/*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
*/
#include "bn_prime.h"
-static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx,
- BN_MONT_CTX *mont);
static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
const BIGNUM *add, const BIGNUM *rem,
BN_CTX *ctx);
+#if BN_BITS2 == 64
+# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
+#else
+# define BN_DEF(lo, hi) lo, hi
+#endif
+
+/*
+ * See SP800 89 5.3.3 (Step f)
+ * The product of the set of primes ranging from 3 to 751
+ * Generated using process in test/bn_internal_test.c test_bn_small_factors().
+ * This includes 751 (which is not currently included in SP 800-89).
+ */
+static const BN_ULONG small_prime_factors[] = {
+ BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
+ BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
+ BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
+ BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
+ BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
+ BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
+ BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
+ BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
+ (BN_ULONG)0x000017b1
+};
+
+#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
+static const BIGNUM _bignum_small_prime_factors = {
+ (BN_ULONG *)small_prime_factors,
+ BN_SMALL_PRIME_FACTORS_TOP,
+ BN_SMALL_PRIME_FACTORS_TOP,
+ 0,
+ BN_FLG_STATIC_DATA
+};
+
+const BIGNUM *bn_get0_small_factors(void)
+{
+ return &_bignum_small_prime_factors;
+}
+
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
/* No callback means continue */
return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
}
-int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
+/* See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. */
+int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx_passed,
int do_trial_division, BN_GENCB *cb)
{
- int i, j, ret = -1;
- int k;
+ int i, status, ret = -1;
BN_CTX *ctx = NULL;
- BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
- BN_MONT_CTX *mont = NULL;
- /* Take care of the really small primes 2 & 3 */
- if (BN_is_word(a, 2) || BN_is_word(a, 3))
- return 1;
-
- /* Check odd and bigger than 1 */
- if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
+ /* w must be bigger than 1 */
+ if (BN_cmp(w, BN_value_one()) <= 0)
return 0;
- if (checks == BN_prime_checks)
- checks = BN_prime_checks_for_size(BN_num_bits(a));
+ /* w must be odd */
+ if (BN_is_odd(w)) {
+ /* Take care of the really small prime 3 */
+ if (BN_is_word(w, 3))
+ return 1;
+ } else {
+ /* 2 is the only even prime */
+ return BN_is_word(w, 2);
+ }
/* first look for small factors */
if (do_trial_division) {
for (i = 1; i < NUMPRIMES; i++) {
- BN_ULONG mod = BN_mod_word(a, primes[i]);
+ BN_ULONG mod = BN_mod_word(w, primes[i]);
if (mod == (BN_ULONG)-1)
- goto err;
+ return -1;
if (mod == 0)
- return BN_is_word(a, primes[i]);
+ return BN_is_word(w, primes[i]);
}
if (!BN_GENCB_call(cb, 1, -1))
- goto err;
+ return -1;
}
-
if (ctx_passed != NULL)
ctx = ctx_passed;
else if ((ctx = BN_CTX_new()) == NULL)
goto err;
- BN_CTX_start(ctx);
- A1 = BN_CTX_get(ctx);
- A3 = BN_CTX_get(ctx);
- A1_odd = BN_CTX_get(ctx);
- check = BN_CTX_get(ctx);
- if (check == NULL)
+ ret = bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status);
+ if (!ret)
goto err;
+ ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
+err:
+ if (ctx_passed == NULL)
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+/*
+ * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
+ * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
+ * The Step numbers listed in the code refer to the enhanced case.
+ *
+ * if enhanced is set, then status returns one of the following:
+ * BN_PRIMETEST_PROBABLY_PRIME
+ * BN_PRIMETEST_COMPOSITE_WITH_FACTOR
+ * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
+ * if enhanced is zero, then status returns either
+ * BN_PRIMETEST_PROBABLY_PRIME or
+ * BN_PRIMETEST_COMPOSITE
+ *
+ * returns 0 if there was an error, otherwise it returns 1.
+ */
+int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
+ BN_GENCB *cb, int enhanced, int *status)
+{
+ int i, j, a, ret = 0;
+ BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
+ BN_MONT_CTX *mont = NULL;
- /* compute A1 := a - 1 */
- if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
+ /* w must be odd */
+ if (!BN_is_odd(w))
+ return 0;
+
+ BN_CTX_start(ctx);
+ g = BN_CTX_get(ctx);
+ w1 = BN_CTX_get(ctx);
+ w3 = BN_CTX_get(ctx);
+ x = BN_CTX_get(ctx);
+ m = BN_CTX_get(ctx);
+ z = BN_CTX_get(ctx);
+ b = BN_CTX_get(ctx);
+
+ if (!(b != NULL
+ /* w1 := w - 1 */
+ && BN_copy(w1, w)
+ && BN_sub_word(w1, 1)
+ /* w3 := w - 3 */
+ && BN_copy(w3, w)
+ && BN_sub_word(w3, 3)))
goto err;
- /* compute A3 := a - 3 */
- if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
+
+ /* check w is larger than 3, otherwise the random b will be too small */
+ if (BN_is_zero(w3) || BN_is_negative(w3))
goto err;
- /* write A1 as A1_odd * 2^k */
- k = 1;
- while (!BN_is_bit_set(A1, k))
- k++;
- if (!BN_rshift(A1_odd, A1, k))
+ /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
+ a = 1;
+ while (!BN_is_bit_set(w1, a))
+ a++;
+ /* (Step 2) m = (w-1) / 2^a */
+ if (!BN_rshift(m, w1, a))
goto err;
/* Montgomery setup for computations mod a */
mont = BN_MONT_CTX_new();
- if (mont == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, a, ctx))
+ if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
goto err;
- for (i = 0; i < checks; i++) {
- /* 1 < check < a-1 */
- if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
- goto err;
+ if (iterations == BN_prime_checks)
+ iterations = BN_prime_checks_for_size(BN_num_bits(w));
- j = witness(check, a, A1, A1_odd, k, ctx, mont);
- if (j == -1)
+ /* (Step 4) */
+ for (i = 0; i < iterations; ++i) {
+ /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
+ if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */
goto err;
- if (j) {
- ret = 0;
+
+ if (enhanced) {
+ /* (Step 4.3) */
+ if (!BN_gcd(g, b, w, ctx))
+ goto err;
+ /* (Step 4.4) */
+ if (!BN_is_one(g)) {
+ *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
+ ret = 1;
+ goto err;
+ }
+ }
+ /* (Step 4.5) z = b^m mod w */
+ if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
goto err;
+ /* (Step 4.6) if (z = 1 or z = w-1) */
+ if (BN_is_one(z) || BN_cmp(z, w1) == 0)
+ goto outer_loop;
+ /* (Step 4.7) for j = 1 to a-1 */
+ for (j = 1; j < a ; ++j) {
+ /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
+ if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
+ goto err;
+ /* (Step 4.7.3) */
+ if (BN_cmp(z, w1) == 0)
+ goto outer_loop;
+ /* (Step 4.7.4) */
+ if (BN_is_one(z))
+ goto composite;
}
if (!BN_GENCB_call(cb, 1, i))
goto err;
+ /* At this point z = b^((w-1)/2) mod w */
+ /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
+ if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
+ goto err;
+ /* (Step 4.10) */
+ if (BN_is_one(z))
+ goto composite;
+ /* (Step 4.11) x = b^(w-1) mod w */
+ if (!BN_copy(x, z))
+ goto err;
+composite:
+ if (enhanced) {
+ /* (Step 4.1.2) g = GCD(x-1, w) */
+ if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
+ goto err;
+ /* (Steps 4.1.3 - 4.1.4) */
+ if (BN_is_one(g))
+ *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
+ else
+ *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
+ } else {
+ *status = BN_PRIMETEST_COMPOSITE;
+ }
+ ret = 1;
+ goto err;
+outer_loop: ;
+ /* (Step 4.1.5) */
}
+ /* (Step 5) */
+ *status = BN_PRIMETEST_PROBABLY_PRIME;
ret = 1;
- err:
- if (ctx != NULL) {
- BN_CTX_end(ctx);
- if (ctx_passed == NULL)
- BN_CTX_free(ctx);
- }
+err:
+ BN_clear(g);
+ BN_clear(w1);
+ BN_clear(w3);
+ BN_clear(x);
+ BN_clear(m);
+ BN_clear(z);
+ BN_clear(b);
+ BN_CTX_end(ctx);
BN_MONT_CTX_free(mont);
-
return ret;
}
-static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx,
- BN_MONT_CTX *mont)
-{
- if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
- return -1;
- if (BN_is_one(w))
- return 0; /* probably prime */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- while (--k) {
- if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
- return -1;
- if (BN_is_one(w))
- return 1; /* 'a' is composite, otherwise a previous 'w'
- * would have been == -1 (mod 'a') */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- }
- /*
- * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
- * it is neither -1 nor +1 -- so 'a' cannot be prime
- */
- bn_check_top(w);
- return 1;
-}
-
static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
{
int i;
--- /dev/null
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+/*
+ * According to NIST SP800-131A "Transitioning the use of cryptographic
+ * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
+ * allowed for signatures (Table 2) or key transport (Table 5). In the code
+ * below any attempt to generate 1024 bit RSA keys will result in an error (Note
+ * that digital signature verification can still use deprecated 1024 bit keys).
+ *
+ * Also see FIPS1402IG A.14
+ * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
+ * must be generated before the module generates the RSA primes p and q.
+ * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and
+ * 3072 bits only, the min/max total length of the auxiliary primes.
+ * When implementing the RSA signature generation algorithm
+ * with other approved RSA modulus sizes, the vendor shall use the limitations
+ * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of
+ * FIPS 186-4 whose length does not exceed that of the implementation's RSA
+ * modulus. In particular, when generating the primes for the 4096-bit RSA
+ * modulus the limitations stated for the 3072-bit modulus shall apply.
+ */
+#include <stdio.h>
+#include <openssl/bn.h>
+#include "bn_lcl.h"
+#include "internal/bn_int.h"
+
+/*
+ * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2".
+ *
+ * Params:
+ * nbits The key size in bits.
+ * Returns:
+ * The minimum size of the auxiliary primes or 0 if nbits is invalid.
+ */
+static int bn_rsa_fips186_4_aux_prime_min_size(int nbits)
+{
+ if (nbits >= 3072)
+ return 171;
+ if (nbits == 2048)
+ return 141;
+ return 0;
+}
+
+/*
+ * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and
+ * len(q1) + len(q2) for p,q Probable Primes".
+ *
+ * Params:
+ * nbits The key size in bits.
+ * Returns:
+ * The maximum length or 0 if nbits is invalid.
+ */
+static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
+{
+ if (nbits >= 3072)
+ return 1518;
+ if (nbits == 2048)
+ return 1007;
+ return 0;
+}
+
+/*
+ * FIPS 186-4 Table C.3 for error probability of 2^-100
+ * Minimum number of Miller Rabin Rounds for p1, p2, q1 & q2.
+ *
+ * Params:
+ * aux_prime_bits The auxiliary prime size in bits.
+ * Returns:
+ * The minimum number of Miller Rabin Rounds for an auxiliary prime, or
+ * 0 if aux_prime_bits is invalid.
+ */
+static int bn_rsa_fips186_4_aux_prime_MR_min_checks(int aux_prime_bits)
+{
+ if (aux_prime_bits > 170)
+ return 27;
+ if (aux_prime_bits > 140)
+ return 32;
+ return 0; /* Error case */
+}
+
+/*
+ * FIPS 186-4 Table C.3 for error probability of 2^-100
+ * Minimum number of Miller Rabin Rounds for p, q.
+ *
+ * Params:
+ * nbits The key size in bits.
+ * Returns:
+ * The minimum number of Miller Rabin Rounds required,
+ * or 0 if nbits is invalid.
+ */
+int bn_rsa_fips186_4_prime_MR_min_checks(int nbits)
+{
+ if (nbits >= 3072) /* > 170 */
+ return 3;
+ if (nbits == 2048) /* > 140 */
+ return 4;
+ return 0; /* Error case */
+}
+
+/*
+ * Find the first odd integer that is a probable prime.
+ *
+ * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
+ *
+ * Params:
+ * Xp1 The passed in starting point to find a probably prime.
+ * p1 The returned probable prime (first odd integer >= Xp1)
+ * ctx A BN_CTX object.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 on success otherwise it returns 0.
+ */
+static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
+ BIGNUM *p1, BN_CTX *ctx,
+ BN_GENCB *cb)
+{
+ int ret = 0;
+ int i = 0;
+ int checks = bn_rsa_fips186_4_aux_prime_MR_min_checks(BN_num_bits(Xp1));
+
+ if (checks == 0 || BN_copy(p1, Xp1) == NULL)
+ return 0;
+
+ /* Find the first odd number >= Xp1 that is probably prime */
+ for(;;) {
+ i++;
+ BN_GENCB_call(cb, 0, i);
+ /* MR test with trial division */
+ if (BN_is_prime_fasttest_ex(p1, checks, ctx, 1, cb))
+ break;
+ /* Get next odd number */
+ if (!BN_add_word(p1, 2))
+ goto err;
+ }
+ BN_GENCB_call(cb, 2, i);
+ ret = 1;
+err:
+ return ret;
+}
+
+/*
+ * Generate a probable prime (p or q).
+ *
+ * See FIPS 186-4 B.3.6 (Steps 4 & 5)
+ *
+ * Params:
+ * p The returned probable prime.
+ * Xpout An optionally returned random number used during generation of p.
+ * p1, p2 The returned auxiliary primes. If NULL they are not returned.
+ * Xp An optional passed in value (that is random number used during
+ * generation of p).
+ * Xp1, Xp2 Optional passed in values that are normally generated
+ * internally. Used to find p1, p2.
+ * nlen The bit length of the modulus (the key size).
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 on success otherwise it returns 0.
+ */
+int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
+ BIGNUM *p1, BIGNUM *p2,
+ const BIGNUM *Xp, const BIGNUM *Xp1,
+ const BIGNUM *Xp2, int nlen,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
+{
+ int ret = 0;
+ BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
+ int bitlen;
+
+ if (p == NULL || Xpout == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+
+ p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
+ p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
+ Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
+ Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
+ if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
+ goto err;
+
+ bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen);
+ if (bitlen == 0)
+ goto err;
+
+ /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
+ if (Xp1 == NULL) {
+ /* Set the top and bottom bits to make it odd and the correct size */
+ if (!BN_priv_rand(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
+ goto err;
+ }
+ /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
+ if (Xp2 == NULL) {
+ /* Set the top and bottom bits to make it odd and the correct size */
+ if (!BN_priv_rand(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
+ goto err;
+ }
+
+ /* (Steps 4.2/5.2) - find first auxiliary probable primes */
+ if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
+ || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
+ goto err;
+ /* (Table B.1) auxiliary prime Max length check */
+ if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
+ bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen))
+ goto err;
+ /* (Steps 4.3/5.3) - generate prime */
+ if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb))
+ goto err;
+ ret = 1;
+err:
+ /* Zeroize any internally generated values that are not returned */
+ if (p1 == NULL)
+ BN_clear(p1i);
+ if (p2 == NULL)
+ BN_clear(p2i);
+ if (Xp1 == NULL)
+ BN_clear(Xp1i);
+ if (Xp2 == NULL)
+ BN_clear(Xp2i);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
+ * prime numbers and the Chinese Remainder Theorem.
+ *
+ * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
+ * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
+ *
+ * Params:
+ * Y The returned prime factor (private_prime_factor) of the modulus n.
+ * X The returned random number used during generation of the prime factor.
+ * Xin An optional passed in value for X used for testing purposes.
+ * r1 An auxiliary prime.
+ * r2 An auxiliary prime.
+ * nlen The desired length of n (the RSA modulus).
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * cb An optional BIGNUM callback object.
+ * Returns: 1 on success otherwise it returns 0.
+ * Assumptions:
+ * Y, X, r1, r2, e are not NULL.
+ */
+int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
+ const BIGNUM *r1, const BIGNUM *r2, int nlen,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
+{
+ int ret = 0;
+ int i, imax;
+ int bits = nlen >> 1;
+ int checks = bn_rsa_fips186_4_prime_MR_min_checks(nlen);
+ BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
+
+ if (checks == 0)
+ return 0;
+ BN_CTX_start(ctx);
+
+ R = BN_CTX_get(ctx);
+ tmp = BN_CTX_get(ctx);
+ r1r2x2 = BN_CTX_get(ctx);
+ y1 = BN_CTX_get(ctx);
+ r1x2 = BN_CTX_get(ctx);
+ if (r1x2 == NULL)
+ goto err;
+
+ if (Xin != NULL && BN_copy(X, Xin) == NULL)
+ goto err;
+
+ if (!(BN_lshift1(r1x2, r1)
+ /* (Step 1) GCD(2r1, r2) = 1 */
+ && BN_gcd(tmp, r1x2, r2, ctx)
+ && BN_is_one(tmp)
+ /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
+ && BN_mod_inverse(R, r2, r1x2, ctx)
+ && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
+ && BN_mod_inverse(tmp, r1x2, r2, ctx)
+ && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
+ && BN_sub(R, R, tmp)
+ /* Calculate 2r1r2 */
+ && BN_mul(r1r2x2, r1x2, r2, ctx)))
+ goto err;
+ /* Make positive by adding the modulus */
+ if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
+ goto err;
+
+ imax = 5 * bits; /* max = 5/2 * nbits */
+ for (;;) {
+ if (Xin == NULL) {
+ /*
+ * (Step 3) Choose Random X such that
+ * sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1.
+ *
+ * For the lower bound:
+ * sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2)
+ * where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE...
+ * so largest number will have B5... as the top byte
+ * Setting the top 2 bits gives 0xC0.
+ */
+ if (!BN_priv_rand(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
+ goto end;
+ }
+ /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
+ if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
+ goto err;
+ /* (Step 5) */
+ i = 0;
+ for (;;) {
+ /* (Step 6) */
+ if (BN_num_bits(Y) > bits) {
+ if (Xin == NULL)
+ break; /* Randomly Generated X so Go back to Step 3 */
+ else
+ goto err; /* X is not random so it will always fail */
+ }
+ BN_GENCB_call(cb, 0, 2);
+
+ /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
+ if (BN_copy(y1, Y) == NULL
+ || !BN_sub_word(y1, 1)
+ || !BN_gcd(tmp, y1, e, ctx))
+ goto err;
+ if (BN_is_one(tmp)
+ && BN_is_prime_fasttest_ex(Y, checks, ctx, 1, cb))
+ goto end;
+ /* (Step 8-10) */
+ if (++i >= imax || !BN_add(Y, Y, r1r2x2))
+ goto err;
+ }
+ }
+end:
+ ret = 1;
+ BN_GENCB_call(cb, 3, 0);
+err:
+ BN_clear(y1);
+ BN_CTX_end(ctx);
+ return ret;
+}
bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c \
{- $target{bn_asm_src} -} \
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \
- bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c
+ bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c \
+ bn_rsa_fips186_4.c
INCLUDE[../../libcrypto]=../../crypto/include
INCLUDE[bn_exp.o]=..
int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
const BIGNUM *d, BN_CTX *ctx);
+#define BN_PRIMETEST_COMPOSITE 0
+#define BN_PRIMETEST_COMPOSITE_WITH_FACTOR 1
+#define BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME 2
+#define BN_PRIMETEST_PROBABLY_PRIME 3
+
+int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
+ BN_GENCB *cb, int enhanced, int *status);
+
+const BIGNUM *bn_get0_small_factors(void);
+
+int bn_rsa_fips186_4_prime_MR_min_checks(int nbits);
+
+int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
+ BIGNUM *p1, BIGNUM *p2,
+ const BIGNUM *Xp, const BIGNUM *Xp1,
+ const BIGNUM *Xp2, int nlen,
+ const BIGNUM *e, BN_CTX *ctx,
+ BN_GENCB *cb);
+
+int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
+ const BIGNUM *r1, const BIGNUM *r2, int nlen,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
+
+#ifdef __cplusplus
+}
+#endif
+
#endif
rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \
rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \
rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \
- rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c
+ rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c \
+ rsa_sp800_56b_gen.c rsa_sp800_56b_check.c
return RSA_check_key_ex(key, NULL);
}
+/*
+ * NOTE: Key validation requires separate checks to be able to be accessed
+ * individually. These should be visible from the PKEY API..
+ * See rsa_sp800_56b_check_public, rsa_sp800_56b_check_private and
+ * rsa_sp800_56b_check_keypair.
+ */
int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
{
+#ifdef FIPS_MODE
+ if (!(rsa_sp800_56b_check_public(key)
+ && rsa_sp800_56b_check_private(key)
+ && rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key))
+ return 0;
+
+#else
BIGNUM *i, *j, *k, *l, *m;
BN_CTX *ctx;
int ret = 1, ex_primes = 0, idx;
BN_free(m);
BN_CTX_free(ctx);
return ret;
+#endif /* FIPS_MODE */
}
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
BIGNUM *e_value, BN_GENCB *cb)
{
+#ifndef FIPS_MODE
/* multi-prime is only supported with the builtin key generation */
if (rsa->meth->rsa_multi_prime_keygen != NULL) {
return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
else
return 0;
}
-
+#endif /* FIPS_MODE */
return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
}
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
BN_GENCB *cb)
{
+#ifdef FIPS_MODE
+ if (primes != 2)
+ return 0;
+ return rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
+#else
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ok;
+#endif /* FIPS_MODE */
}
* \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
* The two cube roots are merged together here.
*/
-static uint16_t rsa_compute_security_bits(int n)
+uint16_t rsa_compute_security_bits(int n)
{
uint64_t x;
uint32_t lx;
* https://www.openssl.org/source/license.html
*/
+#ifndef RSA_LOCAL_HEADER_H
+#define RSA_LOCAL_HEADER_H
+
#include <openssl/rsa.h>
#include "internal/refcount.h"
RSA_PRIME_INFO *rsa_multip_info_new(void);
int rsa_multip_calc_product(RSA *rsa);
int rsa_multip_cap(int bits);
+
+uint16_t rsa_compute_security_bits(int n);
+
+int rsa_sp800_56b_validate_strength(int nbits, int strength);
+int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
+ int nbits);
+int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
+ BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
+ BIGNUM *p1q1);
+
+int rsa_check_public_exponent(const BIGNUM *e);
+int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx);
+int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx);
+int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx);
+int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx);
+
+int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx);
+int rsa_sp800_56b_check_public(const RSA *rsa);
+int rsa_sp800_56b_check_private(const RSA *rsa);
+int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
+ int strength, int nbits);
+int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed,
+ BN_GENCB *cb);
+
+int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits,
+ const BIGNUM *e, BN_CTX *ctx);
+int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2,
+ BIGNUM *Xpout, const BIGNUM *Xp,
+ const BIGNUM *Xp1, const BIGNUM *Xp2,
+ BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout,
+ const BIGNUM *Xq, const BIGNUM *Xq1,
+ const BIGNUM *Xq2, int nbits,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
+
+#endif /* RSA_LOCAL_HEADER_H */
--- /dev/null
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/err.h>
+#include <openssl/bn.h>
+#include "internal/bn_int.h"
+#include "rsa_locl.h"
+
+/*
+ * Part of the RSA keypair test.
+ * Check the Chinese Remainder Theorem components are valid.
+ *
+ * See SP800-5bBr1
+ * 6.4.1.2.3: rsakpv1-crt Step 7
+ * 6.4.1.3.3: rsakpv2-crt Step 7
+ */
+int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
+
+ /* check if only some of the crt components are set */
+ if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
+ if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
+ return 0;
+ return 1; /* return ok if all components are NULL */
+ }
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ ret = (q1 != NULL)
+ /* p1 = p -1 */
+ && (BN_copy(p1, rsa->p) != NULL)
+ && BN_sub_word(p1, 1)
+ /* q1 = q - 1 */
+ && (BN_copy(q1, rsa->q) != NULL)
+ && BN_sub_word(q1, 1)
+ /* (a) 1 < dP < (p – 1). */
+ && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
+ && (BN_cmp(rsa->dmp1, p1) < 0)
+ /* (b) 1 < dQ < (q - 1). */
+ && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
+ && (BN_cmp(rsa->dmq1, q1) < 0)
+ /* (c) 1 < qInv < p */
+ && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
+ && (BN_cmp(rsa->iqmp, rsa->p) < 0)
+ /* (d) 1 = (dP . e) mod (p - 1)*/
+ && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
+ && BN_is_one(r)
+ /* (e) 1 = (dQ . e) mod (q - 1) */
+ && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
+ && BN_is_one(r)
+ /* (f) 1 = (qInv . q) mod p */
+ && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
+ && BN_is_one(r);
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Part of the RSA keypair test.
+ * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
+ *
+ * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
+ *
+ * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
+ * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
+ * 0.B504F334 gives an approximation to 11 decimal places.
+ * The range is then from
+ * 0xB504F334_0000.......................000 to
+ * 0xFFFFFFFF_FFFF.......................FFF
+ */
+int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *tmp, *low;
+
+ nbits >>= 1;
+
+ /* Upper bound check */
+ if (BN_num_bits(p) != nbits)
+ return 0;
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ low = BN_CTX_get(ctx);
+
+ /* set low = (√2)(2^(nbits/2 - 1) */
+ if (low == NULL || !BN_set_word(tmp, 0xB504F334))
+ goto err;
+
+ if (nbits >= 32) {
+ if (!BN_lshift(low, tmp, nbits - 32))
+ goto err;
+ } else if (!BN_rshift(low, tmp, 32 - nbits)) {
+ goto err;
+ }
+ if (BN_cmp(p, low) < 0)
+ goto err;
+ ret = 1;
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Part of the RSA keypair test.
+ * Check the prime factor (for either p or q)
+ * i.e: p is prime AND GCD(p - 1, e) = 1
+ *
+ * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
+ */
+int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
+{
+ int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
+ int ret = 0;
+ BIGNUM *p1 = NULL, *gcd = NULL;
+
+ /* (Steps 5 a-b) prime test */
+ if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
+ /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
+ || rsa_check_prime_factor_range(p, nbits, ctx) != 1)
+ return 0;
+
+ BN_CTX_start(ctx);
+ p1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ ret = (gcd != NULL)
+ /* (Step 5d) GCD(p-1, e) = 1 */
+ && (BN_copy(p1, p) != NULL)
+ && BN_sub_word(p1, 1)
+ && BN_gcd(gcd, p1, e, ctx)
+ && BN_is_one(gcd);
+
+ BN_clear(p1);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
+ * satisfies:
+ * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
+ * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
+ */
+int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
+{
+ int ret;
+ BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
+
+ /* (Step 6a) 2^(nbits/2) < d */
+ if (BN_num_bits(rsa->d) <= (nbits >> 1))
+ return 0;
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ lcm = BN_CTX_get(ctx);
+ p1q1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ ret = (gcd != NULL
+ /* LCM(p - 1, q - 1) */
+ && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
+ /* (Step 6a) d < LCM(p - 1, q - 1) */
+ && (BN_cmp(rsa->d, lcm) < 0)
+ /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
+ && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
+ && BN_is_one(r));
+
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_clear(lcm);
+ BN_clear(gcd);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/* Check exponent is odd, and has a bitlen ranging from [17..256] */
+int rsa_check_public_exponent(const BIGNUM *e)
+{
+ int bitlen = BN_num_bits(e);
+
+ return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
+}
+
+/*
+ * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
+ * i.e- numbits(p-q-1) > (nbits/2 -100)
+ */
+int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
+ int nbits)
+{
+ int bitlen = (nbits >> 1) - 100;
+
+ if (!BN_sub(diff, p, q))
+ return -1;
+ BN_set_negative(diff, 0);
+
+ if (BN_is_zero(diff))
+ return 0;
+
+ if (!BN_sub_word(diff, 1))
+ return -1;
+ return (BN_num_bits(diff) > bitlen);
+}
+
+/* return LCM(p-1, q-1) */
+int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
+ BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
+ BIGNUM *p1q1)
+{
+ return BN_sub(p1, p, BN_value_one()) /* p-1 */
+ && BN_sub(q1, q, BN_value_one()) /* q-1 */
+ && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
+ && BN_gcd(gcd, p1, q1, ctx)
+ && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
+}
+
+/*
+ * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
+ * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
+ * caveat is that the modulus must be as specified in SP800-56Br1
+ */
+int rsa_sp800_56b_check_public(const RSA *rsa)
+{
+ int ret = 0, nbits, iterations, status;
+ BN_CTX *ctx = NULL;
+ BIGNUM *gcd = NULL;
+
+ if (rsa->n == NULL || rsa->e == NULL)
+ return 0;
+
+ /*
+ * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
+ * NOTE: changed to allow keys >= 2048
+ */
+ nbits = BN_num_bits(rsa->n);
+ if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
+ return 0;
+ }
+ if (!BN_is_odd(rsa->n)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ return 0;
+ }
+
+ /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
+ if (!rsa_check_public_exponent(rsa->e)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ return 0;
+ }
+
+ ctx = BN_CTX_new();
+ gcd = BN_new();
+ if (ctx == NULL || gcd == NULL)
+ goto err;
+
+ iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
+ /* (Steps d-f):
+ * The modulus is composite, but not a power of a prime.
+ * The modulus has no factors smaller than 752.
+ */
+ if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ goto err;
+ }
+
+ ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
+ if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
+ ret = 0;
+ goto err;
+ }
+
+ ret = 1;
+err:
+ BN_free(gcd);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+/*
+ * Perform validation of the RSA private key to check that 0 < D < N.
+ */
+int rsa_sp800_56b_check_private(const RSA *rsa)
+{
+ if (rsa->d == NULL || rsa->n == NULL)
+ return 0;
+ return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
+}
+
+/*
+ * RSA key pair validation.
+ *
+ * SP800-56Br1.
+ * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
+ * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
+ *
+ * It uses:
+ * 6.4.1.2.3 "rsakpv1 - crt"
+ * 6.4.1.3.3 "rsakpv2 - crt"
+ */
+int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
+ int strength, int nbits)
+{
+ int ret = 0;
+ BN_CTX *ctx = NULL;
+ BIGNUM *r = NULL;
+
+ if (rsa->p == NULL
+ || rsa->q == NULL
+ || rsa->e == NULL
+ || rsa->d == NULL
+ || rsa->n == NULL) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ return 0;
+ }
+ /* (Step 1): Check Ranges */
+ if (!rsa_sp800_56b_validate_strength(nbits, strength))
+ return 0;
+
+ /* If the exponent is known */
+ if (efixed != NULL) {
+ /* (2): Check fixed exponent matches public exponent. */
+ if (BN_cmp(efixed, rsa->e) != 0) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ return 0;
+ }
+ }
+ /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
+ if (!rsa_check_public_exponent(rsa->e)) {
+ /* exponent out of range */
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ return 0;
+ }
+ /* (Step 3.b): check the modulus */
+ if (nbits != BN_num_bits(rsa->n)) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
+ return 0;
+ }
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ r = BN_CTX_get(ctx);
+ if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
+ goto err;
+ /* (Step 4.c): Check n = pq */
+ if (BN_cmp(rsa->n, r) != 0) {
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
+ goto err;
+ }
+
+ /* (Step 5): check prime factors p & q */
+ ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
+ && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
+ && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
+ /* (Step 6): Check the private exponent d */
+ && rsa_check_private_exponent(rsa, nbits, ctx)
+ /* 6.4.1.2.3 (Step 7): Check the CRT components */
+ && rsa_check_crt_components(rsa, ctx);
+ if (ret != 1)
+ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
+
+err:
+ BN_clear(r);
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ return ret;
+}
--- /dev/null
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/err.h>
+#include <openssl/bn.h>
+#include "internal/bn_int.h"
+#include "rsa_locl.h"
+
+#define RSA_FIPS1864_MIN_KEYGEN_KEYSIZE 2048
+#define RSA_FIPS1864_MIN_KEYGEN_STRENGTH 112
+#define RSA_FIPS1864_MAX_KEYGEN_STRENGTH 256
+
+/*
+ * Generate probable primes 'p' & 'q'. See FIPS 186-4 Section B.3.6
+ * "Generation of Probable Primes with Conditions Based on Auxiliary Probable
+ * Primes".
+ *
+ * Params:
+ * rsa Object used to store primes p & q.
+ * p1, p2 The returned auxiliary primes for p. If NULL they are not returned.
+ * Xpout An optionally returned random number used during generation of p.
+ * Xp An optional passed in value (that is random number used during
+ * generation of p).
+ * Xp1, Xp2 Optionally passed in randomly generated numbers from which
+ * auxiliary primes p1 & p2 are calculated. If NULL these values
+ * are generated internally.
+ * q1, q2 The returned auxiliary primes for q. If NULL they are not returned.
+ * Xqout An optionally returned random number used during generation of q.
+ * Xq An optional passed in value (that is random number used during
+ * generation of q).
+ * Xq1, Xq2 Optionally passed in randomly generated numbers from which
+ * auxiliary primes q1 & q2 are calculated. If NULL these values
+ * are generated internally.
+ * nbits The key size in bits (The size of the modulus n).
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 if successful, or 0 otherwise.
+ * Notes:
+ * p1, p2, q1, q2, Xpout, Xqout are returned if they are not NULL.
+ * Xp, Xp1, Xp2, Xq, Xq1, Xq2 are optionally passed in.
+ * (Required for CAVS testing).
+ */
+int rsa_fips186_4_gen_prob_primes(RSA *rsa, BIGNUM *p1, BIGNUM *p2,
+ BIGNUM *Xpout, const BIGNUM *Xp,
+ const BIGNUM *Xp1, const BIGNUM *Xp2,
+ BIGNUM *q1, BIGNUM *q2, BIGNUM *Xqout,
+ const BIGNUM *Xq, const BIGNUM *Xq1,
+ const BIGNUM *Xq2, int nbits,
+ const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
+{
+ int ret = 0, ok;
+ BIGNUM *Xpo = NULL, *Xqo = NULL, *tmp = NULL;
+
+ /* (Step 1) Check key length
+ * NOTE: SP800-131A Rev1 Disallows key lengths of < 2048 bits for RSA
+ * Signature Generation and Key Agree/Transport.
+ */
+ if (nbits < RSA_FIPS1864_MIN_KEYGEN_KEYSIZE) {
+ RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES, RSA_R_INVALID_KEY_LENGTH);
+ return 0;
+ }
+
+ if (!rsa_check_public_exponent(e)) {
+ RSAerr(RSA_F_RSA_FIPS186_4_GEN_PROB_PRIMES,
+ RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
+ goto err;
+ }
+
+ /* (Step 3) Determine strength and check rand generator strength is ok -
+ * this step is redundant because the generator always returns a higher
+ * strength than is required.
+ */
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ Xpo = (Xpout != NULL) ? Xpout : BN_CTX_get(ctx);
+ Xqo = (Xqout != NULL) ? Xqout : BN_CTX_get(ctx);
+ if (tmp == NULL || Xpo == NULL || Xqo == NULL)
+ goto err;
+
+ if (rsa->p == NULL)
+ rsa->p = BN_secure_new();
+ if (rsa->q == NULL)
+ rsa->q = BN_secure_new();
+ if (rsa->p == NULL || rsa->q == NULL)
+ goto err;
+
+ /* (Step 4) Generate p, Xp */
+ if (!bn_rsa_fips186_4_gen_prob_primes(rsa->p, Xpo, p1, p2, Xp, Xp1, Xp2,
+ nbits, e, ctx, cb))
+ goto err;
+ for(;;) {
+ /* (Step 5) Generate q, Xq*/
+ if (!bn_rsa_fips186_4_gen_prob_primes(rsa->q, Xqo, q1, q2, Xq, Xq1,
+ Xq2, nbits, e, ctx, cb))
+ goto err;
+
+ /* (Step 6) |Xp - Xq| > 2^(nbitlen/2 - 100) */
+ ok = rsa_check_pminusq_diff(tmp, Xpo, Xqo, nbits);
+ if (ok < 0)
+ goto err;
+ if (ok == 0)
+ continue;
+
+ /* (Step 6) |p - q| > 2^(nbitlen/2 - 100) */
+ ok = rsa_check_pminusq_diff(tmp, rsa->p, rsa->q, nbits);
+ if (ok < 0)
+ goto err;
+ if (ok == 0)
+ continue;
+ break; /* successfully finished */
+ }
+ ret = 1;
+err:
+ /* Zeroize any internally generated values that are not returned */
+ if (Xpo != Xpout)
+ BN_clear(Xpo);
+ if (Xqo != Xqout)
+ BN_clear(Xqo);
+ BN_clear(tmp);
+
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Validates the RSA key size based on the target strength.
+ * See SP800-56Br1 6.3.1.1 (Steps 1a-1b)
+ *
+ * Params:
+ * nbits The key size in bits.
+ * strength The target strength in bits. -1 means the target
+ * strength is unknown.
+ * Returns: 1 if the key size matches the target strength, or 0 otherwise.
+ */
+int rsa_sp800_56b_validate_strength(int nbits, int strength)
+{
+ int s = (int)rsa_compute_security_bits(nbits);
+
+ if (s < RSA_FIPS1864_MIN_KEYGEN_STRENGTH
+ || s > RSA_FIPS1864_MAX_KEYGEN_STRENGTH) {
+ RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_MODULUS);
+ return 0;
+ }
+ if (strength != -1 && s != strength) {
+ RSAerr(RSA_F_RSA_SP800_56B_VALIDATE_STRENGTH, RSA_R_INVALID_STRENGTH);
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ *
+ * Using p & q, calculate other required parameters such as n, d.
+ * as well as the CRT parameters dP, dQ, qInv.
+ *
+ * See SP800-56Br1
+ * 6.3.1.1 rsakpg1 - basic (Steps 3-4)
+ * 6.3.1.3 rsakpg1 - crt (Step 5)
+ *
+ * Params:
+ * rsa An rsa object.
+ * nbits The key size.
+ * e The public exponent.
+ * ctx A BN_CTX object.
+ * Notes:
+ * There is a small chance that the generated d will be too small.
+ * Returns: -1 = error,
+ * 0 = d is too small,
+ * 1 = success.
+ */
+int rsa_sp800_56b_derive_params_from_pq(RSA *rsa, int nbits,
+ const BIGNUM *e, BN_CTX *ctx)
+{
+ int ret = -1;
+ BIGNUM *p1, *q1, *lcm, *p1q1, *gcd;
+
+ BN_CTX_start(ctx);
+ p1 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ lcm = BN_CTX_get(ctx);
+ p1q1 = BN_CTX_get(ctx);
+ gcd = BN_CTX_get(ctx);
+ if (gcd == NULL)
+ goto err;
+
+ /* LCM((p-1, q-1)) */
+ if (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) != 1)
+ goto err;
+
+ /* copy e */
+ BN_free(rsa->e);
+ rsa->e = BN_dup(e);
+ if (rsa->e == NULL)
+ goto err;
+
+ BN_clear_free(rsa->d);
+ /* (Step 3) d = (e^-1) mod (LCM(p-1, q-1)) */
+ rsa->d = BN_secure_new();
+ if (rsa->d == NULL || BN_mod_inverse(rsa->d, e, lcm, ctx) == NULL)
+ goto err;
+
+ /* (Step 3) return an error if d is too small */
+ if (BN_num_bits(rsa->d) <= (nbits >> 1)) {
+ ret = 0;
+ goto err;
+ }
+
+ /* (Step 4) n = pq */
+ if (rsa->n == NULL)
+ rsa->n = BN_new();
+ if (rsa->n == NULL || !BN_mul(rsa->n, rsa->p, rsa->q, ctx))
+ goto err;
+
+ /* (Step 5a) dP = d mod (p-1) */
+ if (rsa->dmp1 == NULL)
+ rsa->dmp1 = BN_new();
+ if (rsa->dmp1 == NULL || !BN_mod(rsa->dmp1, rsa->d, p1, ctx))
+ goto err;
+
+ /* (Step 5b) dQ = d mod (q-1) */
+ if (rsa->dmq1 == NULL)
+ rsa->dmq1 = BN_secure_new();
+ if (rsa->dmq1 == NULL || !BN_mod(rsa->dmq1, rsa->d, q1, ctx))
+ goto err;
+
+ /* (Step 5c) qInv = (inverse of q) mod p */
+ BN_free(rsa->iqmp);
+ rsa->iqmp = BN_secure_new();
+ if (rsa->iqmp == NULL
+ || BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx) == NULL)
+ goto err;
+
+ ret = 1;
+err:
+ if (ret != 1) {
+ BN_free(rsa->e);
+ rsa->e = NULL;
+ BN_free(rsa->d);
+ rsa->d = NULL;
+ BN_free(rsa->n);
+ rsa->n = NULL;
+ BN_free(rsa->iqmp);
+ rsa->iqmp = NULL;
+ BN_free(rsa->dmq1);
+ rsa->dmq1 = NULL;
+ BN_free(rsa->dmp1);
+ rsa->dmp1 = NULL;
+ }
+ BN_clear(p1);
+ BN_clear(q1);
+ BN_clear(lcm);
+ BN_clear(p1q1);
+ BN_clear(gcd);
+
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/*
+ * Generate a SP800-56B RSA key.
+ *
+ * See SP800-56Br1 6.3.1 "RSA Key-Pair Generation with a Fixed Public Exponent"
+ * 6.3.1.1 rsakpg1 - basic
+ * 6.3.1.3 rsakpg1 - crt
+ *
+ * See also FIPS 186-4 Section B.3.6
+ * "Generation of Probable Primes with Conditions Based on Auxiliary
+ * Probable Primes."
+ *
+ * Params:
+ * rsa The rsa object.
+ * nbits The intended key size in bits.
+ * efixed The public exponent. If NULL a default of 65537 is used.
+ * cb An optional BIGNUM callback.
+ * Returns: 1 if successfully generated otherwise it returns 0.
+ */
+int rsa_sp800_56b_generate_key(RSA *rsa, int nbits, const BIGNUM *efixed,
+ BN_GENCB *cb)
+{
+ int ret = 0;
+ int ok;
+ BN_CTX *ctx = NULL;
+ BIGNUM *e = NULL;
+
+ /* (Steps 1a-1b) : Currently ignores the strength check */
+ if (!rsa_sp800_56b_validate_strength(nbits, -1))
+ return 0;
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+
+ /* Set default if e is not passed in */
+ if (efixed == NULL) {
+ e = BN_new();
+ if (e == NULL || !BN_set_word(e, 65537))
+ goto err;
+ } else {
+ e = (BIGNUM *)efixed;
+ }
+ /* (Step 1c) fixed exponent is checked later . */
+
+ for (;;) {
+ /* (Step 2) Generate prime factors */
+ if (!rsa_fips186_4_gen_prob_primes(rsa, NULL, NULL, NULL, NULL, NULL,
+ NULL, NULL, NULL, NULL, NULL, NULL,
+ NULL, nbits, e, ctx, cb))
+ goto err;
+ /* (Steps 3-5) Compute params d, n, dP, dQ, qInv */
+ ok = rsa_sp800_56b_derive_params_from_pq(rsa, nbits, e, ctx);
+ if (ok < 0)
+ goto err;
+ if (ok > 0)
+ break;
+ /* Gets here if computed d is too small - so try again */
+ }
+
+ /* (Step 6) Do pairwise test - optional validity test has been omitted */
+ ret = rsa_sp800_56b_pairwise_test(rsa, ctx);
+err:
+ if (efixed == NULL)
+ BN_free(e);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+/*
+ * See SP800-56Br1 6.3.1.3 (Step 6) Perform a pair-wise consistency test by
+ * verifying that: k = (k^e)^d mod n for some integer k where 1 < k < n-1.
+ *
+ * Returns 1 if the RSA key passes the pairwise test or 0 it it fails.
+ */
+int rsa_sp800_56b_pairwise_test(RSA *rsa, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *k, *tmp;
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ k = BN_CTX_get(ctx);
+ if (k == NULL)
+ goto err;
+
+ ret = (BN_set_word(k, 2)
+ && BN_mod_exp(tmp, k, rsa->e, rsa->n, ctx)
+ && BN_mod_exp(tmp, tmp, rsa->d, rsa->n, ctx)
+ && BN_cmp(k, tmp) == 0);
+ if (ret == 0)
+ RSAerr(RSA_F_RSA_SP800_56B_PAIRWISE_TEST, RSA_R_PAIRWISE_TEST_FAILURE);
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
--- /dev/null
+/*
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+#include <assert.h>
+#include <errno.h>
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+
+#include <openssl/bn.h>
+#include <openssl/crypto.h>
+#include <openssl/err.h>
+#include <openssl/rand.h>
+#include "internal/nelem.h"
+#include "internal/numbers.h"
+#include "testutil.h"
+#include "bn_prime.h"
+#include "internal/bn_int.h"
+
+static BN_CTX *ctx;
+
+static int test_is_prime_enhanced(void)
+{
+ int ret;
+ int status = 0;
+ BIGNUM *bn = NULL;
+
+ ret = TEST_ptr(bn = BN_new())
+ /* test passing a prime returns the correct status */
+ && TEST_true(BN_set_word(bn, 11))
+ /* return extra parameters related to composite */
+ && TEST_true(bn_miller_rabin_is_prime(bn, 10, ctx, NULL, 1, &status))
+ && TEST_int_eq(status, BN_PRIMETEST_PROBABLY_PRIME);
+ BN_free(bn);
+ return ret;
+}
+
+static int composites[] = {
+ 9, 21, 77, 81, 265
+};
+
+static int test_is_composite_enhanced(int id)
+{
+ int ret;
+ int status = 0;
+ BIGNUM *bn = NULL;
+
+ ret = TEST_ptr(bn = BN_new())
+ /* negative tests for different composite numbers */
+ && TEST_true(BN_set_word(bn, composites[id]))
+ && TEST_true(bn_miller_rabin_is_prime(bn, 10, ctx, NULL, 1, &status))
+ && TEST_int_ne(status, BN_PRIMETEST_PROBABLY_PRIME);
+
+ BN_free(bn);
+ return ret;
+}
+
+/* Test that multiplying all the small primes from 3 to 751 equals a constant.
+ * This test is mainly used to test that both 32 and 64 bit are correct.
+ */
+static int test_bn_small_factors(void)
+{
+ int ret = 0, i;
+ BIGNUM *b = NULL;
+
+ if (!(TEST_ptr(b = BN_new()) && TEST_true(BN_set_word(b, 3))))
+ goto err;
+
+ for (i = 1; i < NUMPRIMES; i++) {
+ prime_t p = primes[i];
+ if (p > 3 && p <= 751)
+ BN_mul_word(b, p);
+ if (p > 751)
+ break;
+ }
+ ret = TEST_BN_eq(bn_get0_small_factors(), b);
+err:
+ BN_free(b);
+ return ret;
+}
+
+int setup_tests(void)
+{
+ if (!TEST_ptr(ctx = BN_CTX_new()))
+ return 0;
+
+ ADD_TEST(test_is_prime_enhanced);
+ ADD_ALL_TESTS(test_is_composite_enhanced, (int)OSSL_NELEM(composites));
+ ADD_TEST(test_bn_small_factors);
+
+ return 1;
+}
+
+void cleanup_tests(void)
+{
+ BN_CTX_free(ctx);
+}
+
IF[1]
PROGRAMS{noinst}=asn1_internal_test modes_internal_test x509_internal_test \
tls13encryptiontest wpackettest ctype_internal_test \
- rdrand_sanitytest property_test
+ rdrand_sanitytest property_test \
+ rsa_sp800_56b_test bn_internal_test
+
IF[{- !$disabled{poly1305} -}]
PROGRAMS{noinst}=poly1305_internal_test
ENDIF
SOURCE[rdrand_sanitytest]=rdrand_sanitytest.c
INCLUDE[rdrand_sanitytest]=../include ../apps/include
DEPEND[rdrand_sanitytest]=../libcrypto.a libtestutil.a
+
+ SOURCE[rsa_sp800_56b_test]=rsa_sp800_56b_test.c
+ INCLUDE[rsa_sp800_56b_test]=.. ../include ../crypto/include ../crypto/rsa ../apps/include
+ DEPEND[rsa_sp800_56b_test]=../libcrypto.a libtestutil.a
+
+ SOURCE[bn_internal_test]=bn_internal_test.c
+ INCLUDE[bn_internal_test]=.. ../include ../crypto/include ../crypto/bn ../apps/include
+ DEPEND[bn_internal_test]=../libcrypto.a libtestutil.a
ENDIF
IF[{- !$disabled{mdc2} -}]
--- /dev/null
+#! /usr/bin/env perl
+# Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+use strict;
+use OpenSSL::Test; # get 'plan'
+use OpenSSL::Test::Simple;
+use OpenSSL::Test::Utils;
+
+setup("test_internal_bn");
+
+plan skip_all => "This test is unsupported in a shared library build on Windows"
+ if $^O eq 'MSWin32' && !disabled("shared");
+
+simple_test("test_internal_bn", "bn_internal_test");
--- /dev/null
+#! /usr/bin/env perl
+# Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+use strict;
+use OpenSSL::Test; # get 'plan'
+use OpenSSL::Test::Simple;
+use OpenSSL::Test::Utils;
+
+setup("test_internal_rsa_sp800_56b");
+
+plan skip_all => "This test is unsupported in a shared library build on Windows"
+ if $^O eq 'MSWin32' && !disabled("shared");
+
+simple_test("test_internal_rsa_sp800_56b", "rsa_sp800_56b_test");
--- /dev/null
+/*
+ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include <string.h>
+
+#include "internal/nelem.h"
+
+#include <openssl/crypto.h>
+#include <openssl/err.h>
+#include <openssl/rand.h>
+#include <openssl/bn.h>
+
+#include "testutil.h"
+
+#ifdef OPENSSL_NO_RSA
+int setup_tests(void)
+{
+ /* No tests */
+ return 1;
+}
+#else
+# include "rsa_locl.h"
+# include <openssl/rsa.h>
+
+/* taken from RSA2 cavs data */
+static const unsigned char cav_e[] = {
+ 0x01,0x00,0x01
+};
+static const unsigned char cav_Xp[] = {
+ 0xcf,0x72,0x1b,0x9a,0xfd,0x0d,0x22,0x1a,0x74,0x50,0x97,0x22,0x76,0xd8,0xc0,
+ 0xc2,0xfd,0x08,0x81,0x05,0xdd,0x18,0x21,0x99,0x96,0xd6,0x5c,0x79,0xe3,0x02,
+ 0x81,0xd7,0x0e,0x3f,0x3b,0x34,0xda,0x61,0xc9,0x2d,0x84,0x86,0x62,0x1e,0x3d,
+ 0x5d,0xbf,0x92,0x2e,0xcd,0x35,0x3d,0x6e,0xb9,0x59,0x16,0xc9,0x82,0x50,0x41,
+ 0x30,0x45,0x67,0xaa,0xb7,0xbe,0xec,0xea,0x4b,0x9e,0xa0,0xc3,0x05,0xb3,0x88,
+ 0xd4,0x4c,0xac,0xeb,0xe4,0x03,0xc6,0xca,0xcb,0xd9,0xd3,0x4e,0xf6,0x7f,0x2c,
+ 0x27,0x1e,0x08,0x6c,0xc2,0xd6,0x45,0x1f,0x84,0xe4,0x3c,0x97,0x19,0xde,0xb8,
+ 0x55,0xaf,0x0e,0xcf,0x9e,0xb0,0x9c,0x20,0xd3,0x1f,0xa8,0xd7,0x52,0xc2,0x95,
+ 0x1c,0x80,0x15,0x42,0x4d,0x4f,0x19,0x16
+};
+static const unsigned char cav_Xp1[] = {
+ 0xac,0x5f,0x7f,0x6e,0x33,0x3e,0x97,0x3a,0xb3,0x17,0x44,0xa9,0x0f,0x7a,0x54,
+ 0x70,0x27,0x06,0x93,0xd5,0x49,0xde,0x91,0x83,0xbc,0x8a,0x7b,0x95
+};
+static const unsigned char cav_Xp2[] = {
+ 0x0b,0xf6,0xe8,0x79,0x5a,0x81,0xae,0x90,0x1d,0xa4,0x38,0x74,0x9c,0x0e,0x6f,
+ 0xe0,0x03,0xcf,0xc4,0x53,0x16,0x32,0x17,0xf7,0x09,0x5f,0xd9
+};
+static const unsigned char cav_Xq[] = {
+ 0xfe,0xab,0xf2,0x7c,0x16,0x4a,0xf0,0x8d,0x31,0xc6,0x0a,0x82,0xe2,0xae,0xbb,
+ 0x03,0x7e,0x7b,0x20,0x4e,0x64,0xb0,0x16,0xad,0x3c,0x01,0x1a,0xd3,0x54,0xbf,
+ 0x2b,0xa4,0x02,0x9e,0xc3,0x0d,0x60,0x3d,0x1f,0xb9,0xc0,0x0d,0xe6,0x97,0x68,
+ 0xbb,0x8c,0x81,0xd5,0xc1,0x54,0x96,0x0f,0x99,0xf0,0xa8,0xa2,0xf3,0xc6,0x8e,
+ 0xec,0xbc,0x31,0x17,0x70,0x98,0x24,0xa3,0x36,0x51,0xa8,0x54,0xbd,0x9a,0x89,
+ 0x99,0x6e,0x57,0x5e,0xd0,0x39,0x86,0xc3,0xa3,0x1b,0xc7,0xcf,0xc4,0x4f,0x47,
+ 0x25,0x9e,0x2c,0x79,0xe1,0x2c,0xcc,0xe4,0x63,0xf4,0x02,0x84,0xf8,0xf6,0xa1,
+ 0x5c,0x93,0x14,0xf2,0x68,0x5f,0x3a,0x90,0x2f,0x4e,0x5e,0xf9,0x16,0x05,0xcf,
+ 0x21,0x63,0xca,0xfa,0xb0,0x08,0x02,0xc0
+};
+static const unsigned char cav_Xq1[] = {
+ 0x9b,0x02,0xd4,0xba,0xf0,0xaa,0x14,0x99,0x6d,0xc0,0xb7,0xa5,0xe1,0xd3,0x70,
+ 0xb6,0x5a,0xa2,0x9b,0x59,0xd5,0x8c,0x1e,0x9f,0x3f,0x9a,0xde,0xeb,0x9e,0x9c,
+ 0x61,0xd6,0x5a,0xe1
+};
+static const unsigned char cav_Xq2[] = {
+ 0x06,0x81,0x53,0xfd,0xa8,0x7b,0xa3,0x85,0x90,0x15,0x2c,0x97,0xb2,0xa0,0x17,
+ 0x48,0xb0,0x7f,0x0a,0x01,0x6d
+};
+/* expected values */
+static const unsigned char cav_p1[] = {
+ 0xac,0x5f,0x7f,0x6e,0x33,0x3e,0x97,0x3a,0xb3,0x17,0x44,0xa9,0x0f,0x7a,0x54,
+ 0x70,0x27,0x06,0x93,0xd5,0x49,0xde,0x91,0x83,0xbc,0x8a,0x7b,0xc3
+};
+static const unsigned char cav_p2[] = {
+ 0x0b,0xf6,0xe8,0x79,0x5a,0x81,0xae,0x90,0x1d,0xa4,0x38,0x74,0x9c,0x0e,0x6f,
+ 0xe0,0x03,0xcf,0xc4,0x53,0x16,0x32,0x17,0xf7,0x09,0x5f,0xd9
+};
+static const unsigned char cav_q1[] = {
+ 0x9b,0x02,0xd4,0xba,0xf0,0xaa,0x14,0x99,0x6d,0xc0,0xb7,0xa5,0xe1,0xd3,0x70,
+ 0xb6,0x5a,0xa2,0x9b,0x59,0xd5,0x8c,0x1e,0x9f,0x3f,0x9a,0xde,0xeb,0x9e,0x9c,
+ 0x61,0xd6,0x5d,0x47
+};
+static const unsigned char cav_q2[] = {
+ 0x06,0x81,0x53,0xfd,0xa8,0x7b,0xa3,0x85,0x90,0x15,0x2c,0x97,0xb2,0xa0,0x17,
+ 0x48,0xb0,0x7f,0x0a,0x01,0x8f
+};
+static const unsigned char cav_p[] = {
+ 0xcf,0x72,0x1b,0x9a,0xfd,0x0d,0x22,0x1a,0x74,0x50,0x97,0x22,0x76,0xd8,0xc0,
+ 0xc2,0xfd,0x08,0x81,0x05,0xdd,0x18,0x21,0x99,0x96,0xd6,0x5c,0x79,0xe3,0x02,
+ 0x81,0xd7,0x0e,0x3f,0x3b,0x34,0xda,0x61,0xc9,0x2d,0x84,0x86,0x62,0x1e,0x3d,
+ 0x5d,0xbf,0x92,0x2e,0xcd,0x35,0x3d,0x6e,0xb9,0x59,0x16,0xc9,0x82,0x50,0x41,
+ 0x30,0x45,0x67,0xaa,0xb7,0xbe,0xec,0xea,0x4b,0x9e,0xa0,0xc3,0x05,0xbc,0x4c,
+ 0x01,0xa5,0x4b,0xbd,0xa4,0x20,0xb5,0x20,0xd5,0x59,0x6f,0x82,0x5c,0x8f,0x4f,
+ 0xe0,0x3a,0x4e,0x7e,0xfe,0x44,0xf3,0x3c,0xc0,0x0e,0x14,0x2b,0x32,0xe6,0x28,
+ 0x8b,0x63,0x87,0x00,0xc3,0x53,0x4a,0x5b,0x71,0x7a,0x5b,0x28,0x40,0xc4,0x18,
+ 0xb6,0x77,0x0b,0xab,0x59,0xa4,0x96,0x7d
+};
+static const unsigned char cav_q[] = {
+ 0xfe,0xab,0xf2,0x7c,0x16,0x4a,0xf0,0x8d,0x31,0xc6,0x0a,0x82,0xe2,0xae,0xbb,
+ 0x03,0x7e,0x7b,0x20,0x4e,0x64,0xb0,0x16,0xad,0x3c,0x01,0x1a,0xd3,0x54,0xbf,
+ 0x2b,0xa4,0x02,0x9e,0xc3,0x0d,0x60,0x3d,0x1f,0xb9,0xc0,0x0d,0xe6,0x97,0x68,
+ 0xbb,0x8c,0x81,0xd5,0xc1,0x54,0x96,0x0f,0x99,0xf0,0xa8,0xa2,0xf3,0xc6,0x8e,
+ 0xec,0xbc,0x31,0x17,0x70,0x98,0x24,0xa3,0x36,0x51,0xa8,0x54,0xc4,0x44,0xdd,
+ 0xf7,0x7e,0xda,0x47,0x4a,0x67,0x44,0x5d,0x4e,0x75,0xf0,0x4d,0x00,0x68,0xe1,
+ 0x4a,0xec,0x1f,0x45,0xf9,0xe6,0xca,0x38,0x95,0x48,0x6f,0xdc,0x9d,0x1b,0xa3,
+ 0x4b,0xfd,0x08,0x4b,0x54,0xcd,0xeb,0x3d,0xef,0x33,0x11,0x6e,0xce,0xe4,0x5d,
+ 0xef,0xa9,0x58,0x5c,0x87,0x4d,0xc8,0xcf
+};
+static const unsigned char cav_n[] = {
+ 0xce,0x5e,0x8d,0x1a,0xa3,0x08,0x7a,0x2d,0xb4,0x49,0x48,0xf0,0x06,0xb6,0xfe,
+ 0xba,0x2f,0x39,0x7c,0x7b,0xe0,0x5d,0x09,0x2d,0x57,0x4e,0x54,0x60,0x9c,0xe5,
+ 0x08,0x4b,0xe1,0x1a,0x73,0xc1,0x5e,0x2f,0xb6,0x46,0xd7,0x81,0xca,0xbc,0x98,
+ 0xd2,0xf9,0xef,0x1c,0x92,0x8c,0x8d,0x99,0x85,0x28,0x52,0xd6,0xd5,0xab,0x70,
+ 0x7e,0x9e,0xa9,0x87,0x82,0xc8,0x95,0x64,0xeb,0xf0,0x6c,0x0f,0x3f,0xe9,0x02,
+ 0x29,0x2e,0x6d,0xa1,0xec,0xbf,0xdc,0x23,0xdf,0x82,0x4f,0xab,0x39,0x8d,0xcc,
+ 0xac,0x21,0x51,0x14,0xf8,0xef,0xec,0x73,0x80,0x86,0xa3,0xcf,0x8f,0xd5,0xcf,
+ 0x22,0x1f,0xcc,0x23,0x2f,0xba,0xcb,0xf6,0x17,0xcd,0x3a,0x1f,0xd9,0x84,0xb9,
+ 0x88,0xa7,0x78,0x0f,0xaa,0xc9,0x04,0x01,0x20,0x72,0x5d,0x2a,0xfe,0x5b,0xdd,
+ 0x16,0x5a,0xed,0x83,0x02,0x96,0x39,0x46,0x37,0x30,0xc1,0x0d,0x87,0xc2,0xc8,
+ 0x33,0x38,0xed,0x35,0x72,0xe5,0x29,0xf8,0x1f,0x23,0x60,0xe1,0x2a,0x5b,0x1d,
+ 0x6b,0x53,0x3f,0x07,0xc4,0xd9,0xbb,0x04,0x0c,0x5c,0x3f,0x0b,0xc4,0xd4,0x61,
+ 0x96,0x94,0xf1,0x0f,0x4a,0x49,0xac,0xde,0xd2,0xe8,0x42,0xb3,0x4a,0x0b,0x64,
+ 0x7a,0x32,0x5f,0x2b,0x5b,0x0f,0x8b,0x8b,0xe0,0x33,0x23,0x34,0x64,0xf8,0xb5,
+ 0x7f,0x69,0x60,0xb8,0x71,0xe9,0xff,0x92,0x42,0xb1,0xf7,0x23,0xa8,0xa7,0x92,
+ 0x04,0x3d,0x6b,0xff,0xf7,0xab,0xbb,0x14,0x1f,0x4c,0x10,0x97,0xd5,0x6b,0x71,
+ 0x12,0xfd,0x93,0xa0,0x4a,0x3b,0x75,0x72,0x40,0x96,0x1c,0x5f,0x40,0x40,0x57,
+ 0x13
+};
+static const unsigned char cav_d[] = {
+ 0x47,0x47,0x49,0x1d,0x66,0x2a,0x4b,0x68,0xf5,0xd8,0x4a,0x24,0xfd,0x6c,0xbf,
+ 0x56,0xb7,0x70,0xf7,0x9a,0x21,0xc8,0x80,0x9e,0xf4,0x84,0xcd,0x88,0x01,0x28,
+ 0xea,0x50,0xab,0x13,0x63,0xdf,0xea,0x14,0x38,0xb5,0x07,0x42,0x81,0x2f,0xda,
+ 0xe9,0x24,0x02,0x7e,0xaf,0xef,0x74,0x09,0x0e,0x80,0xfa,0xfb,0xd1,0x19,0x41,
+ 0xe5,0xba,0x0f,0x7c,0x0a,0xa4,0x15,0x55,0xa2,0x58,0x8c,0x3a,0x48,0x2c,0xc6,
+ 0xde,0x4a,0x76,0xfb,0x72,0xb6,0x61,0xe6,0xd2,0x10,0x44,0x4c,0x33,0xb8,0xd2,
+ 0x74,0xb1,0x9d,0x3b,0xcd,0x2f,0xb1,0x4f,0xc3,0x98,0xbd,0x83,0xb7,0x7e,0x75,
+ 0xe8,0xa7,0x6a,0xee,0xcc,0x51,0x8c,0x99,0x17,0x67,0x7f,0x27,0xf9,0x0d,0x6a,
+ 0xb7,0xd4,0x80,0x17,0x89,0x39,0x9c,0xf3,0xd7,0x0f,0xdf,0xb0,0x55,0x80,0x1d,
+ 0xaf,0x57,0x2e,0xd0,0xf0,0x4f,0x42,0x69,0x55,0xbc,0x83,0xd6,0x97,0x83,0x7a,
+ 0xe6,0xc6,0x30,0x6d,0x3d,0xb5,0x21,0xa7,0xc4,0x62,0x0a,0x20,0xce,0x5e,0x5a,
+ 0x17,0x98,0xb3,0x6f,0x6b,0x9a,0xeb,0x6b,0xa3,0xc4,0x75,0xd8,0x2b,0xdc,0x5c,
+ 0x6f,0xec,0x5d,0x49,0xac,0xa8,0xa4,0x2f,0xb8,0x8c,0x4f,0x2e,0x46,0x21,0xee,
+ 0x72,0x6a,0x0e,0x22,0x80,0x71,0xc8,0x76,0x40,0x44,0x61,0x16,0xbf,0xa5,0xf8,
+ 0x89,0xc7,0xe9,0x87,0xdf,0xbd,0x2e,0x4b,0x4e,0xc2,0x97,0x53,0xe9,0x49,0x1c,
+ 0x05,0xb0,0x0b,0x9b,0x9f,0x21,0x19,0x41,0xe9,0xf5,0x61,0xd7,0x33,0x2e,0x2c,
+ 0x94,0xb8,0xa8,0x9a,0x3a,0xcc,0x6a,0x24,0x8d,0x19,0x13,0xee,0xb9,0xb0,0x48,
+ 0x61
+};
+
+/* helper function */
+static BIGNUM *bn_load_new(const unsigned char *data, int sz)
+{
+ BIGNUM *ret = BN_new();
+ if (ret != NULL)
+ BN_bin2bn(data, sz, ret);
+ return ret;
+}
+
+/* helper function */
+static BIGNUM *bn_load(BN_CTX *ctx, const unsigned char *data, int sz)
+{
+ BIGNUM *ret = BN_CTX_get(ctx);
+ if (ret != NULL)
+ BN_bin2bn(data, sz, ret);
+ return ret;
+}
+
+static int test_check_public_exponent(void)
+{
+ int ret = 0;
+ BIGNUM *e = NULL;
+
+ ret = TEST_ptr(e = BN_new())
+ /* e is too small */
+ && TEST_true(BN_set_word(e, 65535))
+ && TEST_false(rsa_check_public_exponent(e))
+ /* e is even will fail */
+ && TEST_true(BN_set_word(e, 65536))
+ && TEST_false(rsa_check_public_exponent(e))
+ /* e is ok */
+ && TEST_true(BN_set_word(e, 65537))
+ && TEST_true(rsa_check_public_exponent(e))
+ /* e = 2^256 is too big */
+ && TEST_true(BN_lshift(e, BN_value_one(), 256))
+ && TEST_false(rsa_check_public_exponent(e))
+ /* e = 2^256-1 is odd and in range */
+ && TEST_true(BN_sub(e, e, BN_value_one()))
+ && TEST_true(rsa_check_public_exponent(e));
+ BN_free(e);
+ return ret;
+}
+
+static int test_check_prime_factor_range(void)
+{
+ int ret = 0;
+ BN_CTX *ctx = NULL;
+ BIGNUM *p = NULL;
+ BIGNUM *bn_p1 = NULL, *bn_p2 = NULL, *bn_p3 = NULL, *bn_p4 = NULL;
+ /* Some range checks that are larger than 32 bits */
+ static const unsigned char p1[] = { 0x0B, 0x50, 0x4F, 0x33, 0x3F };
+ static const unsigned char p2[] = { 0x10, 0x00, 0x00, 0x00, 0x00 };
+ static const unsigned char p3[] = { 0x0B, 0x50, 0x4F, 0x33, 0x40 };
+ static const unsigned char p4[] = { 0x0F, 0xFF, 0xFF, 0xFF, 0xFF };
+
+ /* (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
+ * For 8 bits: 0xB.504F <= p <= 0xF
+ * for 72 bits: 0xB504F333F. <= p <= 0xF_FFFF_FFFF
+ */
+ ret = TEST_ptr(p = BN_new())
+ && TEST_ptr(bn_p1 = bn_load_new(p1, sizeof(p1)))
+ && TEST_ptr(bn_p2 = bn_load_new(p2, sizeof(p2)))
+ && TEST_ptr(bn_p3 = bn_load_new(p3, sizeof(p3)))
+ && TEST_ptr(bn_p4 = bn_load_new(p4, sizeof(p4)))
+ && TEST_ptr(ctx = BN_CTX_new())
+ && TEST_true(BN_set_word(p, 0xA))
+ && TEST_false(rsa_check_prime_factor_range(p, 8, ctx))
+ && TEST_true(BN_set_word(p, 0x10))
+ && TEST_false(rsa_check_prime_factor_range(p, 8, ctx))
+ && TEST_true(BN_set_word(p, 0xB))
+ && TEST_true(rsa_check_prime_factor_range(p, 8, ctx))
+ && TEST_true(BN_set_word(p, 0xF))
+ && TEST_true(rsa_check_prime_factor_range(p, 8, ctx))
+ && TEST_false(rsa_check_prime_factor_range(bn_p1, 72, ctx))
+ && TEST_false(rsa_check_prime_factor_range(bn_p2, 72, ctx))
+ && TEST_true(rsa_check_prime_factor_range(bn_p3, 72, ctx))
+ && TEST_true(rsa_check_prime_factor_range(bn_p4, 72, ctx));
+
+ BN_free(bn_p4);
+ BN_free(bn_p3);
+ BN_free(bn_p2);
+ BN_free(bn_p1);
+ BN_free(p);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+static int test_check_prime_factor(void)
+{
+ int ret = 0;
+ BN_CTX *ctx = NULL;
+ BIGNUM *p = NULL, *e = NULL;
+ BIGNUM *bn_p1 = NULL, *bn_p2 = NULL, *bn_p3 = NULL;
+
+ /* Some range checks that are larger than 32 bits */
+ static const unsigned char p1[] = { 0x0B, 0x50, 0x4f, 0x33, 0x73 };
+ static const unsigned char p2[] = { 0x0B, 0x50, 0x4f, 0x33, 0x75 };
+ static const unsigned char p3[] = { 0x0F, 0x50, 0x00, 0x03, 0x75 };
+
+ ret = TEST_ptr(p = BN_new())
+ && TEST_ptr(bn_p1 = bn_load_new(p1, sizeof(p1)))
+ && TEST_ptr(bn_p2 = bn_load_new(p2, sizeof(p2)))
+ && TEST_ptr(bn_p3 = bn_load_new(p3, sizeof(p3)))
+ && TEST_ptr(e = BN_new())
+ && TEST_ptr(ctx = BN_CTX_new())
+ /* Fails the prime test */
+ && TEST_true(BN_set_word(e, 0x1))
+ && TEST_false(rsa_check_prime_factor(bn_p1, e, 72, ctx))
+ /* p is prime and in range and gcd(p-1, e) = 1 */
+ && TEST_true(rsa_check_prime_factor(bn_p2, e, 72, ctx))
+ /* gcd(p-1,e) = 1 test fails */
+ && TEST_true(BN_set_word(e, 0x2))
+ && TEST_false(rsa_check_prime_factor(p, e, 72, ctx))
+ /* p fails the range check */
+ && TEST_true(BN_set_word(e, 0x1))
+ && TEST_false(rsa_check_prime_factor(bn_p3, e, 72, ctx));
+
+ BN_free(bn_p3);
+ BN_free(bn_p2);
+ BN_free(bn_p1);
+ BN_free(e);
+ BN_free(p);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+static int test_check_private_exponent(void)
+{
+ int ret = 0;
+ RSA *key = NULL;
+ BN_CTX *ctx = NULL;
+ BIGNUM *p = NULL, *q = NULL, *e = NULL, *d = NULL, *n = NULL;
+
+ ret = TEST_ptr(key = RSA_new())
+ && TEST_ptr(ctx = BN_CTX_new())
+ && TEST_ptr(p = BN_new())
+ && TEST_ptr(q = BN_new())
+ && TEST_ptr(e = BN_new())
+ && TEST_ptr(d = BN_new())
+ && TEST_ptr(n = BN_new())
+ /* lcm(15-1,17-1) = 14*16 / 2 = 112 */
+ && TEST_true(BN_set_word(p, 15))
+ && TEST_true(BN_set_word(q, 17))
+ && TEST_true(BN_set_word(e, 5))
+ && TEST_true(BN_set_word(d, 157))
+ && TEST_true(BN_set_word(n, 15*17))
+ && TEST_true(RSA_set0_factors(key, p, q))
+ && TEST_true(RSA_set0_key(key, n, e, d))
+ /* fails since d >= lcm(p-1, q-1) */
+ && TEST_false(rsa_check_private_exponent(key, 8, ctx))
+ && TEST_true(BN_set_word(d, 45))
+ /* d is correct size and 1 = e.d mod lcm(p-1, q-1) */
+ && TEST_true(rsa_check_private_exponent(key, 8, ctx))
+ /* d is too small compared to nbits */
+ && TEST_false(rsa_check_private_exponent(key, 16, ctx))
+ /* d is too small compared to nbits */
+ && TEST_true(BN_set_word(d, 16))
+ && TEST_false(rsa_check_private_exponent(key, 8, ctx))
+ /* fail if 1 != e.d mod lcm(p-1, q-1) */
+ && TEST_true(BN_set_word(d, 46))
+ && TEST_false(rsa_check_private_exponent(key, 8, ctx));
+
+ RSA_free(key);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+static int test_check_crt_components(void)
+{
+ const int P = 15;
+ const int Q = 17;
+ const int E = 5;
+ const int N = P*Q;
+ const int DP = 3;
+ const int DQ = 13;
+ const int QINV = 8;
+
+ int ret = 0;
+ RSA *key = NULL;
+ BN_CTX *ctx = NULL;
+ BIGNUM *p = NULL, *q = NULL, *e = NULL;
+
+ ret = TEST_ptr(key = RSA_new())
+ && TEST_ptr(ctx = BN_CTX_new())
+ && TEST_ptr(p = BN_new())
+ && TEST_ptr(q = BN_new())
+ && TEST_ptr(e = BN_new())
+ && TEST_true(BN_set_word(p, P))
+ && TEST_true(BN_set_word(q, Q))
+ && TEST_true(BN_set_word(e, E))
+ && TEST_true(RSA_set0_factors(key, p, q))
+ && TEST_true(rsa_sp800_56b_derive_params_from_pq(key, 8, e, ctx))
+ && TEST_BN_eq_word(key->n, N)
+ && TEST_BN_eq_word(key->dmp1, DP)
+ && TEST_BN_eq_word(key->dmq1, DQ)
+ && TEST_BN_eq_word(key->iqmp, QINV)
+ && TEST_true(rsa_check_crt_components(key, ctx))
+ /* (a) 1 < dP < (p – 1). */
+ && TEST_true(BN_set_word(key->dmp1, 1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmp1, P-1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmp1, DP))
+ /* (b) 1 < dQ < (q - 1). */
+ && TEST_true(BN_set_word(key->dmq1, 1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmq1, Q-1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmq1, DQ))
+ /* (c) 1 < qInv < p */
+ && TEST_true(BN_set_word(key->iqmp, 1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->iqmp, P))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->iqmp, QINV))
+ /* (d) 1 = (dP . e) mod (p - 1)*/
+ && TEST_true(BN_set_word(key->dmp1, DP+1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmp1, DP))
+ /* (e) 1 = (dQ . e) mod (q - 1) */
+ && TEST_true(BN_set_word(key->dmq1, DQ-1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->dmq1, DQ))
+ /* (f) 1 = (qInv . q) mod p */
+ && TEST_true(BN_set_word(key->iqmp, QINV+1))
+ && TEST_false(rsa_check_crt_components(key, ctx))
+ && TEST_true(BN_set_word(key->iqmp, QINV))
+ /* check defaults are still valid */
+ && TEST_true(rsa_check_crt_components(key, ctx));
+
+ BN_free(e);
+ RSA_free(key);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+static int test_pq_diff(void)
+{
+ int ret = 0;
+ BIGNUM *tmp = NULL, *p = NULL, *q = NULL;
+
+ ret = TEST_ptr(tmp = BN_new())
+ && TEST_ptr(p = BN_new())
+ && TEST_ptr(q = BN_new())
+ /* |1-(2+1)| > 2^1 */
+ && TEST_true(BN_set_word(p, 1))
+ && TEST_true(BN_set_word(q, 1+2))
+ && TEST_false(rsa_check_pminusq_diff(tmp, p, q, 202))
+ /* Check |p - q| > 2^(nbits/2 - 100) */
+ && TEST_true(BN_set_word(q, 1+3))
+ && TEST_true(rsa_check_pminusq_diff(tmp, p, q, 202))
+ && TEST_true(BN_set_word(p, 1+3))
+ && TEST_true(BN_set_word(q, 1))
+ && TEST_true(rsa_check_pminusq_diff(tmp, p, q, 202));
+ BN_free(p);
+ BN_free(q);
+ BN_free(tmp);
+ return ret;
+}
+
+static int test_invalid_keypair(void)
+{
+ int ret = 0;
+ RSA *key = NULL;
+ BN_CTX *ctx = NULL;
+ BIGNUM *p = NULL, *q = NULL, *n = NULL, *e = NULL, *d = NULL;
+
+ ret = TEST_ptr(key = RSA_new())
+ && TEST_ptr(ctx = BN_CTX_new())
+ /* NULL parameters */
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048))
+ /* load key */
+ && TEST_ptr(p = bn_load_new(cav_p, sizeof(cav_p)))
+ && TEST_ptr(q = bn_load_new(cav_q, sizeof(cav_q)))
+ && TEST_ptr(e = bn_load_new(cav_e, sizeof(cav_e)))
+ && TEST_ptr(n = bn_load_new(cav_n, sizeof(cav_n)))
+ && TEST_ptr(d = bn_load_new(cav_d, sizeof(cav_d)))
+ && TEST_true(RSA_set0_key(key, n, e, d))
+ && TEST_true(RSA_set0_factors(key, p, q))
+
+ /* bad strength/key size */
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 100, 2048))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 112, 1024))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 128, 2048))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 140, 3072))
+ /* mismatching exponent */
+ && TEST_false(rsa_sp800_56b_check_keypair(key, BN_value_one(), -1,
+ 2048))
+ /* bad exponent */
+ && TEST_true(BN_add_word(e, 1))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1,
+ 2048))
+ && TEST_true(BN_sub_word(e, 1))
+
+ /* mismatch between bits and modulus */
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 3072))
+ && TEST_true(rsa_sp800_56b_check_keypair(key, e, 112, 2048))
+ /* check n == pq failure */
+ && TEST_true(BN_add_word(n, 1))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048))
+ && TEST_true(BN_sub_word(n, 1))
+ /* check p */
+ && TEST_true(BN_sub_word(p, 2))
+ && TEST_true(BN_mul(n, p, q, ctx))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048))
+ && TEST_true(BN_add_word(p, 2))
+ && TEST_true(BN_mul(n, p, q, ctx))
+ /* check q */
+ && TEST_true(BN_sub_word(q, 2))
+ && TEST_true(BN_mul(n, p, q, ctx))
+ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048))
+ && TEST_true(BN_add_word(q, 2))
+ && TEST_true(BN_mul(n, p, q, ctx));
+
+ RSA_free(key);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+static int test_fips1864_keygen_kat(void)
+{
+ int ret = 0;
+ RSA *key = NULL;
+ BN_CTX *ctx = NULL;
+ BIGNUM *e, *Xp, *Xp1, *Xp2, *Xq, *Xq1, *Xq2;
+ BIGNUM *p1, *p2, *q1, *q2;
+ BIGNUM *p1_exp, *p2_exp, *q1_exp, *q2_exp;
+ BIGNUM *p_exp, *q_exp, *n_exp, *d_exp;
+ const BIGNUM *p, *q, *n, *d, *e2;
+
+ if (!(TEST_ptr(key = RSA_new()) && TEST_ptr(ctx = BN_CTX_new())))
+ goto err;
+ BN_CTX_start(ctx);
+
+ e = bn_load(ctx, cav_e, sizeof(cav_e));
+ Xp = bn_load(ctx, cav_Xp, sizeof(cav_Xp));
+ Xp1 = bn_load(ctx, cav_Xp1, sizeof(cav_Xp1));
+ Xp2 = bn_load(ctx, cav_Xp2, sizeof(cav_Xp2));
+ Xq = bn_load(ctx, cav_Xq, sizeof(cav_Xq));
+ Xq1 = bn_load(ctx, cav_Xq1, sizeof(cav_Xq1));
+ Xq2 = bn_load(ctx, cav_Xq2, sizeof(cav_Xq2));
+ p1_exp = bn_load(ctx, cav_p1, sizeof(cav_p1));
+ p2_exp = bn_load(ctx, cav_p2, sizeof(cav_p2));
+ q1_exp = bn_load(ctx, cav_q1, sizeof(cav_q1));
+ q2_exp = bn_load(ctx, cav_q2, sizeof(cav_q2));
+ p_exp = bn_load(ctx, cav_p, sizeof(cav_p));
+ q_exp = bn_load(ctx, cav_q, sizeof(cav_q));
+ n_exp = bn_load(ctx, cav_n, sizeof(cav_n));
+ d_exp = bn_load(ctx, cav_d, sizeof(cav_d));
+ p1 = BN_CTX_get(ctx);
+ p2 = BN_CTX_get(ctx);
+ q1 = BN_CTX_get(ctx);
+ q2 = BN_CTX_get(ctx);
+ ret = TEST_ptr(q2)
+ && TEST_true(rsa_fips186_4_gen_prob_primes(key, p1, p2, NULL, Xp, Xp1,
+ Xp2, q1, q2, NULL, Xq, Xq1,
+ Xq2, 2048, e, ctx, NULL))
+ && TEST_true(rsa_sp800_56b_derive_params_from_pq(key, 2048, e, ctx))
+ && TEST_BN_eq(p1_exp, p1)
+ && TEST_BN_eq(p2_exp, p2)
+ && TEST_BN_eq(q1_exp, q1)
+ && TEST_BN_eq(q2_exp, q2);
+ if (!ret)
+ goto err;
+
+ RSA_get0_key(key, &n, &e2, &d);
+ RSA_get0_factors(key, &p, &q);
+ ret = TEST_BN_eq(e, e2)
+ && TEST_BN_eq(p_exp, p)
+ && TEST_BN_eq(q_exp, q)
+ && TEST_BN_eq(n_exp, n)
+ && TEST_BN_eq(d_exp, d);
+err:
+ RSA_free(key);
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ return ret;
+}
+
+
+static int keygen_size[] =
+{
+ 2048, 3072
+};
+
+static int test_sp80056b_keygen(int id)
+{
+ RSA *key = NULL;
+ int ret;
+ int sz = keygen_size[id];
+
+ ret = TEST_ptr(key = RSA_new())
+ && TEST_true(rsa_sp800_56b_generate_key(key, sz, NULL, NULL))
+ && TEST_true(rsa_sp800_56b_check_public(key))
+ && TEST_true(rsa_sp800_56b_check_private(key))
+ && TEST_true(rsa_sp800_56b_check_keypair(key, NULL, -1, sz));
+
+ RSA_free(key);
+ return ret;
+}
+
+static int test_check_private_key(void)
+{
+ int ret = 0;
+ BIGNUM *n = NULL, *d = NULL, *e = NULL;
+ RSA *key = NULL;
+
+ ret = TEST_ptr(key = RSA_new())
+ /* check NULL pointers fail */
+ && TEST_false(rsa_sp800_56b_check_private(key))
+ /* load private key */
+ && TEST_ptr(n = bn_load_new(cav_n, sizeof(cav_n)))
+ && TEST_ptr(d = bn_load_new(cav_d, sizeof(cav_d)))
+ && TEST_ptr(e = bn_load_new(cav_e, sizeof(cav_e)))
+ && TEST_true(RSA_set0_key(key, n, e, d))
+ /* check d is in range */
+ && TEST_true(rsa_sp800_56b_check_private(key))
+ /* check d is too low */
+ && TEST_true(BN_set_word(d, 0))
+ && TEST_false(rsa_sp800_56b_check_private(key))
+ /* check d is too high */
+ && TEST_ptr(BN_copy(d, n))
+ && TEST_false(rsa_sp800_56b_check_private(key));
+
+ RSA_free(key);
+ return ret;
+}
+
+static int test_check_public_key(void)
+{
+ int ret = 0;
+ BIGNUM *n = NULL, *e = NULL;
+ RSA *key = NULL;
+
+ ret = TEST_ptr(key = RSA_new())
+ /* check NULL pointers fail */
+ && TEST_false(rsa_sp800_56b_check_public(key))
+ /* load public key */
+ && TEST_ptr(e = bn_load_new(cav_e, sizeof(cav_e)))
+ && TEST_ptr(n = bn_load_new(cav_n, sizeof(cav_n)))
+ && TEST_true(RSA_set0_key(key, n, e, NULL))
+ /* check public key is valid */
+ && TEST_true(rsa_sp800_56b_check_public(key))
+ /* check fail if n is even */
+ && TEST_true(BN_add_word(n, 1))
+ && TEST_false(rsa_sp800_56b_check_public(key))
+ && TEST_true(BN_sub_word(n, 1))
+ /* check fail if n is wrong number of bits */
+ && TEST_true(BN_lshift1(n, n))
+ && TEST_false(rsa_sp800_56b_check_public(key))
+ && TEST_true(BN_rshift1(n, n))
+ /* test odd exponent fails */
+ && TEST_true(BN_add_word(e, 1))
+ && TEST_false(rsa_sp800_56b_check_public(key))
+ && TEST_true(BN_sub_word(e, 1))
+ /* modulus fails composite check */
+ && TEST_true(BN_add_word(n, 2))
+ && TEST_false(rsa_sp800_56b_check_public(key));
+
+ RSA_free(key);
+ return ret;
+}
+
+int setup_tests(void)
+{
+ ADD_TEST(test_check_public_exponent);
+ ADD_TEST(test_check_prime_factor_range);
+ ADD_TEST(test_check_prime_factor);
+ ADD_TEST(test_check_private_exponent);
+ ADD_TEST(test_check_crt_components);
+ ADD_TEST(test_check_private_key);
+ ADD_TEST(test_check_public_key);
+ ADD_TEST(test_invalid_keypair);
+ ADD_TEST(test_pq_diff);
+ ADD_TEST(test_fips1864_keygen_kat);
+ ADD_ALL_TESTS(test_sp80056b_keygen, (int)OSSL_NELEM(keygen_size));
+ return 1;
+}
+#endif
BN_bin2bn(dmp1, sizeof(dmp1)-1, NULL), \
BN_bin2bn(dmq1, sizeof(dmq1)-1, NULL), \
BN_bin2bn(iqmp, sizeof(iqmp)-1, NULL)); \
+ if (c == NULL) \
+ return 0; \
memcpy(c, ctext_ex, sizeof(ctext_ex) - 1); \
return sizeof(ctext_ex) - 1;