* check, if we must compare all data or if we just have to
+                * compare the ecc bytes
+                */
+               if (oobmode) {
+                       if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+               } else {
+                       /* Read always, else autoincrement fails */
+                       this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+                       if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+                               int ecccnt = oobsel->eccbytes;
+               
+                               for (i = 0; i < ecccnt; i++) {
+                                       int idx = oobsel->eccpos[i];
+                                       if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+                                               DEBUG (MTD_DEBUG_LEVEL0,
+                                               "%s: Failed ECC write "
+                                               "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+                                               goto out;
+                                       }
+                               }
+                       }       
+               }
+               oobofs += mtd->oobsize - hweccbytes * eccsteps;
+               page++;
+               numpages--;
+
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+                * Do this also before returning, so the chip is
+                * ready for the next command.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+
+               /* All done, return happy */
+               if (!numpages)
+                       return 0;
+               
+                       
+               /* Check, if the chip supports auto page increment */ 
+               if (!NAND_CANAUTOINCR(this))
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+       }
+       /* 
+        * Terminate the read command. We come here in case of an error
+        * So we must issue a reset command.
+        */
+out:    
+       this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+       return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+       return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}                         
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ * @oob_buf:   filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+                         size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+       int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+       int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+       struct nand_chip *this = mtd->priv;
+       u_char *data_poi, *oob_data = oob_buf;
+       u_char ecc_calc[32];
+       u_char ecc_code[32];
+        int eccmode, eccsteps;
+       int     *oob_config, datidx;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+       int     eccbytes;
+       int     compareecc = 1;
+       int     oobreadlen;
+
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+               *retlen = 0;
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd ,FL_READING);
+
+       /* use userspace supplied oobinfo, if zero */
+       if (oobsel == NULL)
+               oobsel = &mtd->oobinfo;
+       
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+               oobsel = this->autooob;
+               
+       eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       oob_config = oobsel->eccpos;
+
+       /* Select the NAND device */
+       chipnr = (int)(from >> this->chip_shift);
+       this->select_chip(mtd, chipnr);
+
+       /* First we calculate the starting page */
+       realpage = (int) (from >> this->page_shift);
+       page = realpage & this->pagemask;
+
+       /* Get raw starting column */
+       col = from & (mtd->oobblock - 1);
+
+       end = mtd->oobblock;
+       ecc = this->eccsize;
+       eccbytes = this->eccbytes;
+       
+       if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+               compareecc = 0;
+
+       oobreadlen = mtd->oobsize;
+       if (this->options & NAND_HWECC_SYNDROME) 
+               oobreadlen -= oobsel->eccbytes;
+
+       /* Loop until all data read */
+       while (read < len) {
+               
+               int aligned = (!col && (len - read) >= end);
+               /* 
+                * If the read is not page aligned, we have to read into data buffer
+                * due to ecc, else we read into return buffer direct
+                */
+               if (aligned)
+                       data_poi = &buf[read];
+               else 
+                       data_poi = this->data_buf;
+               
+               /* Check, if we have this page in the buffer 
+                *
+                * FIXME: Make it work when we must provide oob data too,
+                * check the usage of data_buf oob field
+                */
+               if (realpage == this->pagebuf && !oob_buf) {
+                       /* aligned read ? */
+                       if (aligned)
+                               memcpy (data_poi, this->data_buf, end);
+                       goto readdata;
+               }
+
+               /* Check, if we must send the read command */
+               if (sndcmd) {
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+                       sndcmd = 0;
+               }       
+
+               /* get oob area, if we have no oob buffer from fs-driver */
+               if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
+                       oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+                       oob_data = &this->data_buf[end];
+
+               eccsteps = this->eccsteps;
+               
+               switch (eccmode) {
+               case NAND_ECC_NONE: {   /* No ECC, Read in a page */
+/* XXX U-BOOT XXX */
+#if 0
+                       static unsigned long lastwhinge = 0;
+                       if ((lastwhinge / HZ) != (jiffies / HZ)) {
+                               printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+                               lastwhinge = jiffies;
+                       }
+#else
+                       puts("Reading data from NAND FLASH without ECC is not recommended\n");
+#endif
+                       this->read_buf(mtd, data_poi, end);
+                       break;
+               }
+                       
+               case NAND_ECC_SOFT:     /* Software ECC 3/256: Read in a page + oob data */
+                       this->read_buf(mtd, data_poi, end);
+                       for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) 
+                               this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                       break;  
+
+               default:
+                       for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+                               this->enable_hwecc(mtd, NAND_ECC_READ);
+                               this->read_buf(mtd, &data_poi[datidx], ecc);
+
+                               /* HW ecc with syndrome calculation must read the
+                                * syndrome from flash immidiately after the data */
+                               if (!compareecc) {
+                                       /* Some hw ecc generators need to know when the
+                                        * syndrome is read from flash */
+                                       this->enable_hwecc(mtd, NAND_ECC_READSYN);
+                                       this->read_buf(mtd, &oob_data[i], eccbytes);
+                                       /* We calc error correction directly, it checks the hw
+                                        * generator for an error, reads back the syndrome and
+                                        * does the error correction on the fly */
+                                       if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+                                               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " 
+                                                       "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+                                               ecc_failed++;
+                                       }
+                               } else {
+                                       this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                               }       
+                       }
+                       break;                                          
+               }
+
+               /* read oobdata */
+               this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+               /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+               if (!compareecc)
+                       goto readoob;   
+               
+               /* Pick the ECC bytes out of the oob data */
+               for (j = 0; j < oobsel->eccbytes; j++)
+                       ecc_code[j] = oob_data[oob_config[j]];
+
+               /* correct data, if neccecary */
+               for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+                       ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+                       
+                       /* Get next chunk of ecc bytes */
+                       j += eccbytes;
+                       
+                       /* Check, if we have a fs supplied oob-buffer, 
+                        * This is the legacy mode. Used by YAFFS1
+                        * Should go away some day
+                        */
+                       if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { 
+                               int *p = (int *)(&oob_data[mtd->oobsize]);
+                               p[i] = ecc_status;
+                       }
+                       
+                       if (ecc_status == -1) { 
+                               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+                               ecc_failed++;
+                       }
+               }               
+
+       readoob:
+               /* check, if we have a fs supplied oob-buffer */
+               if (oob_buf) {
+                       /* without autoplace. Legacy mode used by YAFFS1 */
+                       switch(oobsel->useecc) {
+                       case MTD_NANDECC_AUTOPLACE:
+                       case MTD_NANDECC_AUTOPL_USR:
+                               /* Walk through the autoplace chunks */
+                               for (i = 0, j = 0; j < mtd->oobavail; i++) {
+                                       int from = oobsel->oobfree[i][0];
+                                       int num = oobsel->oobfree[i][1];
+                                       memcpy(&oob_buf[oob], &oob_data[from], num);
+                                       j+= num;
+                               }
+                               oob += mtd->oobavail;
+                               break;
+                       case MTD_NANDECC_PLACE:
+                               /* YAFFS1 legacy mode */
+                               oob_data += this->eccsteps * sizeof (int);
+                       default:
+                               oob_data += mtd->oobsize;
+                       }
+               }
+       readdata:
+               /* Partial page read, transfer data into fs buffer */
+               if (!aligned) { 
+                       for (j = col; j < end && read < len; j++)
+                               buf[read++] = data_poi[j];
+                       this->pagebuf = realpage;       
+               } else          
+                       read += mtd->oobblock;
+
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+                       
+               if (read == len)
+                       break;  
+
+               /* For subsequent reads align to page boundary. */
+               col = 0;
+               /* Increment page address */
+               realpage++;
+
+               page = realpage & this->pagemask;
+               /* Check, if we cross a chip boundary */
+               if (!page) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+               /* Check, if the chip supports auto page increment 
+                * or if we have hit a block boundary. 
+               */ 
+               if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+                       sndcmd = 1;                             
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       /*
+        * Return success, if no ECC failures, else -EBADMSG
+        * fs driver will take care of that, because
+        * retlen == desired len and result == -EBADMSG
+        */
+       *retlen = read;
+       return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+       int i, col, page, chipnr;
+       struct nand_chip *this = mtd->priv;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+       /* Shift to get page */
+       page = (int)(from >> this->page_shift);
+       chipnr = (int)(from >> this->chip_shift);
+       
+       /* Mask to get column */
+       col = from & (mtd->oobsize - 1);
+
+       /* Initialize return length value */
+       *retlen = 0;
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+               *retlen = 0;
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd , FL_READING);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Send the read command */
+       this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+       /* 
+        * Read the data, if we read more than one page
+        * oob data, let the device transfer the data !
+        */
+       i = 0;
+       while (i < len) {
+               int thislen = mtd->oobsize - col;
+               thislen = min_t(int, thislen, len);
+               this->read_buf(mtd, &buf[i], thislen);
+               i += thislen;
+               
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+
+               /* Read more ? */
+               if (i < len) {
+                       page++;
+                       col = 0;
+
+                       /* Check, if we cross a chip boundary */
+                       if (!(page & this->pagemask)) {
+                               chipnr++;
+                               this->select_chip(mtd, -1);
+                               this->select_chip(mtd, chipnr);
+                       }
+                               
+                       /* Check, if the chip supports auto page increment 
+                        * or if we have hit a block boundary. 
+                       */ 
+                       if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+                               /* For subsequent page reads set offset to 0 */
+                               this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+                       }
+               }
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       /* Return happy */
+       *retlen = len;
+       return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @ooblen:    number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+       struct nand_chip *this = mtd->priv;
+       int page = (int) (from >> this->page_shift);
+       int chip = (int) (from >> this->chip_shift);
+       int sndcmd = 1;
+       int cnt = 0;
+       int pagesize = mtd->oobblock + mtd->oobsize;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd , FL_READING);
+
+       this->select_chip (mtd, chip);
+       
+       /* Add requested oob length */
+       len += ooblen;
+       
+       while (len) {
+               if (sndcmd)
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+               sndcmd = 0;     
+
+               this->read_buf (mtd, &buf[cnt], pagesize);
+
+               len -= pagesize;
+               cnt += pagesize;
+               page++;
+               
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+                       
+               /* Check, if the chip supports auto page increment */ 
+               if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+                       sndcmd = 1;
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+       return 0;
+}
+
+
+/** 
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer 
+ * @mtd:       MTD device structure
+ * @fsbuf:     buffer given by fs driver
+ * @oobsel:    out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages:  number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ *    return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ *    buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ *    put data from fs buffer into internal buffer and
+ *    retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+               int autoplace, int numpages)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, len, ofs;
+
+       /* Zero copy fs supplied buffer */
+       if (fsbuf && !autoplace) 
+               return fsbuf;
+
+       /* Check, if the buffer must be filled with ff again */
+       if (this->oobdirty) {   
+               memset (this->oob_buf, 0xff, 
+                       mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+               this->oobdirty = 0;
+       }       
+       
+       /* If we have no autoplacement or no fs buffer use the internal one */
+       if (!autoplace || !fsbuf)
+               return this->oob_buf;
+       
+       /* Walk through the pages and place the data */
+       this->oobdirty = 1;
+       ofs = 0;
+       while (numpages--) {
+               for (i = 0, len = 0; len < mtd->oobavail; i++) {
+                       int to = ofs + oobsel->oobfree[i][0];
+                       int num = oobsel->oobfree[i][1];
+                       memcpy (&this->oob_buf[to], fsbuf, num);
+                       len += num;
+                       fsbuf += num;
+               }
+               ofs += mtd->oobavail;
+       }
+       return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+       return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+                          
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ * @eccbuf:    filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+       int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+       int autoplace = 0, numpages, totalpages;
+       struct nand_chip *this = mtd->priv;
+       u_char *oobbuf, *bufstart;
+       int     ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+       /* Initialize retlen, in case of early exit */
+       *retlen = 0;
+
+       /* Do not allow write past end of device */
+       if ((to + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+               return -EINVAL;
+       }
+
+       /* reject writes, which are not page aligned */ 
+       if (NOTALIGNED (to) || NOTALIGNED(len)) {
+               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd, FL_WRITING);
+
+       /* Calculate chipnr */
+       chipnr = (int)(to >> this->chip_shift);
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+
+       /* if oobsel is NULL, use chip defaults */
+       if (oobsel == NULL) 
+               oobsel = &mtd->oobinfo;         
+               
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+               oobsel = this->autooob;
+               autoplace = 1;
+       }       
+       if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+               autoplace = 1;
+
+       /* Setup variables and oob buffer */
+       totalpages = len >> this->page_shift;
+       page = (int) (to >> this->page_shift);
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page <= this->pagebuf && this->pagebuf < (page + totalpages))  
+               this->pagebuf = -1;
+       
+       /* Set it relative to chip */
+       page &= this->pagemask;
+       startpage = page;
+       /* Calc number of pages we can write in one go */
+       numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages);
+       oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+       bufstart = (u_char *)buf;
+
+       /* Loop until all data is written */
+       while (written < len) {
+
+               this->data_poi = (u_char*) &buf[written];
+               /* Write one page. If this is the last page to write
+                * or the last page in this block, then use the
+                * real pageprogram command, else select cached programming
+                * if supported by the chip.
+                */
+               ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+               if (ret) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+                       goto out;
+               }       
+               /* Next oob page */
+               oob += mtd->oobsize;
+               /* Update written bytes count */
+               written += mtd->oobblock;
+               if (written == len) 
+                       goto cmp;
+               
+               /* Increment page address */
+               page++;
+
+               /* Have we hit a block boundary ? Then we have to verify and
+                * if verify is ok, we have to setup the oob buffer for
+                * the next pages.
+               */
+               if (!(page & (ppblock - 1))){
+                       int ofs;
+                       this->data_poi = bufstart;
+                       ret = nand_verify_pages (mtd, this, startpage, 
+                               page - startpage,
+                               oobbuf, oobsel, chipnr, (eccbuf != NULL));
+                       if (ret) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+                               goto out;
+                       }       
+                       *retlen = written;
+
+                       ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+                       if (eccbuf)
+                               eccbuf += (page - startpage) * ofs;
+                       totalpages -= page - startpage;
+                       numpages = min (totalpages, ppblock);
+                       page &= this->pagemask;
+                       startpage = page;
+                       oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, 
+                                       autoplace, numpages);
+                       /* Check, if we cross a chip boundary */
+                       if (!page) {
+                               chipnr++;
+                               this->select_chip(mtd, -1);
+                               this->select_chip(mtd, chipnr);
+                       }
+               }
+       }
+       /* Verify the remaining pages */
+cmp:
+       this->data_poi = bufstart;
+       ret = nand_verify_pages (mtd, this, startpage, totalpages,
+               oobbuf, oobsel, chipnr, (eccbuf != NULL));
+       if (!ret)
+               *retlen = written;
+       else    
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+       int column, page, status, ret = -EIO, chipnr;
+       struct nand_chip *this = mtd->priv;
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+       /* Shift to get page */
+       page = (int) (to >> this->page_shift);
+       chipnr = (int) (to >> this->chip_shift);
+
+       /* Mask to get column */
+       column = to & (mtd->oobsize - 1);
+
+       /* Initialize return length value */
+       *retlen = 0;
+
+       /* Do not allow write past end of page */
+       if ((column + len) > mtd->oobsize) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd, FL_WRITING);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+          in one of my DiskOnChip 2000 test units) will clear the whole
+          data page too if we don't do this. I have no clue why, but
+          I seem to have 'fixed' it in the doc2000 driver in
+          August 1999.  dwmw2. */
+       this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+       
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page == this->pagebuf)
+               this->pagebuf = -1;
+
+       if (NAND_MUST_PAD(this)) {
+               /* Write out desired data */
+               this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+               /* prepad 0xff for partial programming */
+               this->write_buf(mtd, ffchars, column);
+               /* write data */
+               this->write_buf(mtd, buf, len);
+               /* postpad 0xff for partial programming */
+               this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+       } else {
+               /* Write out desired data */
+               this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+               /* write data */
+               this->write_buf(mtd, buf, len);
+       }
+       /* Send command to program the OOB data */
+       this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+       status = this->waitfunc (mtd, this, FL_WRITING);
+
+       /* See if device thinks it succeeded */
+       if (status & 0x01) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+               ret = -EIO;
+               goto out;
+       }
+       /* Return happy */
+       *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+       /* Send command to read back the data */
+       this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+       if (this->verify_buf(mtd, buf, len)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+               ret = -EIO;
+               goto out;
+       }
+#endif
+       ret = 0;
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       return ret;
+}
+
+/* XXX U-BOOT XXX */
+#if 0
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd:       MTD device structure
+ * @vecs:      the iovectors to write
+ * @count:     number of vectors
+ * @to:                offset to write to
+ * @retlen:    pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+               loff_t to, size_t * retlen)
+{
+       return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));    
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd:       MTD device structure
+ * @vecs:      the iovectors to write
+ * @count:     number of vectors
+ * @to:                offset to write to
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @eccbuf:    filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+               loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+       int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+       int oob, numpages, autoplace = 0, startpage;
+       struct nand_chip *this = mtd->priv;
+       int     ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+       u_char *oobbuf, *bufstart;
+
+       /* Preset written len for early exit */
+       *retlen = 0;
+
+       /* Calculate total length of data */
+       total_len = 0;
+       for (i = 0; i < count; i++)
+               total_len += (int) vecs[i].iov_len;
+
+       DEBUG (MTD_DEBUG_LEVEL3,
+              "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+       /* Do not allow write past end of page */
+       if ((to + total_len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+               return -EINVAL;
+       }
+
+       /* reject writes, which are not page aligned */ 
+       if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd, FL_WRITING);
+
+       /* Get the current chip-nr */
+       chipnr = (int) (to >> this->chip_shift);
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+
+       /* if oobsel is NULL, use chip defaults */
+       if (oobsel == NULL) 
+               oobsel = &mtd->oobinfo;         
+
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+               oobsel = this->autooob;
+               autoplace = 1;
+       }       
+       if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+               autoplace = 1;
+
+       /* Setup start page */
+       page = (int) (to >> this->page_shift);
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))  
+               this->pagebuf = -1;
+
+       startpage = page & this->pagemask;
+
+       /* Loop until all kvec' data has been written */
+       len = 0;
+       while (count) {
+               /* If the given tuple is >= pagesize then
+                * write it out from the iov
+                */
+               if ((vecs->iov_len - len) >= mtd->oobblock) {
+                       /* Calc number of pages we can write
+                        * out of this iov in one go */
+                       numpages = (vecs->iov_len - len) >> this->page_shift;
+                       /* Do not cross block boundaries */
+                       numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+                       oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+                       bufstart = (u_char *)vecs->iov_base;
+                       bufstart += len;
+                       this->data_poi = bufstart;
+                       oob = 0;
+                       for (i = 1; i <= numpages; i++) {
+                               /* Write one page. If this is the last page to write
+                                * then use the real pageprogram command, else select 
+                                * cached programming if supported by the chip.
+                                */
+                               ret = nand_write_page (mtd, this, page & this->pagemask, 
+                                       &oobbuf[oob], oobsel, i != numpages);
+                               if (ret)
+                                       goto out;
+                               this->data_poi += mtd->oobblock;
+                               len += mtd->oobblock;
+                               oob += mtd->oobsize;
+                               page++;
+                       }
+                       /* Check, if we have to switch to the next tuple */
+                       if (len >= (int) vecs->iov_len) {
+                               vecs++;
+                               len = 0;
+                               count--;
+                       }
+               } else {
+                       /* We must use the internal buffer, read data out of each 
+                        * tuple until we have a full page to write
+                        */
+                       int cnt = 0;
+                       while (cnt < mtd->oobblock) {
+                               if (vecs->iov_base != NULL && vecs->iov_len) 
+                                       this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+                               /* Check, if we have to switch to the next tuple */
+                               if (len >= (int) vecs->iov_len) {
+                                       vecs++;
+                                       len = 0;
+                                       count--;
+                               }
+                       }
+                       this->pagebuf = page;   
+                       this->data_poi = this->data_buf;        
+                       bufstart = this->data_poi;
+                       numpages = 1;           
+                       oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+                       ret = nand_write_page (mtd, this, page & this->pagemask,
+                               oobbuf, oobsel, 0);
+                       if (ret)
+                               goto out;
+                       page++;
+               }
+
+               this->data_poi = bufstart;
+               ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+               if (ret)
+                       goto out;
+                       
+               written += mtd->oobblock * numpages;
+               /* All done ? */
+               if (!count)
+                       break;
+
+               startpage = page & this->pagemask;
+               /* Check, if we cross a chip boundary */
+               if (!startpage) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+       }
+       ret = 0;
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       *retlen = written;
+       return ret;
+}
+#endif
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd:       MTD device structure
+ * @page:      the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Send commands to erase a block */
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+       this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd:       MTD device structure
+ * @page:      the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Send commands to erase a block */
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+       this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd:       MTD device structure
+ * @instr:     erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+       return nand_erase_nand (mtd, instr, 0);
+}
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd:       MTD device structure
+ * @instr:     erase instruction
+ * @allowbbt:  allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+       int page, len, status, pages_per_block, ret, chipnr;
+       struct nand_chip *this = mtd->priv;
+
+       DEBUG (MTD_DEBUG_LEVEL3,
+              "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+       /* Start address must align on block boundary */
+       if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+               return -EINVAL;
+       }
+
+       /* Length must align on block boundary */
+       if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+               return -EINVAL;
+       }
+
+       /* Do not allow erase past end of device */
+       if ((instr->len + instr->addr) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+               return -EINVAL;
+       }
+
+       instr->fail_addr = 0xffffffff;
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd, FL_ERASING);
+
+       /* Shift to get first page */
+       page = (int) (instr->addr >> this->page_shift);
+       chipnr = (int) (instr->addr >> this->chip_shift);
+
+       /* Calculate pages in each block */
+       pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check the WP bit */
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+               instr->state = MTD_ERASE_FAILED;
+               goto erase_exit;
+       }
+
+       /* Loop through the pages */
+       len = instr->len;
+
+       instr->state = MTD_ERASING;
+
+       while (len) {
+               /* Check if we have a bad block, we do not erase bad blocks ! */
+               if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+                       printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+                       instr->state = MTD_ERASE_FAILED;
+                       goto erase_exit;
+               }
+               
+               /* Invalidate the page cache, if we erase the block which contains 
+                  the current cached page */
+               if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+                       this->pagebuf = -1;
+
+               this->erase_cmd (mtd, page & this->pagemask);
+               
+               status = this->waitfunc (mtd, this, FL_ERASING);
+
+               /* See if block erase succeeded */
+               if (status & 0x01) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+                       instr->state = MTD_ERASE_FAILED;
+                       instr->fail_addr = (page << this->page_shift);
+                       goto erase_exit;
+               }
+               
+               /* Increment page address and decrement length */
+               len -= (1 << this->phys_erase_shift);
+               page += pages_per_block;
+
+               /* Check, if we cross a chip boundary */
+               if (len && !(page & this->pagemask)) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+       }
+       instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+       ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+       /* Do call back function */
+       if (!ret)
+               mtd_erase_callback(instr);
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_device(mtd);
+
+       /* Return more or less happy */
+       return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd:       MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+       /* Grab the lock and see if the device is available */
+       nand_get_device (this, mtd, FL_SYNCING);
+       /* Release it and go back */
+       nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+       /* Check for invalid offset */
+       if (ofs > mtd->size) 
+               return -EINVAL;
+       
+       return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+       struct nand_chip *this = mtd->priv;
+       int ret;
+
+        if ((ret = nand_block_isbad(mtd, ofs))) {
+               /* If it was bad already, return success and do nothing. */
+               if (ret > 0)
+                       return 0;
+               return ret;
+        }
+
+       return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd:       MTD device structure
+ * @maxchips:  Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+       int i, j, nand_maf_id, nand_dev_id, busw;
+       struct nand_chip *this = mtd->priv;
+
+       /* Get buswidth to select the correct functions*/
+       busw = this->options & NAND_BUSWIDTH_16;
+
+       /* check for proper chip_delay setup, set 20us if not */
+       if (!this->chip_delay)
+               this->chip_delay = 20;
+
+       /* check, if a user supplied command function given */
+       if (this->cmdfunc == NULL)
+               this->cmdfunc = nand_command;
+
+       /* check, if a user supplied wait function given */
+       if (this->waitfunc == NULL)
+               this->waitfunc = nand_wait;
+
+       if (!this->select_chip)
+               this->select_chip = nand_select_chip;
+       if (!this->write_byte)
+               this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+       if (!this->read_byte)
+               this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+       if (!this->write_word)
+               this->write_word = nand_write_word;
+       if (!this->read_word)
+               this->read_word = nand_read_word;
+       if (!this->block_bad)
+               this->block_bad = nand_block_bad;
+       if (!this->block_markbad)
+               this->block_markbad = nand_default_block_markbad;
+       if (!this->write_buf)
+               this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+       if (!this->read_buf)
+               this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+       if (!this->verify_buf)
+               this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+       if (!this->scan_bbt)
+               this->scan_bbt = nand_default_bbt;
+
+       /* Select the device */
+       this->select_chip(mtd, 0);
+
+       /* Send the command for reading device ID */
+       this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+       /* Read manufacturer and device IDs */
+       nand_maf_id = this->read_byte(mtd);
+       nand_dev_id = this->read_byte(mtd);
+
+       /* Print and store flash device information */
+       for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+                               
+               if (nand_dev_id != nand_flash_ids[i].id) 
+                       continue;
+
+               if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+               this->chipsize = nand_flash_ids[i].chipsize << 20;
+               
+               /* New devices have all the information in additional id bytes */
+               if (!nand_flash_ids[i].pagesize) {
+                       int extid;
+                       /* The 3rd id byte contains non relevant data ATM */
+                       extid = this->read_byte(mtd);
+                       /* The 4th id byte is the important one */
+                       extid = this->read_byte(mtd);
+                       /* Calc pagesize */
+                       mtd->oobblock = 1024 << (extid & 0x3);
+                       extid >>= 2;
+                       /* Calc oobsize */
+                       mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+                       extid >>= 2;
+                       /* Calc blocksize. Blocksize is multiples of 64KiB */
+                       mtd->erasesize = (64 * 1024)  << (extid & 0x03);
+                       extid >>= 2;
+                       /* Get buswidth information */
+                       busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+               
+               } else {
+                       /* Old devices have this data hardcoded in the
+                        * device id table */
+                       mtd->erasesize = nand_flash_ids[i].erasesize;
+                       mtd->oobblock = nand_flash_ids[i].pagesize;
+                       mtd->oobsize = mtd->oobblock / 32;
+                       busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+               }
+
+               /* Check, if buswidth is correct. Hardware drivers should set
+                * this correct ! */
+               if (busw != (this->options & NAND_BUSWIDTH_16)) {
+                       printk (KERN_INFO "NAND device: Manufacturer ID:"
+                               " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+                               nand_manuf_ids[i].name , mtd->name);
+                       printk (KERN_WARNING 
+                               "NAND bus width %d instead %d bit\n", 
+                                       (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+                                       busw ? 16 : 8);
+                       this->select_chip(mtd, -1);
+                       return 1;       
+               }
+               
+               /* Calculate the address shift from the page size */    
+               this->page_shift = ffs(mtd->oobblock) - 1;
+               this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+               this->chip_shift = ffs(this->chipsize) - 1;
+
+               /* Set the bad block position */
+               this->badblockpos = mtd->oobblock > 512 ? 
+                       NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+               /* Get chip options, preserve non chip based options */
+               this->options &= ~NAND_CHIPOPTIONS_MSK;
+               this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+               /* Set this as a default. Board drivers can override it, if neccecary */
+               this->options |= NAND_NO_AUTOINCR;
+               /* Check if this is a not a samsung device. Do not clear the options
+                * for chips which are not having an extended id.
+                */     
+               if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+                       this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+               
+               /* Check for AND chips with 4 page planes */
+               if (this->options & NAND_4PAGE_ARRAY)
+                       this->erase_cmd = multi_erase_cmd;
+               else
+                       this->erase_cmd = single_erase_cmd;
+
+               /* Do not replace user supplied command function ! */
+               if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+                       this->cmdfunc = nand_command_lp;
+                               
+               /* Try to identify manufacturer */
+               for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+                       if (nand_manuf_ids[j].id == nand_maf_id)
+                               break;
+               }
+               printk (KERN_INFO "NAND device: Manufacturer ID:"
+                       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+                       nand_manuf_ids[j].name , nand_flash_ids[i].name);
+               break;
+       }
+
+       if (!nand_flash_ids[i].name) {
+               printk (KERN_WARNING "No NAND device found!!!\n");
+               this->select_chip(mtd, -1);
+               return 1;
+       }
+
+       for (i=1; i < maxchips; i++) {
+               this->select_chip(mtd, i);
+
+               /* Send the command for reading device ID */
+               this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+               /* Read manufacturer and device IDs */
+               if (nand_maf_id != this->read_byte(mtd) ||
+                   nand_dev_id != this->read_byte(mtd))
+                       break;
+       }
+       if (i > 1)
+               printk(KERN_INFO "%d NAND chips detected\n", i);
+       
+       /* Allocate buffers, if neccecary */
+       if (!this->oob_buf) {
+               size_t len;
+               len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+               this->oob_buf = kmalloc (len, GFP_KERNEL);
+               if (!this->oob_buf) {
+                       printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+                       return -ENOMEM;
+               }
+               this->options |= NAND_OOBBUF_ALLOC;
+       }
+       
+       if (!this->data_buf) {
+               size_t len;
+               len = mtd->oobblock + mtd->oobsize;
+               this->data_buf = kmalloc (len, GFP_KERNEL);
+               if (!this->data_buf) {
+                       if (this->options & NAND_OOBBUF_ALLOC)
+                               kfree (this->oob_buf);
+                       printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+                       return -ENOMEM;
+               }
+               this->options |= NAND_DATABUF_ALLOC;
+       }
+
+       /* Store the number of chips and calc total size for mtd */
+       this->numchips = i;
+       mtd->size = i * this->chipsize;
+       /* Convert chipsize to number of pages per chip -1. */
+       this->pagemask = (this->chipsize >> this->page_shift) - 1;
+       /* Preset the internal oob buffer */
+       memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+       /* If no default placement scheme is given, select an
+        * appropriate one */
+       if (!this->autooob) {
+               /* Select the appropriate default oob placement scheme for
+                * placement agnostic filesystems */
+               switch (mtd->oobsize) { 
+               case 8:
+                       this->autooob = &nand_oob_8;
+                       break;
+               case 16:
+                       this->autooob = &nand_oob_16;
+                       break;
+               case 64:
+                       this->autooob = &nand_oob_64;
+                       break;
+               default:
+                       printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+                               mtd->oobsize);
+/*                     BUG(); */
+               }
+       }
+       
+       /* The number of bytes available for the filesystem to place fs dependend
+        * oob data */
+       if (this->options & NAND_BUSWIDTH_16) {
+               mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+               if (this->autooob->eccbytes & 0x01)
+                       mtd->oobavail--;
+       } else
+               mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+       /* 
+        * check ECC mode, default to software
+        * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+        * fallback to software ECC 
+       */
+       this->eccsize = 256;    /* set default eccsize */       
+       this->eccbytes = 3;
+
+       switch (this->eccmode) {
+       case NAND_ECC_HW12_2048:
+               if (mtd->oobblock < 2048) {
+                       printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+                              mtd->oobblock);
+                       this->eccmode = NAND_ECC_SOFT;
+                       this->calculate_ecc = nand_calculate_ecc;
+                       this->correct_data = nand_correct_data;
+               } else
+                       this->eccsize = 2048;
+               break;
+
+       case NAND_ECC_HW3_512: 
+       case NAND_ECC_HW6_512: 
+       case NAND_ECC_HW8_512: 
+               if (mtd->oobblock == 256) {
+                       printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+                       this->eccmode = NAND_ECC_SOFT;
+                       this->calculate_ecc = nand_calculate_ecc;
+                       this->correct_data = nand_correct_data;
+               } else 
+                       this->eccsize = 512; /* set eccsize to 512 */
+               break;
+                       
+       case NAND_ECC_HW3_256:
+               break;
+               
+       case NAND_ECC_NONE: 
+               printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+               this->eccmode = NAND_ECC_NONE;
+               break;
+
+       case NAND_ECC_SOFT:     
+               this->calculate_ecc = nand_calculate_ecc;
+               this->correct_data = nand_correct_data;
+               break;
+
+       default:
+               printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+/*             BUG(); */
+       }       
+
+       /* Check hardware ecc function availability and adjust number of ecc bytes per 
+        * calculation step
+       */
+       switch (this->eccmode) {
+       case NAND_ECC_HW12_2048:
+               this->eccbytes += 4;
+       case NAND_ECC_HW8_512: 
+               this->eccbytes += 2;
+       case NAND_ECC_HW6_512: 
+               this->eccbytes += 3;
+       case NAND_ECC_HW3_512: 
+       case NAND_ECC_HW3_256:
+               if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+                       break;
+               printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+/*             BUG();  */
+       }
+               
+       mtd->eccsize = this->eccsize;
+       
+       /* Set the number of read / write steps for one page to ensure ECC generation */
+       switch (this->eccmode) {
+       case NAND_ECC_HW12_2048:
+               this->eccsteps = mtd->oobblock / 2048;
+               break;
+       case NAND_ECC_HW3_512:
+       case NAND_ECC_HW6_512:
+       case NAND_ECC_HW8_512:
+               this->eccsteps = mtd->oobblock / 512;
+               break;
+       case NAND_ECC_HW3_256:
+       case NAND_ECC_SOFT:     
+               this->eccsteps = mtd->oobblock / 256;
+               break;
+               
+       case NAND_ECC_NONE: 
+               this->eccsteps = 1;
+               break;
+       }
+
+/* XXX U-BOOT XXX */
+#if 0  
+       /* Initialize state, waitqueue and spinlock */
+       this->state = FL_READY;
+       init_waitqueue_head (&this->wq);
+       spin_lock_init (&this->chip_lock);
+#endif
+
+       /* De-select the device */
+       this->select_chip(mtd, -1);
+
+       /* Invalidate the pagebuffer reference */
+       this->pagebuf = -1;
+
+       /* Fill in remaining MTD driver data */
+       mtd->type = MTD_NANDFLASH;
+       mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+       mtd->ecctype = MTD_ECC_SW;
+       mtd->erase = nand_erase;
+       mtd->point = NULL;
+       mtd->unpoint = NULL;
+       mtd->read = nand_read;
+       mtd->write = nand_write;
+       mtd->read_ecc = nand_read_ecc;
+       mtd->write_ecc = nand_write_ecc;
+       mtd->read_oob = nand_read_oob;
+       mtd->write_oob = nand_write_oob;
+/* XXX U-BOOT XXX */
+#if 0
+       mtd->readv = NULL;
+       mtd->writev = nand_writev;
+       mtd->writev_ecc = nand_writev_ecc;
+#endif
+       mtd->sync = nand_sync;
+/* XXX U-BOOT XXX */
+#if 0
+       mtd->lock = NULL;
+       mtd->unlock = NULL;
+       mtd->suspend = NULL;
+       mtd->resume = NULL;
+#endif
+       mtd->block_isbad = nand_block_isbad;
+       mtd->block_markbad = nand_block_markbad;
+
+       /* and make the autooob the default one */
+       memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+/* XXX U-BOOT XXX */
+#if 0
+       mtd->owner = THIS_MODULE;
+#endif
+       /* Build bad block table */
+       return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device 
+ * @mtd:       MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+       /* Deregister partitions */
+       del_mtd_partitions (mtd);
+#endif
+       /* Deregister the device */
+/* XXX U-BOOT XXX */
+#if 0
+       del_mtd_device (mtd);
+#endif
+       /* Free bad block table memory, if allocated */
+       if (this->bbt)
+               kfree (this->bbt);
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_OOBBUF_ALLOC)
+               kfree (this->oob_buf);
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_DATABUF_ALLOC)
+               kfree (this->data_buf);
+}
+
+#endif
diff --git a/drivers/nand/nand_bbt.c b/drivers/nand/nand_bbt.c
new file mode 100644 (file)
index 0000000..6f7e05b
--- /dev/null
@@ -0,0 +1,1056 @@
+/*
+ *  drivers/mtd/nand_bbt.c
+ *
+ *  Overview:
+ *   Bad block table support for the NAND driver
+ *   
+ *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table 
+ * depending on the options in the bbt descriptor(s). If a bbt is found 
+ * then the contents are read and the memory based bbt is created. If a 
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number 
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created. 
+ * If no bbt exists at all then the device is scanned for factory marked 
+ * good / bad blocks and the bad block tables are created. 
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices 
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks 
+ * of the device. The table is mirrored, so it can be updated eventually. 
+ * The table is marked in the oob area with an ident pattern and a version 
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b:        block is good
+ * 00b:        block is factory marked bad
+ * 01b, 10b:   block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b:                block is good
+ * 01b:                block is marked bad due to wear
+ * 10b:                block is reserved (to protect the bbt area)
+ * 11b:                block is factory marked bad
+ * 
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ * 
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+#include <asm/errno.h>
+
+/** 
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf:       the buffer to search
+ * @len:       the length of buffer to search
+ * @paglen:    the pagelength
+ * @td:                search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+       int i, end;
+       uint8_t *p = buf;
+
+       end = paglen + td->offs;
+       if (td->options & NAND_BBT_SCANEMPTY) {
+               for (i = 0; i < end; i++) {
+                       if (p[i] != 0xff)
+                               return -1;
+               }
+       }       
+       p += end;
+       
+       /* Compare the pattern */
+       for (i = 0; i < td->len; i++) {
+               if (p[i] != td->pattern[i])
+                       return -1;
+       }
+
+       p += td->len;
+       end += td->len;
+       if (td->options & NAND_BBT_SCANEMPTY) {
+               for (i = end; i < len; i++) {
+                       if (*p++ != 0xff)
+                               return -1;
+               }
+       }
+       return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @page:      the starting page
+ * @num:       the number of bbt descriptors to read
+ * @bits:      number of bits per block
+ * @offs:      offset in the memory table
+ * @reserved_block_code:       Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, 
+       int bits, int offs, int reserved_block_code)
+{
+       int res, i, j, act = 0;
+       struct nand_chip *this = mtd->priv;
+       size_t retlen, len, totlen;
+       loff_t from;
+       uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+       totlen = (num * bits) >> 3;
+       from = ((loff_t)page) << this->page_shift;
+       
+       while (totlen) {
+               len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+               res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+               if (res < 0) {
+                       if (retlen != len) {
+                               printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+                               return res;
+                       }
+                       printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+               }       
+
+               /* Analyse data */
+               for (i = 0; i < len; i++) {
+                       uint8_t dat = buf[i];
+                       for (j = 0; j < 8; j += bits, act += 2) {
+                               uint8_t tmp = (dat >> j) & msk;
+                               if (tmp == msk)
+                                       continue;
+                               if (reserved_block_code &&
+                                   (tmp == reserved_block_code)) {
+                                       printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+                                               ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+                                       this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+                                       continue;
+                               }
+                               /* Leave it for now, if its matured we can move this
+                                * message to MTD_DEBUG_LEVEL0 */
+                               printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+                                       ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+                               /* Factory marked bad or worn out ? */  
+                               if (tmp == 0)
+                                       this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+                               else
+                                       this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+                       }       
+               }
+               totlen -= len;
+               from += len;
+       }
+       return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @chip:      read the table for a specific chip, -1 read all chips.
+ *             Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       int res = 0, i;
+       int bits;
+
+       bits = td->options & NAND_BBT_NRBITS_MSK;
+       if (td->options & NAND_BBT_PERCHIP) {
+               int offs = 0;
+               for (i = 0; i < this->numchips; i++) {
+                       if (chip == -1 || chip == i)
+                               res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+                       if (res)
+                               return res;
+                       offs += this->chipsize >> (this->bbt_erase_shift + 2);
+               }
+       } else {
+               res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+               if (res)
+                       return res;
+       }
+       return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+       struct nand_bbt_descr *md)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* Read the primary version, if available */    
+       if (td->options & NAND_BBT_VERSION) {
+               nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+               td->version[0] = buf[mtd->oobblock + td->veroffs];
+               printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+       }
+
+       /* Read the mirror version, if available */     
+       if (md && (md->options & NAND_BBT_VERSION)) {
+               nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+               md->version[0] = buf[mtd->oobblock + md->veroffs];
+               printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+       }
+
+       return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @bd:                descriptor for the good/bad block search pattern
+ * @chip:      create the table for a specific chip, -1 read all chips.
+ *             Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, j, numblocks, len, scanlen;
+       int startblock;
+       loff_t from;
+       size_t readlen, ooblen;
+
+       printk (KERN_INFO "Scanning device for bad blocks\n");
+
+       if (bd->options & NAND_BBT_SCANALLPAGES)
+               len = 1 << (this->bbt_erase_shift - this->page_shift);
+       else {
+               if (bd->options & NAND_BBT_SCAN2NDPAGE)
+                       len = 2;
+               else    
+                       len = 1;
+       }
+       scanlen = mtd->oobblock + mtd->oobsize;
+       readlen = len * mtd->oobblock;
+       ooblen = len * mtd->oobsize;
+
+       if (chip == -1) {
+               /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+                * makes shifting and masking less painful */
+               numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+               startblock = 0;
+               from = 0;
+       } else {
+               if (chip >= this->numchips) {
+                       printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+                               chip + 1, this->numchips);
+                       return; 
+               }
+               numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+               startblock = chip * numblocks;
+               numblocks += startblock;
+               from = startblock << (this->bbt_erase_shift - 1);
+       }
+       
+       for (i = startblock; i < numblocks;) {
+               nand_read_raw (mtd, buf, from, readlen, ooblen);
+               for (j = 0; j < len; j++) {
+                       if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+                               this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+                               printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n", 
+                                       i >> 1, (unsigned int) from);
+                               break;
+                       }
+               }
+               i += 2;
+               from += (1 << this->bbt_erase_shift);
+       }
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of 
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched 
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page 
+ * in a block. 
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, chips;
+       int bits, startblock, block, dir;
+       int scanlen = mtd->oobblock + mtd->oobsize;
+       int bbtblocks;
+
+       /* Search direction top -> down ? */
+       if (td->options & NAND_BBT_LASTBLOCK) {
+               startblock = (mtd->size >> this->bbt_erase_shift) -1;
+               dir = -1;
+       } else {
+               startblock = 0; 
+               dir = 1;
+       }       
+       
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chips = this->numchips;
+               bbtblocks = this->chipsize >> this->bbt_erase_shift;
+               startblock &= bbtblocks - 1;
+       } else {
+               chips = 1;
+               bbtblocks = mtd->size >> this->bbt_erase_shift;
+       }
+       
+       /* Number of bits for each erase block in the bbt */
+       bits = td->options & NAND_BBT_NRBITS_MSK;
+       
+       for (i = 0; i < chips; i++) {
+               /* Reset version information */
+               td->version[i] = 0;     
+               td->pages[i] = -1;
+               /* Scan the maximum number of blocks */
+               for (block = 0; block < td->maxblocks; block++) {
+                       int actblock = startblock + dir * block;
+                       /* Read first page */
+                       nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); 
+                       if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+                               td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+                               if (td->options & NAND_BBT_VERSION) {
+                                       td->version[i] = buf[mtd->oobblock + td->veroffs];
+                               }
+                               break;
+                       }
+               }
+               startblock += this->chipsize >> this->bbt_erase_shift;
+       }
+       /* Check, if we found a bbt for each requested chip */
+       for (i = 0; i < chips; i++) {
+               if (td->pages[i] == -1)
+                       printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+               else
+                       printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+       }
+       return 0;       
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, 
+       struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+       /* Search the primary table */
+       search_bbt (mtd, buf, td);
+               
+       /* Search the mirror table */
+       if (md)
+               search_bbt (mtd, buf, md);
+       
+       /* Force result check */
+       return 1;       
+}
+       
+
+/** 
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ * @chipsel:   selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf, 
+       struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+       struct nand_chip *this = mtd->priv;
+       struct nand_oobinfo oobinfo;
+       struct erase_info einfo;
+       int i, j, res, chip = 0;
+       int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+       int nrchips, bbtoffs, pageoffs;
+       uint8_t msk[4];
+       uint8_t rcode = td->reserved_block_code;
+       size_t retlen, len = 0;
+       loff_t to;
+
+       if (!rcode)
+               rcode = 0xff;
+       /* Write bad block table per chip rather than per device ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+               /* Full device write or specific chip ? */      
+               if (chipsel == -1) {
+                       nrchips = this->numchips;
+               } else {
+                       nrchips = chipsel + 1;
+                       chip = chipsel;
+               }
+       } else {
+               numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+               nrchips = 1;
+       }       
+       
+       /* Loop through the chips */
+       for (; chip < nrchips; chip++) {
+               
+               /* There was already a version of the table, reuse the page 
+                * This applies for absolute placement too, as we have the 
+                * page nr. in td->pages.
+                */
+               if (td->pages[chip] != -1) {
+                       page = td->pages[chip];
+                       goto write;
+               }       
+
+               /* Automatic placement of the bad block table */
+               /* Search direction top -> down ? */
+               if (td->options & NAND_BBT_LASTBLOCK) {
+                       startblock = numblocks * (chip + 1) - 1;
+                       dir = -1;
+               } else {
+                       startblock = chip * numblocks;
+                       dir = 1;
+               }       
+
+               for (i = 0; i < td->maxblocks; i++) {
+                       int block = startblock + dir * i;
+                       /* Check, if the block is bad */
+                       switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+                       case 0x01:
+                       case 0x03:
+                               continue;
+                       }
+                       page = block << (this->bbt_erase_shift - this->page_shift);
+                       /* Check, if the block is used by the mirror table */
+                       if (!md || md->pages[chip] != page)
+                               goto write;
+               }
+               printk (KERN_ERR "No space left to write bad block table\n");
+               return -ENOSPC;
+write: 
+
+               /* Set up shift count and masks for the flash table */
+               bits = td->options & NAND_BBT_NRBITS_MSK;
+               switch (bits) {
+               case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+               case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+               case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+               case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+               default: return -EINVAL;
+               }
+               
+               bbtoffs = chip * (numblocks >> 2);
+               
+               to = ((loff_t) page) << this->page_shift;
+
+               memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+               oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+               
+               /* Must we save the block contents ? */
+               if (td->options & NAND_BBT_SAVECONTENT) {
+                       /* Make it block aligned */
+                       to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+                       len = 1 << this->bbt_erase_shift;
+                       res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+                       if (res < 0) {
+                               if (retlen != len) {
+                                       printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+                                       return res;
+                               }
+                               printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+                       }
+                       /* Calc the byte offset in the buffer */
+                       pageoffs = page - (int)(to >> this->page_shift);
+                       offs = pageoffs << this->page_shift;
+                       /* Preset the bbt area with 0xff */
+                       memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+                       /* Preset the bbt's oob area with 0xff */
+                       memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+                               ((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+                       if (td->options & NAND_BBT_VERSION) {
+                               buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+                       }
+               } else {
+                       /* Calc length */
+                       len = (size_t) (numblocks >> sft);
+                       /* Make it page aligned ! */
+                       len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+                       /* Preset the buffer with 0xff */
+                       memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+                       offs = 0;
+                       /* Pattern is located in oob area of first page */
+                       memcpy (&buf[len + td->offs], td->pattern, td->len);
+                       if (td->options & NAND_BBT_VERSION) {
+                               buf[len + td->veroffs] = td->version[chip];
+                       }
+               }
+       
+               /* walk through the memory table */
+               for (i = 0; i < numblocks; ) {
+                       uint8_t dat;
+                       dat = this->bbt[bbtoffs + (i >> 2)];
+                       for (j = 0; j < 4; j++ , i++) {
+                               int sftcnt = (i << (3 - sft)) & sftmsk;
+                               /* Do not store the reserved bbt blocks ! */
+                               buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+                               dat >>= 2;
+                       }
+               }
+               
+               memset (&einfo, 0, sizeof (einfo));
+               einfo.mtd = mtd;
+               einfo.addr = (unsigned long) to;
+               einfo.len = 1 << this->bbt_erase_shift;
+               res = nand_erase_nand (mtd, &einfo, 1);
+               if (res < 0) {
+                       printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+                       return res;
+               }
+       
+               res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+               if (res < 0) {
+                       printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+                       return res;
+               }
+               printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", 
+                       (unsigned int) to, td->version[chip]);
+       
+               /* Mark it as used */
+               td->pages[chip] = page;
+       }       
+       return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd:       MTD device structure
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device 
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* Ensure that we only scan for the pattern and nothing else */
+       bd->options = 0;
+       create_bbt (mtd, this->data_buf, bd, -1);
+       return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+       int i, chips, writeops, chipsel, res;
+       struct nand_chip *this = mtd->priv;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+       struct nand_bbt_descr *rd, *rd2;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) 
+               chips = this->numchips;
+       else 
+               chips = 1;
+       
+       for (i = 0; i < chips; i++) {
+               writeops = 0;
+               rd = NULL;
+               rd2 = NULL;
+               /* Per chip or per device ? */
+               chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+               /* Mirrored table avilable ? */
+               if (md) {
+                       if (td->pages[i] == -1 && md->pages[i] == -1) {
+                               writeops = 0x03;
+                               goto create;
+                       }
+
+                       if (td->pages[i] == -1) {
+                               rd = md;                                
+                               td->version[i] = md->version[i];
+                               writeops = 1;
+                               goto writecheck;
+                       }
+
+                       if (md->pages[i] == -1) {
+                               rd = td;
+                               md->version[i] = td->version[i];
+                               writeops = 2;
+                               goto writecheck;
+                       }
+
+                       if (td->version[i] == md->version[i]) {
+                               rd = td;
+                               if (!(td->options & NAND_BBT_VERSION))
+                                       rd2 = md;
+                               goto writecheck;
+                       }       
+
+                       if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+                               rd = td;
+                               md->version[i] = td->version[i];
+                               writeops = 2;
+                       } else {
+                               rd = md;
+                               td->version[i] = md->version[i];
+                               writeops = 1;
+                       }
+
+                       goto writecheck;
+
+               } else {
+                       if (td->pages[i] == -1) {
+                               writeops = 0x01;
+                               goto create;
+                       }
+                       rd = td;
+                       goto writecheck;
+               }
+create:
+               /* Create the bad block table by scanning the device ? */
+               if (!(td->options & NAND_BBT_CREATE))
+                       continue;       
+               
+               /* Create the table in memory by scanning the chip(s) */
+               create_bbt (mtd, buf, bd, chipsel);
+               
+               td->version[i] = 1;
+               if (md)
+                       md->version[i] = 1;     
+writecheck:    
+               /* read back first ? */
+               if (rd)
+                       read_abs_bbt (mtd, buf, rd, chipsel);
+               /* If they weren't versioned, read both. */
+               if (rd2)
+                       read_abs_bbt (mtd, buf, rd2, chipsel);
+
+               /* Write the bad block table to the device ? */
+               if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+                       res = write_bbt (mtd, buf, td, md, chipsel);
+                       if (res < 0)
+                               return res;
+               }
+               
+               /* Write the mirror bad block table to the device ? */
+               if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+                       res = write_bbt (mtd, buf, md, td, chipsel);
+                       if (res < 0)
+                               return res;
+               }
+       }
+       return 0;       
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions 
+ * @mtd:       MTD device structure
+ * @td:                bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, j, chips, block, nrblocks, update;
+       uint8_t oldval, newval;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chips = this->numchips;
+               nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+       } else {
+               chips = 1;
+               nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+       }       
+       
+       for (i = 0; i < chips; i++) {
+               if ((td->options & NAND_BBT_ABSPAGE) ||
+                   !(td->options & NAND_BBT_WRITE)) {
+                       if (td->pages[i] == -1) continue;
+                       block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+                       block <<= 1;            
+                       oldval = this->bbt[(block >> 3)];
+                       newval = oldval | (0x2 << (block & 0x06));
+                       this->bbt[(block >> 3)] = newval;
+                       if ((oldval != newval) && td->reserved_block_code)
+                               nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+                       continue;
+               }
+               update = 0;
+               if (td->options & NAND_BBT_LASTBLOCK)
+                       block = ((i + 1) * nrblocks) - td->maxblocks;
+               else    
+                       block = i * nrblocks;
+               block <<= 1;    
+               for (j = 0; j < td->maxblocks; j++) {
+                       oldval = this->bbt[(block >> 3)];
+                       newval = oldval | (0x2 << (block & 0x06));
+                       this->bbt[(block >> 3)] = newval;
+                       if (oldval != newval) update = 1;
+                       block += 2;
+               }       
+               /* If we want reserved blocks to be recorded to flash, and some
+                  new ones have been marked, then we need to update the stored
+                  bbts.  This should only happen once. */
+               if (update && td->reserved_block_code)
+                       nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+       }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd:       MTD device structure
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already 
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+       struct nand_chip *this = mtd->priv;
+       int len, res = 0;
+       uint8_t *buf;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+
+       len = mtd->size >> (this->bbt_erase_shift + 2);
+       /* Allocate memory (2bit per block) */
+       this->bbt = kmalloc (len, GFP_KERNEL);
+       if (!this->bbt) {
+               printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+               return -ENOMEM;
+       }
+       /* Clear the memory bad block table */
+       memset (this->bbt, 0x00, len);
+
+       /* If no primary table decriptor is given, scan the device
+        * to build a memory based bad block table
+        */
+       if (!td)
+               return nand_memory_bbt(mtd, bd);
+
+       /* Allocate a temporary buffer for one eraseblock incl. oob */
+       len = (1 << this->bbt_erase_shift);
+       len += (len >> this->page_shift) * mtd->oobsize;
+       buf = kmalloc (len, GFP_KERNEL);
+       if (!buf) {
+               printk (KERN_ERR "nand_bbt: Out of memory\n");
+               kfree (this->bbt);
+               this->bbt = NULL;
+               return -ENOMEM;
+       }
+       
+       /* Is the bbt at a given page ? */
+       if (td->options & NAND_BBT_ABSPAGE) {
+               res = read_abs_bbts (mtd, buf, td, md);
+       } else {        
+               /* Search the bad block table using a pattern in oob */
+               res = search_read_bbts (mtd, buf, td, md);
+       }       
+
+       if (res) 
+               res = check_create (mtd, buf, bd);
+       
+       /* Prevent the bbt regions from erasing / writing */
+       mark_bbt_region (mtd, td);
+       if (md)
+               mark_bbt_region (mtd, md);
+       
+       kfree (buf);
+       return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s) 
+ * @mtd:       MTD device structure
+ * @offs:      the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+       struct nand_chip *this = mtd->priv;
+       int len, res = 0, writeops = 0;
+       int chip, chipsel;
+       uint8_t *buf;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+
+       if (!this->bbt || !td)
+               return -EINVAL;
+
+       len = mtd->size >> (this->bbt_erase_shift + 2);
+       /* Allocate a temporary buffer for one eraseblock incl. oob */
+       len = (1 << this->bbt_erase_shift);
+       len += (len >> this->page_shift) * mtd->oobsize;
+       buf = kmalloc (len, GFP_KERNEL);
+       if (!buf) {
+               printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+               return -ENOMEM;
+       }
+       
+       writeops = md != NULL ? 0x03 : 0x01;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chip = (int) (offs >> this->chip_shift);
+               chipsel = chip;
+       } else {
+               chip = 0;
+               chipsel = -1;
+       }
+
+       td->version[chip]++;
+       if (md)
+               md->version[chip]++;    
+
+       /* Write the bad block table to the device ? */
+       if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+               res = write_bbt (mtd, buf, td, md, chipsel);
+               if (res < 0)
+                       goto out;
+       }
+       /* Write the mirror bad block table to the device ? */
+       if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+               res = write_bbt (mtd, buf, md, td, chipsel);
+       }
+
+out:   
+       kfree (buf);
+       return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used 
+ * while scanning a device for factory marked good / bad blocks
+ * 
+ * The memory based patterns just 
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+       .options = 0,
+       .offs = 5,
+       .len = 1,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+       .options = 0,
+       .offs = 0,
+       .len = 2,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 5,
+       .len = 1,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 0,
+       .len = 2,
+       .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 0x20,
+       .len = 6,
+       .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device 
+ * @mtd:       MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       
+       /* Default for AG-AND. We must use a flash based 
+        * bad block table as the devices have factory marked
+        * _good_ blocks. Erasing those blocks leads to loss
+        * of the good / bad information, so we _must_ store
+        * this information in a good / bad table during 
+        * startup
+       */
+       if (this->options & NAND_IS_AND) {
+               /* Use the default pattern descriptors */
+               if (!this->bbt_td) {    
+                       this->bbt_td = &bbt_main_descr;
+                       this->bbt_md = &bbt_mirror_descr;
+               }       
+               this->options |= NAND_USE_FLASH_BBT;
+               return nand_scan_bbt (mtd, &agand_flashbased);
+       }
+       
+       
+       /* Is a flash based bad block table requested ? */
+       if (this->options & NAND_USE_FLASH_BBT) {
+               /* Use the default pattern descriptors */       
+               if (!this->bbt_td) {    
+                       this->bbt_td = &bbt_main_descr;
+                       this->bbt_md = &bbt_mirror_descr;
+               }
+               if (!this->badblock_pattern) {
+                       this->badblock_pattern = (mtd->oobblock > 512) ?
+                               &largepage_flashbased : &smallpage_flashbased;
+               }
+       } else {
+               this->bbt_td = NULL;
+               this->bbt_md = NULL;
+               if (!this->badblock_pattern) {
+                       this->badblock_pattern = (mtd->oobblock > 512) ?
+                               &largepage_memorybased : &smallpage_memorybased;
+               }
+       }
+       return nand_scan_bbt (mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad 
+ * @mtd:       MTD device structure
+ * @offs:      offset in the device
+ * @allowbbt:  allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+       struct nand_chip *this = mtd->priv;
+       int block;
+       uint8_t res;
+       
+       /* Get block number * 2 */
+       block = (int) (offs >> (this->bbt_erase_shift - 1));
+       res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+       DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", 
+               (unsigned int)offs, res, block >> 1);
+
+       switch ((int)res) {
+       case 0x00:      return 0;
+       case 0x01:      return 1;
+       case 0x02:      return allowbbt ? 0 : 1;
+       }
+       return 1;
+}
+
+#endif
diff --git a/drivers/nand/nand_ecc.c b/drivers/nand/nand_ecc.c
new file mode 100644 (file)
index 0000000..dc9db4b
--- /dev/null
@@ -0,0 +1,244 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ *                         Toshiba America Electronics Components, Inc.
+ *
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ * 
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ * 
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ * 
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ * 
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/**
+ * nand_trans_result - [GENERIC] create non-inverted ECC
+ * @reg2:      line parity reg 2
+ * @reg3:      line parity reg 3
+ * @ecc_code:  ecc 
+ *
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+       u_char *ecc_code)
+{
+       u_char a, b, i, tmp1, tmp2;
+       
+       /* Initialize variables */
+       a = b = 0x80;
+       tmp1 = tmp2 = 0;
+       
+       /* Calculate first ECC byte */
+       for (i = 0; i < 4; i++) {
+               if (reg3 & a)           /* LP15,13,11,9 --> ecc_code[0] */
+                       tmp1 |= b;
+               b >>= 1;
+               if (reg2 & a)           /* LP14,12,10,8 --> ecc_code[0] */
+                       tmp1 |= b;
+               b >>= 1;
+               a >>= 1;
+       }
+       
+       /* Calculate second ECC byte */
+       b = 0x80;
+       for (i = 0; i < 4; i++) {
+               if (reg3 & a)           /* LP7,5,3,1 --> ecc_code[1] */
+                       tmp2 |= b;
+               b >>= 1;
+               if (reg2 & a)           /* LP6,4,2,0 --> ecc_code[1] */
+                       tmp2 |= b;
+               b >>= 1;
+               a >>= 1;
+       }
+       
+       /* Store two of the ECC bytes */
+       ecc_code[0] = tmp1;
+       ecc_code[1] = tmp2;
+}
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * @mtd:       MTD block structure
+ * @dat:       raw data
+ * @ecc_code:  buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+       u_char idx, reg1, reg2, reg3;
+       int j;
+       
+       /* Initialize variables */
+       reg1 = reg2 = reg3 = 0;
+       ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+       
+       /* Build up column parity */ 
+       for(j = 0; j < 256; j++) {
+               
+               /* Get CP0 - CP5 from table */
+               idx = nand_ecc_precalc_table[dat[j]];
+               reg1 ^= (idx & 0x3f);
+               
+               /* All bit XOR = 1 ? */
+               if (idx & 0x40) {
+                       reg3 ^= (u_char) j;
+                       reg2 ^= ~((u_char) j);
+               }
+       }
+       
+       /* Create non-inverted ECC code from line parity */
+       nand_trans_result(reg2, reg3, ecc_code);
+       
+       /* Calculate final ECC code */
+       ecc_code[0] = ~ecc_code[0];
+       ecc_code[1] = ~ecc_code[1];
+       ecc_code[2] = ((~reg1) << 2) | 0x03;
+       return 0;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:       MTD block structure
+ * @dat:       raw data read from the chip
+ * @read_ecc:  ECC from the chip
+ * @calc_ecc:  the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+       u_char a, b, c, d1, d2, d3, add, bit, i;
+       
+       /* Do error detection */ 
+       d1 = calc_ecc[0] ^ read_ecc[0];
+       d2 = calc_ecc[1] ^ read_ecc[1];
+       d3 = calc_ecc[2] ^ read_ecc[2];
+       
+       if ((d1 | d2 | d3) == 0) {
+               /* No errors */
+               return 0;
+       }
+       else {
+               a = (d1 ^ (d1 >> 1)) & 0x55;
+               b = (d2 ^ (d2 >> 1)) & 0x55;
+               c = (d3 ^ (d3 >> 1)) & 0x54;
+               
+               /* Found and will correct single bit error in the data */
+               if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+                       c = 0x80;
+                       add = 0;
+                       a = 0x80;
+                       for (i=0; i<4; i++) {
+                               if (d1 & c)
+                                       add |= a;
+                               c >>= 2;
+                               a >>= 1;
+                       }
+                       c = 0x80;
+                       for (i=0; i<4; i++) {
+                               if (d2 & c)
+                                       add |= a;
+                               c >>= 2;
+                               a >>= 1;
+                       }
+                       bit = 0;
+                       b = 0x04;
+                       c = 0x80;
+                       for (i=0; i<3; i++) {
+                               if (d3 & c)
+                                       bit |= b;
+                               c >>= 2;
+                               b >>= 1;
+                       }
+                       b = 0x01;
+                       a = dat[add];
+                       a ^= (b << bit);
+                       dat[add] = a;
+                       return 1;
+               }
+               else {
+                       i = 0;
+                       while (d1) {
+                               if (d1 & 0x01)
+                                       ++i;
+                               d1 >>= 1;
+                       }
+                       while (d2) {
+                               if (d2 & 0x01)
+                                       ++i;
+                               d2 >>= 1;
+                       }
+                       while (d3) {
+                               if (d3 & 0x01)
+                                       ++i;
+                               d3 >>= 1;
+                       }
+                       if (i == 1) {
+                               /* ECC Code Error Correction */
+                               read_ecc[0] = calc_ecc[0];
+                               read_ecc[1] = calc_ecc[1];
+                               read_ecc[2] = calc_ecc[2];
+                               return 2;
+                       }
+                       else {
+                               /* Uncorrectable Error */
+                               return -1;
+                       }
+               }
+       }
+       
+       /* Should never happen */
+       return -1;
+}
+
+#endif /* CONFIG_COMMANDS & CFG_CMD_NAND */
diff --git a/drivers/nand/nand_ids.c b/drivers/nand/nand_ids.c
new file mode 100644 (file)
index 0000000..5df1e89
--- /dev/null
@@ -0,0 +1,127 @@
+/*
+ *  drivers/mtd/nandids.c
+ *
+ *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+  *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <linux/mtd/nand.h>
+
+/*
+*      Chip ID list
+*      
+*      Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+*      options
+* 
+*      Pagesize; 0, 256, 512
+*      0       get this information from the extended chip ID
++      256     256 Byte page size
+*      512     512 Byte page size      
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+       {"NAND 1MiB 5V 8-bit",          0x6e, 256, 1, 0x1000, 0},
+       {"NAND 2MiB 5V 8-bit",          0x64, 256, 2, 0x1000, 0},
+       {"NAND 4MiB 5V 8-bit",          0x6b, 512, 4, 0x2000, 0},
+       {"NAND 1MiB 3,3V 8-bit",        0xe8, 256, 1, 0x1000, 0},
+       {"NAND 1MiB 3,3V 8-bit",        0xec, 256, 1, 0x1000, 0},
+       {"NAND 2MiB 3,3V 8-bit",        0xea, 256, 2, 0x1000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xd5, 512, 4, 0x2000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xe3, 512, 4, 0x2000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xe5, 512, 4, 0x2000, 0},
+       {"NAND 8MiB 3,3V 8-bit",        0xd6, 512, 8, 0x2000, 0},
+       
+       {"NAND 8MiB 1,8V 8-bit",        0x39, 512, 8, 0x2000, 0},
+       {"NAND 8MiB 3,3V 8-bit",        0xe6, 512, 8, 0x2000, 0},
+       {"NAND 8MiB 1,8V 16-bit",       0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+       {"NAND 8MiB 3,3V 16-bit",       0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+       
+       {"NAND 16MiB 1,8V 8-bit",       0x33, 512, 16, 0x4000, 0},
+       {"NAND 16MiB 3,3V 8-bit",       0x73, 512, 16, 0x4000, 0},
+       {"NAND 16MiB 1,8V 16-bit",      0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 16MiB 3,3V 16-bit",      0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 32MiB 1,8V 8-bit",       0x35, 512, 32, 0x4000, 0},
+       {"NAND 32MiB 3,3V 8-bit",       0x75, 512, 32, 0x4000, 0},
+       {"NAND 32MiB 1,8V 16-bit",      0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 32MiB 3,3V 16-bit",      0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 64MiB 1,8V 8-bit",       0x36, 512, 64, 0x4000, 0},
+       {"NAND 64MiB 3,3V 8-bit",       0x76, 512, 64, 0x4000, 0},
+       {"NAND 64MiB 1,8V 16-bit",      0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 64MiB 3,3V 16-bit",      0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 128MiB 1,8V 8-bit",      0x78, 512, 128, 0x4000, 0},
+       {"NAND 128MiB 3,3V 8-bit",      0x79, 512, 128, 0x4000, 0},
+       {"NAND 128MiB 1,8V 16-bit",     0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 128MiB 3,3V 16-bit",     0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 256MiB 3,3V 8-bit",      0x71, 512, 256, 0x4000, 0},
+
+       {"NAND 512MiB 3,3V 8-bit",      0xDC, 512, 512, 0x4000, 0},
+       
+       /* These are the new chips with large page size. The pagesize
+       * and the erasesize is determined from the extended id bytes
+       */
+       /* 1 Gigabit */
+       {"NAND 128MiB 1,8V 8-bit",      0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 3,3V 8-bit",      0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 1,8V 16-bit",     0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 3,3V 16-bit",     0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* 2 Gigabit */
+       {"NAND 256MiB 1,8V 8-bit",      0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 3,3V 8-bit",      0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 1,8V 16-bit",     0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 3,3V 16-bit",     0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       
+       /* 4 Gigabit */
+       {"NAND 512MiB 1,8V 8-bit",      0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 3,3V 8-bit",      0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 1,8V 16-bit",     0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 3,3V 16-bit",     0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       
+       /* 8 Gigabit */
+       {"NAND 1GiB 1,8V 8-bit",        0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 3,3V 8-bit",        0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 1,8V 16-bit",       0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 3,3V 16-bit",       0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* 16 Gigabit */
+       {"NAND 2GiB 1,8V 8-bit",        0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 3,3V 8-bit",        0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 1,8V 16-bit",       0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 3,3V 16-bit",       0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout ! 
+        * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+        * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+        * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+        * There are more speed improvements for reads and writes possible, but not implemented now 
+        */
+       {"AND 128MiB 3,3V 8-bit",       0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
+       {NULL,}
+};
+
+/*
+*      Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+       {NAND_MFR_TOSHIBA, "Toshiba"},
+       {NAND_MFR_SAMSUNG, "Samsung"},
+       {NAND_MFR_FUJITSU, "Fujitsu"},
+       {NAND_MFR_NATIONAL, "National"},
+       {NAND_MFR_RENESAS, "Renesas"},
+       {NAND_MFR_STMICRO, "ST Micro"},
+       {0x0, "Unknown"}
+};
+#endif
diff --git a/fs/jffs2/jffs2_nand_1pass.c b/fs/jffs2/jffs2_nand_1pass.c
new file mode 100644 (file)
index 0000000..ce80a43
--- /dev/null
@@ -0,0 +1,1045 @@
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_JFFS2)
+
+#include <malloc.h>
+#include <linux/stat.h>
+#include <linux/time.h>
+
+#include <jffs2/jffs2.h>
+#include <jffs2/jffs2_1pass.h>
+#include <nand.h>
+
+#include "jffs2_nand_private.h"
+
+#define        NODE_CHUNK      1024    /* size of memory allocation chunk in b_nodes */
+
+/* Debugging switches */
+#undef DEBUG_DIRENTS           /* print directory entry list after scan */
+#undef DEBUG_FRAGMENTS         /* print fragment list after scan */
+#undef DEBUG                   /* enable debugging messages */
+
+#ifdef  DEBUG
+# define DEBUGF(fmt,args...)   printf(fmt ,##args)
+#else
+# define DEBUGF(fmt,args...)
+#endif
+
+static int nanddev = -1; /* nand device of current partition */
+static nand_info_t *nand;
+
+/* Compression names */
+static char *compr_names[] = {
+       "NONE",
+       "ZERO",
+       "RTIME",
+       "RUBINMIPS",
+       "COPY",
+       "DYNRUBIN",
+       "ZLIB",
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+       "LZO",
+       "LZARI",
+#endif
+};
+
+/* Spinning wheel */
+static char spinner[] = { '|', '/', '-', '\\' };
+
+/* Memory management */
+struct mem_block {
+       unsigned index;
+       struct mem_block *next;
+       char nodes[0];
+};
+
+static void
+free_nodes(struct b_list *list)
+{
+       while (list->listMemBase != NULL) {
+               struct mem_block *next = list->listMemBase->next;
+               free(list->listMemBase);
+               list->listMemBase = next;
+       }
+}
+
+static struct b_node *
+add_node(struct b_list *list, int size)
+{
+       u32 index = 0;
+       struct mem_block *memBase;
+       struct b_node *b;
+
+       memBase = list->listMemBase;
+       if (memBase != NULL)
+               index = memBase->index;
+
+       if (memBase == NULL || index >= NODE_CHUNK) {
+               /* we need more space before we continue */
+               memBase = mmalloc(sizeof(struct mem_block) + NODE_CHUNK * size);
+               if (memBase == NULL) {
+                       putstr("add_node: malloc failed\n");
+                       return NULL;
+               }
+               memBase->next = list->listMemBase;
+               index = 0;
+       }
+       /* now we have room to add it. */
+       b = (struct b_node *)&memBase->nodes[size * index];
+       index ++;
+
+       memBase->index = index;
+       list->listMemBase = memBase;
+       list->listCount++;
+       return b;
+}
+
+static struct b_node *
+insert_node(struct b_list *list, struct b_node *new)
+{
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+       struct b_node *b, *prev;
+
+       if (list->listTail != NULL && list->listCompare(new, list->listTail))
+               prev = list->listTail;
+       else if (list->listLast != NULL && list->listCompare(new, list->listLast))
+               prev = list->listLast;
+       else
+               prev = NULL;
+
+       for (b = (prev ? prev->next : list->listHead);
+            b != NULL && list->listCompare(new, b);
+            prev = b, b = b->next) {
+               list->listLoops++;
+       }
+       if (b != NULL)
+               list->listLast = prev;
+
+       if (b != NULL) {
+               new->next = b;
+               if (prev != NULL)
+                       prev->next = new;
+               else
+                       list->listHead = new;
+       } else
+#endif
+       {
+               new->next = (struct b_node *) NULL;
+               if (list->listTail != NULL) {
+                       list->listTail->next = new;
+                       list->listTail = new;
+               } else {
+                       list->listTail = list->listHead = new;
+               }
+       }
+
+       return new;
+}
+
+static struct b_node *
+insert_inode(struct b_list *list, struct jffs2_raw_inode *node, u32 offset)
+{
+       struct b_inode *new;
+
+       if (!(new = (struct b_inode *)add_node(list, sizeof(struct b_inode)))) {
+               putstr("add_node failed!\r\n");
+               return NULL;
+       }
+       new->offset = offset;
+       new->version = node->version;
+       new->ino = node->ino;
+       new->isize = node->isize;
+       new->csize = node->csize;
+
+       return insert_node(list, (struct b_node *)new);
+}
+
+static struct b_node *
+insert_dirent(struct b_list *list, struct jffs2_raw_dirent *node, u32 offset)
+{
+       struct b_dirent *new;
+
+       if (!(new = (struct b_dirent *)add_node(list, sizeof(struct b_dirent)))) {
+               putstr("add_node failed!\r\n");
+               return NULL;
+       }
+       new->offset = offset;
+       new->version = node->version;
+       new->pino = node->pino;
+       new->ino = node->ino;
+       new->nhash = full_name_hash(node->name, node->nsize);
+       new->nsize = node->nsize;
+       new->type = node->type;
+
+       return insert_node(list, (struct b_node *)new);
+}
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+/* Sort data entries with the latest version last, so that if there
+ * is overlapping data the latest version will be used.
+ */
+static int compare_inodes(struct b_node *new, struct b_node *old)
+{
+       struct jffs2_raw_inode ojNew;
+       struct jffs2_raw_inode ojOld;
+       struct jffs2_raw_inode *jNew =
+               (struct jffs2_raw_inode *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+       struct jffs2_raw_inode *jOld =
+               (struct jffs2_raw_inode *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+
+       return jNew->version > jOld->version;
+}
+
+/* Sort directory entries so all entries in the same directory
+ * with the same name are grouped together, with the latest version
+ * last. This makes it easy to eliminate all but the latest version
+ * by marking the previous version dead by setting the inode to 0.
+ */
+static int compare_dirents(struct b_node *new, struct b_node *old)
+{
+       struct jffs2_raw_dirent ojNew;
+       struct jffs2_raw_dirent ojOld;
+       struct jffs2_raw_dirent *jNew =
+               (struct jffs2_raw_dirent *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+       struct jffs2_raw_dirent *jOld =
+               (struct jffs2_raw_dirent *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+       int cmp;
+
+       /* ascending sort by pino */
+       if (jNew->pino != jOld->pino)
+               return jNew->pino > jOld->pino;
+
+       /* pino is the same, so use ascending sort by nsize, so
+        * we don't do strncmp unless we really must.
+        */
+       if (jNew->nsize != jOld->nsize)
+               return jNew->nsize > jOld->nsize;
+
+       /* length is also the same, so use ascending sort by name
+        */
+       cmp = strncmp(jNew->name, jOld->name, jNew->nsize);
+       if (cmp != 0)
+               return cmp > 0;
+
+       /* we have duplicate names in this directory, so use ascending
+        * sort by version
+        */
+       if (jNew->version > jOld->version) {
+               /* since jNew is newer, we know jOld is not valid, so
+                * mark it with inode 0 and it will not be used
+                */
+               jOld->ino = 0;
+               return 1;
+       }
+
+       return 0;
+}
+#endif
+
+static u32
+jffs_init_1pass_list(struct part_info *part)
+{
+       struct b_lists *pL;
+
+       if (part->jffs2_priv != NULL) {
+               pL = (struct b_lists *)part->jffs2_priv;
+               free_nodes(&pL->frag);
+               free_nodes(&pL->dir);
+               free(pL);
+       }
+       if (NULL != (part->jffs2_priv = malloc(sizeof(struct b_lists)))) {
+               pL = (struct b_lists *)part->jffs2_priv;
+
+               memset(pL, 0, sizeof(*pL));
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+               pL->dir.listCompare = compare_dirents;
+               pL->frag.listCompare = compare_inodes;
+#endif
+       }
+       return 0;
+}
+
+/* find the inode from the slashless name given a parent */
+static long
+jffs2_1pass_read_inode(struct b_lists *pL, u32 ino, char *dest,
+                      struct stat *stat)
+{
+       struct b_inode *jNode;
+       u32 totalSize = 0;
+       u32 latestVersion = 0;
+       long ret;
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+       /* Find file size before loading any data, so fragments that
+        * start past the end of file can be ignored. A fragment
+        * that is partially in the file is loaded, so extra data may
+        * be loaded up to the next 4K boundary above the file size.
+        * This shouldn't cause trouble when loading kernel images, so
+        * we will live with it.
+        */
+       for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+               if ((ino == jNode->ino)) {
+                       /* get actual file length from the newest node */
+                       if (jNode->version >= latestVersion) {
+                               totalSize = jNode->isize;
+                               latestVersion = jNode->version;
+                       }
+               }
+       }
+#endif
+
+       for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+               if ((ino != jNode->ino))
+                       continue;
+#ifndef CFG_JFFS2_SORT_FRAGMENTS
+               /* get actual file length from the newest node */
+               if (jNode->version >= latestVersion) {
+                       totalSize = jNode->isize;
+                       latestVersion = jNode->version;
+               }
+#endif
+               if (dest || stat) {
+                       char *src, *dst;
+                       char data[4096 + sizeof(struct jffs2_raw_inode)];
+                       struct jffs2_raw_inode *inode;
+                       size_t len;
+
+                       inode = (struct jffs2_raw_inode *)&data;
+                       len = sizeof(struct jffs2_raw_inode);
+                       if (dest)
+                               len += jNode->csize;
+                       nand_read(nand, jNode->offset, &len, inode);
+                       /* ignore data behind latest known EOF */
+                       if (inode->offset > totalSize)
+                               continue;
+
+                       if (stat) {
+                               stat->st_mtime = inode->mtime;
+                               stat->st_mode = inode->mode;
+                               stat->st_ino = inode->ino;
+                               stat->st_size = totalSize;
+                       }
+
+                       if (!dest)
+                               continue;
+
+                       src = ((char *) inode) + sizeof(struct jffs2_raw_inode);
+                       dst = (char *) (dest + inode->offset);
+
+                       switch (inode->compr) {
+                       case JFFS2_COMPR_NONE:
+                               ret = 0;
+                               memcpy(dst, src, inode->dsize);
+                               break;
+                       case JFFS2_COMPR_ZERO:
+                               ret = 0;
+                               memset(dst, 0, inode->dsize);
+                               break;
+                       case JFFS2_COMPR_RTIME:
+                               ret = 0;
+                               rtime_decompress(src, dst, inode->csize, inode->dsize);
+                               break;
+                       case JFFS2_COMPR_DYNRUBIN:
+                               /* this is slow but it works */
+                               ret = 0;
+                               dynrubin_decompress(src, dst, inode->csize, inode->dsize);
+                               break;
+                       case JFFS2_COMPR_ZLIB:
+                               ret = zlib_decompress(src, dst, inode->csize, inode->dsize);
+                               break;
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+                       case JFFS2_COMPR_LZO:
+                               ret = lzo_decompress(src, dst, inode->csize, inode->dsize);
+                               break;
+                       case JFFS2_COMPR_LZARI:
+                               ret = lzari_decompress(src, dst, inode->csize, inode->dsize);
+                               break;
+#endif
+                       default:
+                               /* unknown */
+                               putLabeledWord("UNKOWN COMPRESSION METHOD = ", inode->compr);
+                               return -1;
+                       }
+               }
+       }
+
+       return totalSize;
+}
+
+/* find the inode from the slashless name given a parent */
+static u32
+jffs2_1pass_find_inode(struct b_lists * pL, const char *name, u32 pino)
+{
+       struct b_dirent *jDir;
+       int len = strlen(name); /* name is assumed slash free */
+       unsigned int nhash = full_name_hash(name, len);
+       u32 version = 0;
+       u32 inode = 0;
+
+       /* we need to search all and return the inode with the highest version */
+       for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+               if ((pino == jDir->pino) && (jDir->ino) &&      /* 0 for unlink */
+                   (len == jDir->nsize) && (nhash == jDir->nhash)) {
+                       /* TODO: compare name */
+                       if (jDir->version < version)
+                               continue;
+
+                       if (jDir->version == version && inode != 0) {
+                               /* I'm pretty sure this isn't legal */
+                               putstr(" ** ERROR ** ");
+//                             putnstr(jDir->name, jDir->nsize);
+//                             putLabeledWord(" has dup version =", version);
+                       }
+                       inode = jDir->ino;
+                       version = jDir->version;
+               }
+       }
+       return inode;
+}
+
+char *mkmodestr(unsigned long mode, char *str)
+{
+       static const char *l = "xwr";
+       int mask = 1, i;
+       char c;
+
+       switch (mode & S_IFMT) {
+               case S_IFDIR:    str[0] = 'd'; break;
+               case S_IFBLK:    str[0] = 'b'; break;
+               case S_IFCHR:    str[0] = 'c'; break;
+               case S_IFIFO:    str[0] = 'f'; break;
+               case S_IFLNK:    str[0] = 'l'; break;
+               case S_IFSOCK:   str[0] = 's'; break;
+               case S_IFREG:    str[0] = '-'; break;
+               default:         str[0] = '?';
+       }
+
+       for(i = 0; i < 9; i++) {
+               c = l[i%3];
+               str[9-i] = (mode & mask)?c:'-';
+               mask = mask<<1;
+       }
+
+       if(mode & S_ISUID) str[3] = (mode & S_IXUSR)?'s':'S';
+       if(mode & S_ISGID) str[6] = (mode & S_IXGRP)?'s':'S';
+       if(mode & S_ISVTX) str[9] = (mode & S_IXOTH)?'t':'T';
+       str[10] = '\0';
+       return str;
+}
+
+static inline void dump_stat(struct stat *st, const char *name)
+{
+       char str[20];
+       char s[64], *p;
+
+       if (st->st_mtime == (time_t)(-1)) /* some ctimes really hate -1 */
+               st->st_mtime = 1;
+
+       ctime_r(&st->st_mtime, s/*,64*/); /* newlib ctime doesn't have buflen */
+
+       if ((p = strchr(s,'\n')) != NULL) *p = '\0';
+       if ((p = strchr(s,'\r')) != NULL) *p = '\0';
+
+/*
+       printf("%6lo %s %8ld %s %s\n", st->st_mode, mkmodestr(st->st_mode, str),
+               st->st_size, s, name);
+*/
+
+       printf(" %s %8ld %s %s", mkmodestr(st->st_mode,str), st->st_size, s, name);
+}
+
+static inline int
+dump_inode(struct b_lists *pL, struct b_dirent *d, struct b_inode *i)
+{
+       char fname[JFFS2_MAX_NAME_LEN + 1];
+       struct stat st;
+       size_t len;
+
+       if(!d || !i) return -1;
+       len = d->nsize;
+       nand_read(nand, d->offset + sizeof(struct jffs2_raw_dirent),
+                 &len, &fname);
+       fname[d->nsize] = '\0';
+
+       memset(&st, 0, sizeof(st));
+
+       jffs2_1pass_read_inode(pL, i->ino, NULL, &st);
+
+       dump_stat(&st, fname);
+/* FIXME
+       if (d->type == DT_LNK) {
+               unsigned char *src = (unsigned char *) (&i[1]);
+               putstr(" -> ");
+               putnstr(src, (int)i->dsize);
+       }
+*/
+       putstr("\r\n");
+
+       return 0;
+}
+
+/* list inodes with the given pino */
+static u32
+jffs2_1pass_list_inodes(struct b_lists * pL, u32 pino)
+{
+       struct b_dirent *jDir;
+       u32 i_version = 0;
+
+       for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+               if ((pino == jDir->pino) && (jDir->ino)) { /* ino=0 -> unlink */
+                       struct b_inode *jNode = (struct b_inode *)pL->frag.listHead;
+                       struct b_inode *i = NULL;
+
+                       while (jNode) {
+                               if (jNode->ino == jDir->ino && jNode->version >= i_version) {
+                                       i_version = jNode->version;
+                                       i = jNode;
+                               }
+                               jNode = jNode->next;
+                       }
+                       dump_inode(pL, jDir, i);
+               }
+       }
+       return pino;
+}
+
+static u32
+jffs2_1pass_search_inode(struct b_lists * pL, const char *fname, u32 pino)
+{
+       int i;
+       char tmp[256];
+       char working_tmp[256];
+       char *c;
+
+       /* discard any leading slash */
+       i = 0;
+       while (fname[i] == '/')
+               i++;
+       strcpy(tmp, &fname[i]);
+
+       while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */
+       {
+               strncpy(working_tmp, tmp, c - tmp);
+               working_tmp[c - tmp] = '\0';
+#if 0
+               putstr("search_inode: tmp = ");
+               putstr(tmp);
+               putstr("\r\n");
+               putstr("search_inode: wtmp = ");
+               putstr(working_tmp);
+               putstr("\r\n");
+               putstr("search_inode: c = ");
+               putstr(c);
+               putstr("\r\n");
+#endif
+               for (i = 0; i < strlen(c) - 1; i++)
+                       tmp[i] = c[i + 1];
+               tmp[i] = '\0';
+#if 0
+               putstr("search_inode: post tmp = ");
+               putstr(tmp);
+               putstr("\r\n");
+#endif
+
+               if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino))) {
+                       putstr("find_inode failed for name=");
+                       putstr(working_tmp);
+                       putstr("\r\n");
+                       return 0;
+               }
+       }
+       /* this is for the bare filename, directories have already been mapped */
+       if (!(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+               putstr("find_inode failed for name=");
+               putstr(tmp);
+               putstr("\r\n");
+               return 0;
+       }
+       return pino;
+
+}
+
+static u32
+jffs2_1pass_resolve_inode(struct b_lists * pL, u32 ino)
+{
+       struct b_dirent *jDir;
+       struct b_inode *jNode;
+       u8 jDirFoundType = 0;
+       u32 jDirFoundIno = 0;
+       u32 jDirFoundPino = 0;
+       char tmp[JFFS2_MAX_NAME_LEN + 1];
+       u32 version = 0;
+       u32 pino;
+
+       /* we need to search all and return the inode with the highest version */
+       for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+               if (ino == jDir->ino) {
+                       if (jDir->version < version)
+                               continue;
+
+                       if (jDir->version == version && jDirFoundType) {
+                               /* I'm pretty sure this isn't legal */
+                               putstr(" ** ERROR ** ");
+//                             putnstr(jDir->name, jDir->nsize);
+//                             putLabeledWord(" has dup version (resolve) = ",
+//                                     version);
+                       }
+
+                       jDirFoundType = jDir->type;
+                       jDirFoundIno = jDir->ino;
+                       jDirFoundPino = jDir->pino;
+                       version = jDir->version;
+               }
+       }
+       /* now we found the right entry again. (shoulda returned inode*) */
+       if (jDirFoundType != DT_LNK)
+               return jDirFoundIno;
+
+       /* it's a soft link so we follow it again. */
+       for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+               if (jNode->ino == jDirFoundIno) {
+                       size_t len = jNode->csize;
+                       nand_read(nand, jNode->offset + sizeof(struct jffs2_raw_inode), &len, &tmp);
+                       tmp[jNode->csize] = '\0';
+                       break;
+               }
+       }
+       /* ok so the name of the new file to find is in tmp */
+       /* if it starts with a slash it is root based else shared dirs */
+       if (tmp[0] == '/')
+               pino = 1;
+       else
+               pino = jDirFoundPino;
+
+       return jffs2_1pass_search_inode(pL, tmp, pino);
+}
+
+static u32
+jffs2_1pass_search_list_inodes(struct b_lists * pL, const char *fname, u32 pino)
+{
+       int i;
+       char tmp[256];
+       char working_tmp[256];
+       char *c;
+
+       /* discard any leading slash */
+       i = 0;
+       while (fname[i] == '/')
+               i++;
+       strcpy(tmp, &fname[i]);
+       working_tmp[0] = '\0';
+       while ((c = (char *) strchr(tmp, '/'))) /* we are still dired searching */
+       {
+               strncpy(working_tmp, tmp, c - tmp);
+               working_tmp[c - tmp] = '\0';
+               for (i = 0; i < strlen(c) - 1; i++)
+                       tmp[i] = c[i + 1];
+               tmp[i] = '\0';
+               /* only a failure if we arent looking at top level */
+               if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino)) &&
+                   (working_tmp[0])) {
+                       putstr("find_inode failed for name=");
+                       putstr(working_tmp);
+                       putstr("\r\n");
+                       return 0;
+               }
+       }
+
+       if (tmp[0] && !(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+               putstr("find_inode failed for name=");
+               putstr(tmp);
+               putstr("\r\n");
+               return 0;
+       }
+       /* this is for the bare filename, directories have already been mapped */
+       if (!(pino = jffs2_1pass_list_inodes(pL, pino))) {
+               putstr("find_inode failed for name=");
+               putstr(tmp);
+               putstr("\r\n");
+               return 0;
+       }
+       return pino;
+
+}
+
+unsigned char
+jffs2_1pass_rescan_needed(struct part_info *part)
+{
+       struct b_node *b;
+       struct jffs2_unknown_node onode;
+       struct jffs2_unknown_node *node;
+       struct b_lists *pL = (struct b_lists *)part->jffs2_priv;
+
+       if (part->jffs2_priv == 0){
+               DEBUGF ("rescan: First time in use\n");
+               return 1;
+       }
+       /* if we have no list, we need to rescan */
+       if (pL->frag.listCount == 0) {
+               DEBUGF ("rescan: fraglist zero\n");
+               return 1;
+       }
+
+       /* or if we are scanning a new partition */
+       if (pL->partOffset != part->offset) {
+               DEBUGF ("rescan: different partition\n");
+               return 1;
+       }
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+       if (nanddev != (int)part->usr_priv - 1) {
+               DEBUGF ("rescan: nand device changed\n");
+               return -1;
+       }
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+       /* FIXME */
+#if 0
+       /* but suppose someone reflashed a partition at the same offset... */
+       b = pL->dir.listHead;
+       while (b) {
+               node = (struct jffs2_unknown_node *) get_fl_mem(b->offset,
+                       sizeof(onode), &onode);
+               if (node->nodetype != JFFS2_NODETYPE_DIRENT) {
+                       DEBUGF ("rescan: fs changed beneath me? (%lx)\n",
+                                       (unsigned long) b->offset);
+                       return 1;
+               }
+               b = b->next;
+       }
+#endif
+       return 0;
+}
+
+#ifdef DEBUG_FRAGMENTS
+static void
+dump_fragments(struct b_lists *pL)
+{
+       struct b_node *b;
+       struct jffs2_raw_inode ojNode;
+       struct jffs2_raw_inode *jNode;
+
+       putstr("\r\n\r\n******The fragment Entries******\r\n");
+       b = pL->frag.listHead;
+       while (b) {
+               jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+                       sizeof(ojNode), &ojNode);
+               putLabeledWord("\r\n\tbuild_list: FLASH_OFFSET = ", b->offset);
+               putLabeledWord("\tbuild_list: totlen = ", jNode->totlen);
+               putLabeledWord("\tbuild_list: inode = ", jNode->ino);
+               putLabeledWord("\tbuild_list: version = ", jNode->version);
+               putLabeledWord("\tbuild_list: isize = ", jNode->isize);
+               putLabeledWord("\tbuild_list: atime = ", jNode->atime);
+               putLabeledWord("\tbuild_list: offset = ", jNode->offset);
+               putLabeledWord("\tbuild_list: csize = ", jNode->csize);
+               putLabeledWord("\tbuild_list: dsize = ", jNode->dsize);
+               putLabeledWord("\tbuild_list: compr = ", jNode->compr);
+               putLabeledWord("\tbuild_list: usercompr = ", jNode->usercompr);
+               putLabeledWord("\tbuild_list: flags = ", jNode->flags);
+               putLabeledWord("\tbuild_list: offset = ", b->offset);   /* FIXME: ? [RS] */
+               b = b->next;
+       }
+}
+#endif
+
+#ifdef DEBUG_DIRENTS
+static void
+dump_dirents(struct b_lists *pL)
+{
+       struct b_node *b;
+       struct jffs2_raw_dirent *jDir;
+
+       putstr("\r\n\r\n******The directory Entries******\r\n");
+       b = pL->dir.listHead;
+       while (b) {
+               jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset);
+               putstr("\r\n");
+               putnstr(jDir->name, jDir->nsize);
+               putLabeledWord("\r\n\tbuild_list: magic = ", jDir->magic);
+               putLabeledWord("\tbuild_list: nodetype = ", jDir->nodetype);
+               putLabeledWord("\tbuild_list: hdr_crc = ", jDir->hdr_crc);
+               putLabeledWord("\tbuild_list: pino = ", jDir->pino);
+               putLabeledWord("\tbuild_list: version = ", jDir->version);
+               putLabeledWord("\tbuild_list: ino = ", jDir->ino);
+               putLabeledWord("\tbuild_list: mctime = ", jDir->mctime);
+               putLabeledWord("\tbuild_list: nsize = ", jDir->nsize);
+               putLabeledWord("\tbuild_list: type = ", jDir->type);
+               putLabeledWord("\tbuild_list: node_crc = ", jDir->node_crc);
+               putLabeledWord("\tbuild_list: name_crc = ", jDir->name_crc);
+               putLabeledWord("\tbuild_list: offset = ", b->offset);   /* FIXME: ? [RS] */
+               b = b->next;
+               put_fl_mem(jDir);
+       }
+}
+#endif
+
+static int
+jffs2_fill_scan_buf(nand_info_t *nand, unsigned char *buf,
+                   unsigned ofs, unsigned len)
+{
+       int ret;
+       unsigned olen;
+
+       olen = len;
+       ret = nand_read(nand, ofs, &olen, buf);
+       if (ret) {
+               printf("nand_read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret);
+               return ret;
+       }
+       if (olen < len) {
+               printf("Read at 0x%x gave only 0x%x bytes\n", ofs, olen);
+               return -1;
+       }
+       return 0;
+}
+
+#define        EMPTY_SCAN_SIZE 1024
+static u32
+jffs2_1pass_build_lists(struct part_info * part)
+{
+       struct b_lists *pL;
+       struct jffs2_unknown_node *node;
+       unsigned nr_blocks, sectorsize, ofs, offset;
+       char *buf;
+       int i;
+       u32 counter = 0;
+       u32 counter4 = 0;
+       u32 counterF = 0;
+       u32 counterN = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+       nanddev = (int)part->usr_priv - 1;
+       nand = &nand_info[nanddev];
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+
+       /* if we are building a list we need to refresh the cache. */
+       jffs_init_1pass_list(part);
+       pL = (struct b_lists *)part->jffs2_priv;
+       pL->partOffset = part->offset;
+       puts ("Scanning JFFS2 FS:   ");
+
+       sectorsize = nand->erasesize;
+       nr_blocks = part->size / sectorsize;
+       buf = malloc(sectorsize);
+       if (!buf)
+               return 0;
+
+       for (i = 0; i < nr_blocks; i++) {
+               printf("\b\b%c ", spinner[counter++ % sizeof(spinner)]);
+
+               offset = part->offset + i * sectorsize;
+
+               if (nand_block_isbad(nand, offset))
+                       continue;
+
+               if (jffs2_fill_scan_buf(nand, buf, offset, EMPTY_SCAN_SIZE))
+                       return 0;
+
+               ofs = 0;
+               /* Scan only 4KiB of 0xFF before declaring it's empty */
+               while (ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
+                       ofs += 4;
+               if (ofs == EMPTY_SCAN_SIZE)
+                       continue;
+
+               if (jffs2_fill_scan_buf(nand, buf + EMPTY_SCAN_SIZE, offset + EMPTY_SCAN_SIZE, sectorsize - EMPTY_SCAN_SIZE))
+                       return 0;
+               offset += ofs;
+
+               while (ofs < sectorsize - sizeof(struct jffs2_unknown_node)) {
+                       node = (struct jffs2_unknown_node *)&buf[ofs];
+                       if (node->magic != JFFS2_MAGIC_BITMASK || !hdr_crc(node)) {
+                               offset += 4;
+                               ofs += 4;
+                               counter4++;
+                               continue;
+                       }
+                       /* if its a fragment add it */
+                       if (node->nodetype == JFFS2_NODETYPE_INODE &&
+                                   inode_crc((struct jffs2_raw_inode *) node)) {
+                               if (insert_inode(&pL->frag, (struct jffs2_raw_inode *) node,
+                                                offset) == NULL) {
+                                       return 0;
+                               }
+                       } else if (node->nodetype == JFFS2_NODETYPE_DIRENT &&
+                                  dirent_crc((struct jffs2_raw_dirent *) node)  &&
+                                  dirent_name_crc((struct jffs2_raw_dirent *) node)) {
+                               if (! (counterN%100))
+                                       puts ("\b\b.  ");
+                               if (insert_dirent(&pL->dir, (struct jffs2_raw_dirent *) node,
+                                                 offset) == NULL) {
+                                       return 0;
+                               }
+                               counterN++;
+                       } else if (node->nodetype == JFFS2_NODETYPE_CLEANMARKER) {
+                               if (node->totlen != sizeof(struct jffs2_unknown_node))
+                                       printf("OOPS Cleanmarker has bad size "
+                                               "%d != %d\n", node->totlen,
+                                               sizeof(struct jffs2_unknown_node));
+                       } else if (node->nodetype == JFFS2_NODETYPE_PADDING) {
+                               if (node->totlen < sizeof(struct jffs2_unknown_node))
+                                       printf("OOPS Padding has bad size "
+                                               "%d < %d\n", node->totlen,
+                                               sizeof(struct jffs2_unknown_node));
+                       } else {
+                               printf("Unknown node type: %x len %d "
+                                       "offset 0x%x\n", node->nodetype,
+                                       node->totlen, offset);
+                       }
+                       offset += ((node->totlen + 3) & ~3);
+                       ofs += ((node->totlen + 3) & ~3);
+                       counterF++;
+               }
+       }
+
+       putstr("\b\b done.\r\n");               /* close off the dots */
+
+#if 0
+       putLabeledWord("dir entries = ", pL->dir.listCount);
+       putLabeledWord("frag entries = ", pL->frag.listCount);
+       putLabeledWord("+4 increments = ", counter4);
+       putLabeledWord("+file_offset increments = ", counterF);
+#endif
+
+#ifdef DEBUG_DIRENTS
+       dump_dirents(pL);
+#endif
+
+#ifdef DEBUG_FRAGMENTS
+       dump_fragments(pL);
+#endif
+
+       /* give visual feedback that we are done scanning the flash */
+       led_blink(0x0, 0x0, 0x1, 0x1);  /* off, forever, on 100ms, off 100ms */
+       free(buf);
+
+       return 1;
+}
+
+
+static u32
+jffs2_1pass_fill_info(struct b_lists * pL, struct b_jffs2_info * piL)
+{
+       struct b_node *b;
+       struct jffs2_raw_inode ojNode;
+       struct jffs2_raw_inode *jNode;
+       int i;
+
+       for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+               piL->compr_info[i].num_frags = 0;
+               piL->compr_info[i].compr_sum = 0;
+               piL->compr_info[i].decompr_sum = 0;
+       }
+/*     FIXME
+       b = pL->frag.listHead;
+       while (b) {
+               jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+                       sizeof(ojNode), &ojNode);
+               if (jNode->compr < JFFS2_NUM_COMPR) {
+                       piL->compr_info[jNode->compr].num_frags++;
+                       piL->compr_info[jNode->compr].compr_sum += jNode->csize;
+                       piL->compr_info[jNode->compr].decompr_sum += jNode->dsize;
+               }
+               b = b->next;
+       }
+*/
+       return 0;
+}
+
+
+static struct b_lists *
+jffs2_get_list(struct part_info * part, const char *who)
+{
+       if (jffs2_1pass_rescan_needed(part)) {
+               if (!jffs2_1pass_build_lists(part)) {
+                       printf("%s: Failed to scan JFFSv2 file structure\n", who);
+                       return NULL;
+               }
+       }
+       return (struct b_lists *)part->jffs2_priv;
+}
+
+
+/* Print directory / file contents */
+u32
+jffs2_1pass_ls(struct part_info * part, const char *fname)
+{
+       struct b_lists *pl;
+       long ret = 0;
+       u32 inode;
+
+       if (! (pl = jffs2_get_list(part, "ls")))
+               return 0;
+
+       if (! (inode = jffs2_1pass_search_list_inodes(pl, fname, 1))) {
+               putstr("ls: Failed to scan jffs2 file structure\r\n");
+               return 0;
+       }
+
+#if 0
+       putLabeledWord("found file at inode = ", inode);
+       putLabeledWord("read_inode returns = ", ret);
+#endif
+
+       return ret;
+}
+
+
+/* Load a file from flash into memory. fname can be a full path */
+u32
+jffs2_1pass_load(char *dest, struct part_info * part, const char *fname)
+{
+
+       struct b_lists *pl;
+       long ret = 0;
+       u32 inode;
+
+       if (! (pl  = jffs2_get_list(part, "load")))
+               return 0;
+
+       if (! (inode = jffs2_1pass_search_inode(pl, fname, 1))) {
+               putstr("load: Failed to find inode\r\n");
+               return 0;
+       }
+
+       /* Resolve symlinks */
+       if (! (inode = jffs2_1pass_resolve_inode(pl, inode))) {
+               putstr("load: Failed to resolve inode structure\r\n");
+               return 0;
+       }
+
+       if ((ret = jffs2_1pass_read_inode(pl, inode, dest, NULL)) < 0) {
+               putstr("load: Failed to read inode\r\n");
+               return 0;
+       }
+
+       DEBUGF ("load: loaded '%s' to 0x%lx (%ld bytes)\n", fname,
+                               (unsigned long) dest, ret);
+       return ret;
+}
+
+/* Return information about the fs on this partition */
+u32
+jffs2_1pass_info(struct part_info * part)
+{
+       struct b_jffs2_info info;
+       struct b_lists *pl;
+       int i;
+
+       if (! (pl  = jffs2_get_list(part, "info")))
+               return 0;
+
+       jffs2_1pass_fill_info(pl, &info);
+       for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+               printf ("Compression: %s\n"
+                       "\tfrag count: %d\n"
+                       "\tcompressed sum: %d\n"
+                       "\tuncompressed sum: %d\n",
+                       compr_names[i],
+                       info.compr_info[i].num_frags,
+                       info.compr_info[i].compr_sum,
+                       info.compr_info[i].decompr_sum);
+       }
+       return 1;
+}
+
+#endif /* CFG_CMD_JFFS2 */
diff --git a/fs/jffs2/jffs2_nand_private.h b/fs/jffs2/jffs2_nand_private.h
new file mode 100644 (file)
index 0000000..18cca8d
--- /dev/null
@@ -0,0 +1,133 @@
+#ifndef jffs2_private_h
+#define jffs2_private_h
+
+#include <jffs2/jffs2.h>
+
+struct b_node {
+       struct b_node *next;
+};
+
+struct b_inode {
+       struct b_inode *next;
+       u32 offset;     /* physical offset to beginning of real inode */
+       u32 version;
+       u32 ino;
+       u32 isize;
+       u32 csize;
+};
+
+struct b_dirent {
+       struct b_dirent *next;
+       u32 offset;     /* physical offset to beginning of real dirent */
+       u32 version;
+       u32 pino;
+       u32 ino;
+       unsigned int nhash;
+       unsigned char nsize;
+       unsigned char type;
+};
+
+struct b_list {
+       struct b_node *listTail;
+       struct b_node *listHead;
+       unsigned int listCount;
+       struct mem_block *listMemBase;
+};
+
+struct b_lists {
+       char *partOffset;
+       struct b_list dir;
+       struct b_list frag;
+};
+
+struct b_compr_info {
+       u32 num_frags;
+       u32 compr_sum;
+       u32 decompr_sum;
+};
+
+struct b_jffs2_info {
+       struct b_compr_info compr_info[JFFS2_NUM_COMPR];
+};
+
+static inline int
+hdr_crc(struct jffs2_unknown_node *node)
+{
+#if 1
+       u32 crc = crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+#else
+       /* what's the semantics of this? why is this here? */
+       u32 crc = crc32_no_comp(~0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+
+       crc ^= ~0;
+#endif
+       if (node->hdr_crc != crc) {
+               return 0;
+       } else {
+               return 1;
+       }
+}
+
+static inline int
+dirent_crc(struct jffs2_raw_dirent *node)
+{
+       if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_dirent) - 8)) {
+               return 0;
+       } else {
+               return 1;
+       }
+}
+
+static inline int
+dirent_name_crc(struct jffs2_raw_dirent *node)
+{
+       if (node->name_crc != crc32_no_comp(0, (unsigned char *)&(node->name), node->nsize)) {
+               return 0;
+       } else {
+               return 1;
+       }
+}
+
+static inline int
+inode_crc(struct jffs2_raw_inode *node)
+{
+       if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_inode) - 8)) {
+               return 0;
+       } else {
+               return 1;
+       }
+}
+
+/* Borrowed from include/linux/dcache.h */
+
+/* Name hashing routines. Initial hash value */
+/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
+#define init_name_hash()               0
+
+/* partial hash update function. Assume roughly 4 bits per character */
+static inline unsigned long
+partial_name_hash(unsigned long c, unsigned long prevhash)
+{
+       return (prevhash + (c << 4) + (c >> 4)) * 11;
+}
+
+/*
+ * Finally: cut down the number of bits to a int value (and try to avoid
+ * losing bits)
+ */
+static inline unsigned long end_name_hash(unsigned long hash)
+{
+       return (unsigned int) hash;
+}
+
+/* Compute the hash for a name string. */
+static inline unsigned int
+full_name_hash(const unsigned char *name, unsigned int len)
+{
+       unsigned long hash = init_name_hash();
+       while (len--)
+               hash = partial_name_hash(*name++, hash);
+       return end_name_hash(hash);
+}
+
+#endif /* jffs2_private.h */
diff --git a/include/linux/mtd/compat.h b/include/linux/mtd/compat.h
new file mode 100644 (file)
index 0000000..460cd45
--- /dev/null
@@ -0,0 +1,44 @@
+#ifndef _LINUX_COMPAT_H_
+#define _LINUX_COMPAT_H_
+
+#define __user
+#define __iomem
+
+#define ndelay(x)      udelay(1)
+
+#define printk printf
+
+#define KERN_EMERG
+#define KERN_ALERT
+#define KERN_CRIT
+#define KERN_ERR
+#define KERN_WARNING
+#define KERN_NOTICE
+#define KERN_INFO
+#define KERN_DEBUG
+
+#define kmalloc(size, flags)   malloc(size)
+#define kfree(ptr)             free(ptr)
+
+/*
+ * ..and if you can't take the strict
+ * types, you can specify one yourself.
+ *
+ * Or not use min/max at all, of course.
+ */
+#define min_t(type,x,y) \
+       ({ type __x = (x); type __y = (y); __x < __y ? __x: __y; })
+#define max_t(type,x,y) \
+       ({ type __x = (x); type __y = (y); __x > __y ? __x: __y; })
+
+#define BUG() do { \
+       printf("U-Boot BUG at %s:%d!\n", __FILE__, __LINE__); \
+} while (0)
+
+#define BUG_ON(condition) do { if (condition) BUG(); } while(0)
+
+#define likely(x)      __builtin_expect(!!(x), 1)
+#define unlikely(x)    __builtin_expect(!!(x), 0)
+
+#define PAGE_SIZE      4096
+#endif
diff --git a/include/linux/mtd/mtd-abi.h b/include/linux/mtd/mtd-abi.h
new file mode 100644 (file)
index 0000000..afe96b5
--- /dev/null
@@ -0,0 +1,99 @@
+/*
+ * $Id: mtd-abi.h,v 1.7 2004/11/23 15:37:32 gleixner Exp $
+ *
+ * Portions of MTD ABI definition which are shared by kernel and user space 
+ */
+
+#ifndef __MTD_ABI_H__
+#define __MTD_ABI_H__
+
+struct erase_info_user {
+       uint32_t start;
+       uint32_t length;
+};
+
+struct mtd_oob_buf {
+       uint32_t start;
+       uint32_t length;
+       unsigned char *ptr;
+};
+
+#define MTD_ABSENT             0
+#define MTD_RAM                        1
+#define MTD_ROM                        2
+#define MTD_NORFLASH           3
+#define MTD_NANDFLASH          4
+#define MTD_PEROM              5
+#define MTD_OTHER              14
+#define MTD_UNKNOWN            15
+
+#define MTD_CLEAR_BITS         1       // Bits can be cleared (flash)
+#define MTD_SET_BITS           2       // Bits can be set
+#define MTD_ERASEABLE          4       // Has an erase function
+#define MTD_WRITEB_WRITEABLE   8       // Direct IO is possible
+#define MTD_VOLATILE           16      // Set for RAMs
+#define MTD_XIP                        32      // eXecute-In-Place possible
+#define MTD_OOB                        64      // Out-of-band data (NAND flash)
+#define MTD_ECC                        128     // Device capable of automatic ECC
+#define MTD_NO_VIRTBLOCKS      256     // Virtual blocks not allowed
+
+// Some common devices / combinations of capabilities
+#define MTD_CAP_ROM            0
+#define MTD_CAP_RAM            (MTD_CLEAR_BITS|MTD_SET_BITS|MTD_WRITEB_WRITEABLE)
+#define MTD_CAP_NORFLASH        (MTD_CLEAR_BITS|MTD_ERASEABLE)
+#define MTD_CAP_NANDFLASH       (MTD_CLEAR_BITS|MTD_ERASEABLE|MTD_OOB)
+#define MTD_WRITEABLE          (MTD_CLEAR_BITS|MTD_SET_BITS)
+
+
+// Types of automatic ECC/Checksum available
+#define MTD_ECC_NONE           0       // No automatic ECC available
+#define MTD_ECC_RS_DiskOnChip  1       // Automatic ECC on DiskOnChip
+#define MTD_ECC_SW             2       // SW ECC for Toshiba & Samsung devices
+
+/* ECC byte placement */
+#define MTD_NANDECC_OFF                0       // Switch off ECC (Not recommended)
+#define MTD_NANDECC_PLACE      1       // Use the given placement in the structure (YAFFS1 legacy mode)
+#define MTD_NANDECC_AUTOPLACE  2       // Use the default placement scheme
+#define MTD_NANDECC_PLACEONLY  3       // Use the given placement in the structure (Do not store ecc result on read)
+#define MTD_NANDECC_AUTOPL_USR         4       // Use the given autoplacement scheme rather than using the default
+
+struct mtd_info_user {
+       uint8_t type;
+       uint32_t flags;
+       uint32_t size;   // Total size of the MTD
+       uint32_t erasesize;
+       uint32_t oobblock;  // Size of OOB blocks (e.g. 512)
+       uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
+       uint32_t ecctype;
+       uint32_t eccsize;
+};
+
+struct region_info_user {
+       uint32_t offset;                /* At which this region starts, 
+                                        * from the beginning of the MTD */
+       uint32_t erasesize;             /* For this region */
+       uint32_t numblocks;             /* Number of blocks in this region */
+       uint32_t regionindex;
+};
+
+#define MEMGETINFO              _IOR('M', 1, struct mtd_info_user)
+#define MEMERASE                _IOW('M', 2, struct erase_info_user)
+#define MEMWRITEOOB             _IOWR('M', 3, struct mtd_oob_buf)
+#define MEMREADOOB              _IOWR('M', 4, struct mtd_oob_buf)
+#define MEMLOCK                 _IOW('M', 5, struct erase_info_user)
+#define MEMUNLOCK               _IOW('M', 6, struct erase_info_user)
+#define MEMGETREGIONCOUNT      _IOR('M', 7, int)
+#define MEMGETREGIONINFO       _IOWR('M', 8, struct region_info_user)
+#define MEMSETOOBSEL           _IOW('M', 9, struct nand_oobinfo)
+#define MEMGETOOBSEL           _IOR('M', 10, struct nand_oobinfo)
+#define MEMGETBADBLOCK         _IOW('M', 11, loff_t)
+#define MEMSETBADBLOCK         _IOW('M', 12, loff_t)
+
+struct nand_oobinfo {
+       uint32_t useecc;
+       uint32_t eccbytes;
+       uint32_t oobfree[8][2];
+       uint32_t eccpos[32];
+};
+
+#endif /* __MTD_ABI_H__ */
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h
new file mode 100644 (file)
index 0000000..9ef4cce
--- /dev/null
@@ -0,0 +1,214 @@
+/* 
+ * $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $
+ *
+ * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al.
+ *
+ * Released under GPL
+ */
+
+#ifndef __MTD_MTD_H__
+#define __MTD_MTD_H__
+#include <linux/types.h>
+#include <linux/mtd/mtd-abi.h>
+
+#define MAX_MTD_DEVICES 16
+
+#define MTD_ERASE_PENDING              0x01
+#define MTD_ERASING            0x02
+#define MTD_ERASE_SUSPEND      0x04
+#define MTD_ERASE_DONE          0x08
+#define MTD_ERASE_FAILED        0x10
+
+/* If the erase fails, fail_addr might indicate exactly which block failed.  If
+   fail_addr = 0xffffffff, the failure was not at the device level or was not
+   specific to any particular block. */
+struct erase_info {
+       struct mtd_info *mtd;
+       u_int32_t addr;
+       u_int32_t len;
+       u_int32_t fail_addr;
+       u_long time;
+       u_long retries;
+       u_int dev;
+       u_int cell;
+       void (*callback) (struct erase_info *self);
+       u_long priv;
+       u_char state;
+       struct erase_info *next;
+};
+
+struct mtd_erase_region_info {
+       u_int32_t offset;                       /* At which this region starts, from the beginning of the MTD */
+       u_int32_t erasesize;            /* For this region */
+       u_int32_t numblocks;            /* Number of blocks of erasesize in this region */
+};
+
+struct mtd_info {
+       u_char type;
+       u_int32_t flags;
+       u_int32_t size;  // Total size of the MTD
+
+       /* "Major" erase size for the device. Naïve users may take this
+        * to be the only erase size available, or may use the more detailed
+        * information below if they desire
+        */
+       u_int32_t erasesize;
+
+       u_int32_t oobblock;  // Size of OOB blocks (e.g. 512)
+       u_int32_t oobsize;   // Amount of OOB data per block (e.g. 16)
+       u_int32_t oobavail;  // Number of bytes in OOB area available for fs 
+       u_int32_t ecctype;
+       u_int32_t eccsize;
+       
+
+       // Kernel-only stuff starts here.
+       char *name;
+       int index;
+
+       // oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO)
+       struct nand_oobinfo oobinfo;
+
+       /* Data for variable erase regions. If numeraseregions is zero,
+        * it means that the whole device has erasesize as given above. 
+        */
+       int numeraseregions;
+       struct mtd_erase_region_info *eraseregions; 
+
+       /* This really shouldn't be here. It can go away in 2.5 */
+       u_int32_t bank_size;
+
+       int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
+
+       /* This stuff for eXecute-In-Place */
+       int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf);
+
+       /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
+       void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len);
+
+
+       int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+       int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+       int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+       int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+
+       int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+       int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+       /* 
+        * Methods to access the protection register area, present in some 
+        * flash devices. The user data is one time programmable but the
+        * factory data is read only. 
+        */
+       int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+       int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+       /* This function is not yet implemented */
+       int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+#if 0
+       /* kvec-based read/write methods. We need these especially for NAND flash,
+          with its limited number of write cycles per erase.
+          NB: The 'count' parameter is the number of _vectors_, each of 
+          which contains an (ofs, len) tuple.
+       */
+       int (*readv) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, size_t *retlen);
+       int (*readv_ecc) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, 
+               size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+       int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
+       int (*writev_ecc) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, 
+               size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+       /* Sync */
+       void (*sync) (struct mtd_info *mtd);
+#if 0
+       /* Chip-supported device locking */
+       int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+       int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+
+       /* Power Management functions */
+       int (*suspend) (struct mtd_info *mtd);
+       void (*resume) (struct mtd_info *mtd);
+#endif
+       /* Bad block management functions */
+       int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
+       int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
+
+       void *priv;
+
+       struct module *owner;
+       int usecount;
+};
+
+
+       /* Kernel-side ioctl definitions */
+
+extern int add_mtd_device(struct mtd_info *mtd);
+extern int del_mtd_device (struct mtd_info *mtd);
+
+extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
+
+extern void put_mtd_device(struct mtd_info *mtd);
+
+#if 0
+struct mtd_notifier {
+       void (*add)(struct mtd_info *mtd);
+       void (*remove)(struct mtd_info *mtd);
+       struct list_head list;
+};
+
+
+extern void register_mtd_user (struct mtd_notifier *new);
+extern int unregister_mtd_user (struct mtd_notifier *old);
+
+int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
+                      unsigned long count, loff_t to, size_t *retlen);
+
+int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
+                     unsigned long count, loff_t from, size_t *retlen);
+#endif
+
+#define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args)
+#define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d))
+#define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg)
+#define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args)
+#define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args)
+#define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args)
+#define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args)
+#define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args)
+#define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args)
+#define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args)
+#define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args)
+#define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd);  } while (0) 
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+void mtd_erase_callback(struct erase_info *instr);
+#else
+static inline void mtd_erase_callback(struct erase_info *instr)
+{
+       if (instr->callback)
+               instr->callback(instr);
+}
+#endif
+
+/*
+ * Debugging macro and defines
+ */
+#define MTD_DEBUG_LEVEL0       (0)     /* Quiet   */
+#define MTD_DEBUG_LEVEL1       (1)     /* Audible */
+#define MTD_DEBUG_LEVEL2       (2)     /* Loud    */
+#define MTD_DEBUG_LEVEL3       (3)     /* Noisy   */
+
+#ifdef CONFIG_MTD_DEBUG
+#define DEBUG(n, args...)                              \
+       do {                                            \
+               if (n <= CONFIG_MTD_DEBUG_VERBOSE)      \
+                       printk(KERN_INFO args);         \
+       } while(0)
+#else /* CONFIG_MTD_DEBUG */
+#define DEBUG(n, args...) do { } while(0)
+
+#endif /* CONFIG_MTD_DEBUG */
+
+#endif /* __MTD_MTD_H__ */
index 5236904959ef8262fdca1465481183bad27b7a1c..9a0108f78c289393bcec75e41146a6f41a6c8298 100644 (file)
@@ -2,10 +2,10 @@
  *  linux/include/linux/mtd/nand.h
  *
  *  Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com>
- *                     Steven J. Hill <sjhill@cotw.com>
- *                    Thomas Gleixner <gleixner@autronix.de>
+ *                     Steven J. Hill <sjhill@realitydiluted.com>
+ *                    Thomas Gleixner <tglx@linutronix.de>
  *
- * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $
+ * $Id: nand.h,v 1.68 2004/11/12 10:40:37 gleixner Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -24,7 +24,7 @@
  *                     bat later if I did something naughty.
  *   10-11-2000 SJH     Added private NAND flash structure for driver
  *   10-24-2000 SJH     Added prototype for 'nand_scan' function
- *   10-29-2001 TG     changed nand_chip structure to support
+ *   10-29-2001 TG     changed nand_chip structure to support 
  *                     hardwarespecific function for accessing control lines
  *   02-21-2002 TG     added support for different read/write adress and
  *                     ready/busy line access function
  *                     command delay times for different chips
  *   04-28-2002 TG     OOB config defines moved from nand.c to avoid duplicate
  *                     defines in jffs2/wbuf.c
+ *   08-07-2002 TG     forced bad block location to byte 5 of OOB, even if
+ *                     CONFIG_MTD_NAND_ECC_JFFS2 is not set
+ *   08-10-2002 TG     extensions to nand_chip structure to support HW-ECC
+ *
+ *   08-29-2002 tglx   nand_chip structure: data_poi for selecting 
+ *                     internal / fs-driver buffer
+ *                     support for 6byte/512byte hardware ECC
+ *                     read_ecc, write_ecc extended for different oob-layout
+ *                     oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB,
+ *                     NAND_YAFFS_OOB
+ *  11-25-2002 tglx    Added Manufacturer code FUJITSU, NATIONAL
+ *                     Split manufacturer and device ID structures 
+ *
+ *  02-08-2004 tglx    added option field to nand structure for chip anomalities
+ *  05-25-2004 tglx    added bad block table support, ST-MICRO manufacturer id
+ *                     update of nand_chip structure description
  */
 #ifndef __LINUX_MTD_NAND_H
 #define __LINUX_MTD_NAND_H
 
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+
+struct mtd_info;
+/* Scan and identify a NAND device */
+extern int nand_scan (struct mtd_info *mtd, int max_chips);
+/* Free resources held by the NAND device */
+extern void nand_release (struct mtd_info *mtd);
+
+/* Read raw data from the device without ECC */
+extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen);
+
+
+/* The maximum number of NAND chips in an array */
+#define NAND_MAX_CHIPS         8
+
+/* This constant declares the max. oobsize / page, which
+ * is supported now. If you add a chip with bigger oobsize/page
+ * adjust this accordingly.
+ */
+#define NAND_MAX_OOBSIZE       64
+
+/*
+ * Constants for hardware specific CLE/ALE/NCE function
+*/
+/* Select the chip by setting nCE to low */
+#define NAND_CTL_SETNCE        1
+/* Deselect the chip by setting nCE to high */
+#define NAND_CTL_CLRNCE                2
+/* Select the command latch by setting CLE to high */
+#define NAND_CTL_SETCLE                3
+/* Deselect the command latch by setting CLE to low */
+#define NAND_CTL_CLRCLE                4
+/* Select the address latch by setting ALE to high */
+#define NAND_CTL_SETALE                5
+/* Deselect the address latch by setting ALE to low */
+#define NAND_CTL_CLRALE                6
+/* Set write protection by setting WP to high. Not used! */
+#define NAND_CTL_SETWP         7
+/* Clear write protection by setting WP to low. Not used! */
+#define NAND_CTL_CLRWP         8
+
 /*
  * Standard NAND flash commands
  */
 #define NAND_CMD_READOOB       0x50
 #define NAND_CMD_ERASE1                0x60
 #define NAND_CMD_STATUS                0x70
+#define NAND_CMD_STATUS_MULTI  0x71
 #define NAND_CMD_SEQIN         0x80
 #define NAND_CMD_READID                0x90
 #define NAND_CMD_ERASE2                0xd0
 #define NAND_CMD_RESET         0xff
 
+/* Extended commands for large page devices */
+#define NAND_CMD_READSTART     0x30
+#define NAND_CMD_CACHEDPROG    0x15
+
+/* Status bits */
+#define NAND_STATUS_FAIL       0x01
+#define NAND_STATUS_FAIL_N1    0x02
+#define NAND_STATUS_TRUE_READY 0x20
+#define NAND_STATUS_READY      0x40
+#define NAND_STATUS_WP         0x80
+
+/* 
+ * Constants for ECC_MODES
+ */
+
+/* No ECC. Usage is not recommended ! */
+#define NAND_ECC_NONE          0
+/* Software ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_SOFT          1
+/* Hardware ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_HW3_256       2
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW3_512       3
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW6_512       4
+/* Hardware ECC 8 byte ECC per 512 Byte data */
+#define NAND_ECC_HW8_512       6
+/* Hardware ECC 12 byte ECC per 2048 Byte data */
+#define NAND_ECC_HW12_2048     7
+
 /*
+ * Constants for Hardware ECC
+*/
+/* Reset Hardware ECC for read */
+#define NAND_ECC_READ          0
+/* Reset Hardware ECC for write */
+#define NAND_ECC_WRITE         1
+/* Enable Hardware ECC before syndrom is read back from flash */
+#define NAND_ECC_READSYN       2
+
+/* Option constants for bizarre disfunctionality and real
+*  features
+*/
+/* Chip can not auto increment pages */
+#define NAND_NO_AUTOINCR       0x00000001
+/* Buswitdh is 16 bit */
+#define NAND_BUSWIDTH_16       0x00000002
+/* Device supports partial programming without padding */
+#define NAND_NO_PADDING                0x00000004
+/* Chip has cache program function */
+#define NAND_CACHEPRG          0x00000008
+/* Chip has copy back function */
+#define NAND_COPYBACK          0x00000010
+/* AND Chip which has 4 banks and a confusing page / block 
+ * assignment. See Renesas datasheet for further information */
+#define NAND_IS_AND            0x00000020
+/* Chip has a array of 4 pages which can be read without
+ * additional ready /busy waits */
+#define NAND_4PAGE_ARRAY       0x00000040 
+
+/* Options valid for Samsung large page devices */
+#define NAND_SAMSUNG_LP_OPTIONS \
+       (NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK)
+
+/* Macros to identify the above */
+#define NAND_CANAUTOINCR(chip) (!(chip->options & NAND_NO_AUTOINCR))
+#define NAND_MUST_PAD(chip) (!(chip->options & NAND_NO_PADDING))
+#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
+#define NAND_HAS_COPYBACK(chip) ((chip->options & NAND_COPYBACK))
+
+/* Mask to zero out the chip options, which come from the id table */
+#define NAND_CHIPOPTIONS_MSK   (0x0000ffff & ~NAND_NO_AUTOINCR)
+
+/* Non chip related options */
+/* Use a flash based bad block table. This option is passed to the
+ * default bad block table function. */
+#define NAND_USE_FLASH_BBT     0x00010000
+/* The hw ecc generator provides a syndrome instead a ecc value on read 
+ * This can only work if we have the ecc bytes directly behind the 
+ * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
+#define NAND_HWECC_SYNDROME    0x00020000
+
+
+/* Options set by nand scan */
+/* Nand scan has allocated oob_buf */
+#define NAND_OOBBUF_ALLOC      0x40000000
+/* Nand scan has allocated data_buf */
+#define NAND_DATABUF_ALLOC     0x80000000
+
+
+/*
+ * nand_state_t - chip states
  * Enumeration for NAND flash chip state
  */
 typedef enum {
@@ -58,71 +208,138 @@ typedef enum {
        FL_READING,
        FL_WRITING,
        FL_ERASING,
-       FL_SYNCING
+       FL_SYNCING,
+       FL_CACHEDPRG,
 } nand_state_t;
 
+/* Keep gcc happy */
+struct nand_chip;
 
-/*
- * NAND Private Flash Chip Data
- *
- * Structure overview:
- *
- *  IO_ADDR - address to access the 8 I/O lines of the flash device
- *
- *  hwcontrol - hardwarespecific function for accesing control-lines
- *
- *  dev_ready - hardwarespecific function for accesing device ready/busy line
- *
- *  chip_lock - spinlock used to protect access to this structure
- *
- *  wq - wait queue to sleep on if a NAND operation is in progress
- *
- *  state - give the current state of the NAND device
- *
- *  page_shift - number of address bits in a page (column address bits)
- *
- *  data_buf - data buffer passed to/from MTD user modules
- *
- *  data_cache - data cache for redundant page access and shadow for
- *              ECC failure
- *
- *  ecc_code_buf - used only for holding calculated or read ECCs for
- *                 a page read or written when ECC is in use
- *
- *  reserved - padding to make structure fall on word boundary if
- *             when ECC is in use
+#if 0
+/**
+ * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independend devices
+ * @lock:               protection lock  
+ * @active:            the mtd device which holds the controller currently
  */
-struct Nand {
-       char floor, chip;
-       unsigned long curadr;
-       unsigned char curmode;
-       /* Also some erase/write/pipeline info when we get that far */
+struct nand_hw_control {
+       spinlock_t       lock;
+       struct nand_chip *active;
 };
+#endif
 
+/**
+ * struct nand_chip - NAND Private Flash Chip Data
+ * @IO_ADDR_R:         [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device 
+ * @IO_ADDR_W:         [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device 
+ * @read_byte:         [REPLACEABLE] read one byte from the chip
+ * @write_byte:                [REPLACEABLE] write one byte to the chip
+ * @read_word:         [REPLACEABLE] read one word from the chip
+ * @write_word:                [REPLACEABLE] write one word to the chip
+ * @write_buf:         [REPLACEABLE] write data from the buffer to the chip
+ * @read_buf:          [REPLACEABLE] read data from the chip into the buffer
+ * @verify_buf:                [REPLACEABLE] verify buffer contents against the chip data
+ * @select_chip:       [REPLACEABLE] select chip nr
+ * @block_bad:         [REPLACEABLE] check, if the block is bad
+ * @block_markbad:     [REPLACEABLE] mark the block bad
+ * @hwcontrol:         [BOARDSPECIFIC] hardwarespecific function for accesing control-lines
+ * @dev_ready:         [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
+ *                     If set to NULL no access to ready/busy is available and the ready/busy information
+ *                     is read from the chip status register
+ * @cmdfunc:           [REPLACEABLE] hardwarespecific function for writing commands to the chip
+ * @waitfunc:          [REPLACEABLE] hardwarespecific function for wait on ready
+ * @calculate_ecc:     [REPLACEABLE] function for ecc calculation or readback from ecc hardware
+ * @correct_data:      [REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw)
+ * @enable_hwecc:      [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
+ *                     be provided if a hardware ECC is available
+ * @erase_cmd:         [INTERN] erase command write function, selectable due to AND support
+ * @scan_bbt:          [REPLACEABLE] function to scan bad block table
+ * @eccmode:           [BOARDSPECIFIC] mode of ecc, see defines 
+ * @eccsize:           [INTERN] databytes used per ecc-calculation
+ * @eccbytes:          [INTERN] number of ecc bytes per ecc-calculation step
+ * @eccsteps:          [INTERN] number of ecc calculation steps per page
+ * @chip_delay:                [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
+ * @chip_lock:         [INTERN] spinlock used to protect access to this structure and the chip
+ * @wq:                        [INTERN] wait queue to sleep on if a NAND operation is in progress
+ * @state:             [INTERN] the current state of the NAND device
+ * @page_shift:                [INTERN] number of address bits in a page (column address bits)
+ * @phys_erase_shift:  [INTERN] number of address bits in a physical eraseblock
+ * @bbt_erase_shift:   [INTERN] number of address bits in a bbt entry
+ * @chip_shift:                [INTERN] number of address bits in one chip
+ * @data_buf:          [INTERN] internal buffer for one page + oob 
+ * @oob_buf:           [INTERN] oob buffer for one eraseblock
+ * @oobdirty:          [INTERN] indicates that oob_buf must be reinitialized
+ * @data_poi:          [INTERN] pointer to a data buffer
+ * @options:           [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
+ *                     special functionality. See the defines for further explanation
+ * @badblockpos:       [INTERN] position of the bad block marker in the oob area
+ * @numchips:          [INTERN] number of physical chips
+ * @chipsize:          [INTERN] the size of one chip for multichip arrays
+ * @pagemask:          [INTERN] page number mask = number of (pages / chip) - 1
+ * @pagebuf:           [INTERN] holds the pagenumber which is currently in data_buf
+ * @autooob:           [REPLACEABLE] the default (auto)placement scheme
+ * @bbt:               [INTERN] bad block table pointer
+ * @bbt_td:            [REPLACEABLE] bad block table descriptor for flash lookup
+ * @bbt_md:            [REPLACEABLE] bad block table mirror descriptor
+ * @badblock_pattern:  [REPLACEABLE] bad block scan pattern used for initial bad block scan 
+ * @controller:                [OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices
+ * @priv:              [OPTIONAL] pointer to private chip date
+ */
 struct nand_chip {
+       void  __iomem   *IO_ADDR_R;
+       void  __iomem   *IO_ADDR_W;
+       
+       u_char          (*read_byte)(struct mtd_info *mtd);
+       void            (*write_byte)(struct mtd_info *mtd, u_char byte);
+       u16             (*read_word)(struct mtd_info *mtd);
+       void            (*write_word)(struct mtd_info *mtd, u16 word);
+       
+       void            (*write_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+       void            (*read_buf)(struct mtd_info *mtd, u_char *buf, int len);
+       int             (*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+       void            (*select_chip)(struct mtd_info *mtd, int chip);
+       int             (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
+       int             (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
+       void            (*hwcontrol)(struct mtd_info *mtd, int cmd);
+       int             (*dev_ready)(struct mtd_info *mtd);
+       void            (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
+       int             (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
+       int             (*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+       int             (*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+       void            (*enable_hwecc)(struct mtd_info *mtd, int mode);
+       void            (*erase_cmd)(struct mtd_info *mtd, int page);
+       int             (*scan_bbt)(struct mtd_info *mtd);
+       int             eccmode;
+       int             eccsize;
+       int             eccbytes;
+       int             eccsteps;
+       int             chip_delay;
+#if 0
+       spinlock_t      chip_lock;
+       wait_queue_head_t wq;
+       nand_state_t    state;
+#endif
        int             page_shift;
+       int             phys_erase_shift;
+       int             bbt_erase_shift;
+       int             chip_shift;
        u_char          *data_buf;
-       u_char          *data_cache;
-       int             cache_page;
-       u_char          ecc_code_buf[6];
-       u_char          reserved[2];
-       char ChipID; /* Type of DiskOnChip */
-       struct Nand *chips;
-       int chipshift;
-       char* chips_name;
-       unsigned long erasesize;
-       unsigned long mfr; /* Flash IDs - only one type of flash per device */
-       unsigned long id;
-       char* name;
-       int numchips;
-       char page256;
-       char pageadrlen;
-       unsigned long IO_ADDR;  /* address to access the 8 I/O lines to the flash device */
-       unsigned long totlen;
-       uint oobblock;  /* Size of OOB blocks (e.g. 512) */
-       uint oobsize;   /* Amount of OOB data per block (e.g. 16) */
-       uint eccsize;
-       int bus16;
+       u_char          *oob_buf;
+       int             oobdirty;
+       u_char          *data_poi;
+       unsigned int    options;
+       int             badblockpos;
+       int             numchips;
+       unsigned long   chipsize;
+       int             pagemask;
+       int             pagebuf;
+       struct nand_oobinfo     *autooob;
+       uint8_t         *bbt;
+       struct nand_bbt_descr   *bbt_td;
+       struct nand_bbt_descr   *bbt_md;
+       struct nand_bbt_descr   *badblock_pattern;
+       struct nand_hw_control  *controller;
+       void            *priv;
 };
 
 /*
@@ -130,71 +347,125 @@ struct nand_chip {
  */
 #define NAND_MFR_TOSHIBA       0x98
 #define NAND_MFR_SAMSUNG       0xec
+#define NAND_MFR_FUJITSU       0x04
+#define NAND_MFR_NATIONAL      0x8f
+#define NAND_MFR_RENESAS       0x07
+#define NAND_MFR_STMICRO       0x20
 
-/*
- * NAND Flash Device ID Structure
- *
- * Structure overview:
- *
- *  name - Complete name of device
- *
- *  manufacture_id - manufacturer ID code of device.
- *
- *  model_id - model ID code of device.
- *
- *  chipshift - total number of address bits for the device which
- *              is used to calculate address offsets and the total
- *              number of bytes the device is capable of.
+/**
+ * struct nand_flash_dev - NAND Flash Device ID Structure
  *
- *  page256 - denotes if flash device has 256 byte pages or not.
- *
- *  pageadrlen - number of bytes minus one needed to hold the
- *               complete address into the flash array. Keep in
- *               mind that when a read or write is done to a
- *               specific address, the address is input serially
- *               8 bits at a time. This structure member is used
- *               by the read/write routines as a loop index for
- *               shifting the address out 8 bits at a time.
- *
- *  erasesize - size of an erase block in the flash device.
+ * @name:      Identify the device type
+ * @id:        device ID code
+ * @pagesize:          Pagesize in bytes. Either 256 or 512 or 0
+ *             If the pagesize is 0, then the real pagesize 
+ *             and the eraseize are determined from the
+ *             extended id bytes in the chip
+ * @erasesize:         Size of an erase block in the flash device.
+ * @chipsize:          Total chipsize in Mega Bytes
+ * @options:   Bitfield to store chip relevant options
  */
 struct nand_flash_dev {
-       char * name;
-       int manufacture_id;
-       int model_id;
-       int chipshift;
-       char page256;
-       char pageadrlen;
+       char *name;
+       int id;
+       unsigned long pagesize;
+       unsigned long chipsize;
        unsigned long erasesize;
-       int bus16;
+       unsigned long options;
+};
+
+/**
+ * struct nand_manufacturers - NAND Flash Manufacturer ID Structure
+ * @name:      Manufacturer name
+ * @id:        manufacturer ID code of device.
+*/
+struct nand_manufacturers {
+       int id;
+       char * name;
+};
+
+extern struct nand_flash_dev nand_flash_ids[];
+extern struct nand_manufacturers nand_manuf_ids[];
+
+/** 
+ * struct nand_bbt_descr - bad block table descriptor
+ * @options:   options for this descriptor
+ * @pages:     the page(s) where we find the bbt, used with option BBT_ABSPAGE
+ *             when bbt is searched, then we store the found bbts pages here.
+ *             Its an array and supports up to 8 chips now
+ * @offs:      offset of the pattern in the oob area of the page
+ * @veroffs:   offset of the bbt version counter in the oob are of the page
+ * @version:   version read from the bbt page during scan
+ * @len:       length of the pattern, if 0 no pattern check is performed
+ * @maxblocks: maximum number of blocks to search for a bbt. This number of
+ *             blocks is reserved at the end of the device where the tables are 
+ *             written.
+ * @reserved_block_code: if non-0, this pattern denotes a reserved (rather than
+ *              bad) block in the stored bbt
+ * @pattern:   pattern to identify bad block table or factory marked good / 
+ *             bad blocks, can be NULL, if len = 0
+ *
+ * Descriptor for the bad block table marker and the descriptor for the 
+ * pattern which identifies good and bad blocks. The assumption is made
+ * that the pattern and the version count are always located in the oob area
+ * of the first block.
+ */
+struct nand_bbt_descr {
+       int     options;
+       int     pages[NAND_MAX_CHIPS];
+       int     offs;
+       int     veroffs;
+       uint8_t version[NAND_MAX_CHIPS];
+       int     len;
+       int     maxblocks;
+       int     reserved_block_code;
+       uint8_t *pattern;
 };
 
+/* Options for the bad block table descriptors */
+
+/* The number of bits used per block in the bbt on the device */
+#define NAND_BBT_NRBITS_MSK    0x0000000F
+#define NAND_BBT_1BIT          0x00000001
+#define NAND_BBT_2BIT          0x00000002
+#define NAND_BBT_4BIT          0x00000004
+#define NAND_BBT_8BIT          0x00000008
+/* The bad block table is in the last good block of the device */
+#define        NAND_BBT_LASTBLOCK      0x00000010
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_ABSPAGE       0x00000020
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_SEARCH                0x00000040
+/* bbt is stored per chip on multichip devices */
+#define NAND_BBT_PERCHIP       0x00000080
+/* bbt has a version counter at offset veroffs */
+#define NAND_BBT_VERSION       0x00000100
+/* Create a bbt if none axists */
+#define NAND_BBT_CREATE                0x00000200
+/* Search good / bad pattern through all pages of a block */
+#define NAND_BBT_SCANALLPAGES  0x00000400
+/* Scan block empty during good / bad block scan */
+#define NAND_BBT_SCANEMPTY     0x00000800
+/* Write bbt if neccecary */
+#define NAND_BBT_WRITE         0x00001000
+/* Read and write back block contents when writing bbt */
+#define NAND_BBT_SAVECONTENT   0x00002000
+/* Search good / bad pattern on the first and the second page */
+#define NAND_BBT_SCAN2NDPAGE   0x00004000
+
+/* The maximum number of blocks to scan for a bbt */
+#define NAND_BBT_SCAN_MAXBLOCKS        4
+
+extern int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd);
+extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs);
+extern int nand_default_bbt (struct mtd_info *mtd);
+extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
+extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
+
 /*
 * Constants for oob configuration
 */
-#define NAND_NOOB_ECCPOS0              0
-#define NAND_NOOB_ECCPOS1              1
-#define NAND_NOOB_ECCPOS2              2
-#define NAND_NOOB_ECCPOS3              3
-#define NAND_NOOB_ECCPOS4              6
-#define NAND_NOOB_ECCPOS5              7
-#define NAND_NOOB_BADBPOS              -1
-#define NAND_NOOB_ECCVPOS              -1
-
-#define NAND_JFFS2_OOB_ECCPOS0         0
-#define NAND_JFFS2_OOB_ECCPOS1         1
-#define NAND_JFFS2_OOB_ECCPOS2         2
-#define NAND_JFFS2_OOB_ECCPOS3         3
-#define NAND_JFFS2_OOB_ECCPOS4         6
-#define NAND_JFFS2_OOB_ECCPOS5         7
-#define NAND_JFFS2_OOB_BADBPOS         5
-#define NAND_JFFS2_OOB_ECCVPOS         4
-
-#define NAND_JFFS2_OOB8_FSDAPOS                6
-#define NAND_JFFS2_OOB16_FSDAPOS       8
-#define NAND_JFFS2_OOB8_FSDALEN                2
-#define NAND_JFFS2_OOB16_FSDALEN       8
-
-unsigned long nand_probe(unsigned long physadr);
+#define NAND_SMALL_BADBLOCK_POS                5
+#define NAND_LARGE_BADBLOCK_POS                0
 
 #endif /* __LINUX_MTD_NAND_H */
diff --git a/include/linux/mtd/nand_ecc.h b/include/linux/mtd/nand_ecc.h
new file mode 100644 (file)
index 0000000..12c5bc3
--- /dev/null
@@ -0,0 +1,30 @@
+/*
+ *  drivers/mtd/nand_ecc.h
+ *
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ * $Id: nand_ecc.h,v 1.4 2004/06/17 02:35:02 dbrown Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This file is the header for the ECC algorithm.
+ */
+
+#ifndef __MTD_NAND_ECC_H__
+#define __MTD_NAND_ECC_H__
+
+struct mtd_info;
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC_H__ */
index a3d0363a2a52de9b2bc0d49d59b6d5b5cb0b41da..75c305b569fdc57e6edccd2e469ddf8631a8af5d 100644 (file)
@@ -49,6 +49,7 @@ static struct nand_flash_dev nand_flash_ids[] = {
        {"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
        {"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
        {"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
+       {"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
        {NULL,}
 };
 
diff --git a/include/nand.h b/include/nand.h
new file mode 100644 (file)
index 0000000..29580da
--- /dev/null
@@ -0,0 +1,56 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.         See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#ifndef _NAND_H_
+#define _NAND_H_
+
+#include <linux_compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+typedef struct mtd_info nand_info_t;
+
+extern int nand_curr_device;
+extern nand_info_t nand_info[];
+
+static inline int nand_read(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+       return info->read(info, ofs, *len, len, buf);
+}
+
+static inline int nand_write(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+       return info->write(info, ofs, *len, len, buf);
+}
+
+static inline int nand_block_isbad(nand_info_t *info, ulong ofs)
+{
+       return info->block_isbad(info, ofs);
+}
+
+static inline int nand_erase(nand_info_t *info, ulong off, ulong size)
+{
+       return 0; /* FIXME */
+}
+
+#endif