*/
unsigned int poly[5]; /* Field specification for curves over GF(2^m).
- * The irreducible f(t) is then of the form:
- * t^poly[0] + t^poly[1] + ... + t^poly[k]
- * where m = poly[0] > poly[1] > ... > poly[k] = 0.
- */
+ * The irreducible f(t) is then of the form:
+ * t^poly[0] + t^poly[1] + ... + t^poly[k]
+ * where m = poly[0] > poly[1] > ... > poly[k] = 0.
+ */
BIGNUM a, b; /* Curve coefficients.
* (Here the assumption is that BIGNUMs can be used
if (!BN_hex2bn(&a, "3")) ABORT;
if (!BN_hex2bn(&b, "1")) ABORT;
- group = EC_GROUP_new(EC_GF2m_simple_method()); /* applications should use EC_GROUP_new_curve_GFp
- * so that the library gets to choose the EC_METHOD */
+ group = EC_GROUP_new(EC_GF2m_simple_method()); /* applications should use EC_GROUP_new_curve_GF2m
+ * so that the library gets to choose the EC_METHOD */
if (!group) ABORT;
if (!EC_GROUP_set_curve_GF2m(group, p, a, b, ctx)) ABORT;
BN_print_fp(stdout, a);
fprintf(stdout, "\n b = 0x");
BN_print_fp(stdout, b);
- fprintf(stdout, "\n");
+ fprintf(stdout, "\n(0x... means binary polynomial)\n");
P = EC_POINT_new(group);
Q = EC_POINT_new(group);
RAND_seed(rnd_seed, sizeof rnd_seed); /* or BN_generate_prime may fail */
prime_field_tests();
+ puts("");
char2_field_tests();
ENGINE_cleanup();