static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
const BIGNUM *a1_odd, int k, BN_CTX *ctx,
BN_MONT_CTX *mont);
-static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
+static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
const BIGNUM *add, const BIGNUM *rem,
BN_CTX *ctx);
+#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
+
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
/* No callback means continue */
loop:
/* make a random number and set the top and bottom bits */
if (add == NULL) {
- if (!probable_prime(ret, bits, mods))
+ if (!probable_prime(ret, bits, safe, mods))
goto err;
} else {
if (safe) {
return 1;
}
-static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
+static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods)
{
int i;
BN_ULONG delta;
BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
- char is_single_word = bits <= BN_BITS2;
again:
/* TODO: Not all primes are private */
if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
return 0;
+ if (safe && !BN_set_bit(rnd, 1))
+ return 0;
/* we now have a random number 'rnd' to test. */
for (i = 1; i < NUMPRIMES; i++) {
BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
return 0;
mods[i] = (prime_t) mod;
}
- /*
- * If bits is so small that it fits into a single word then we
- * additionally don't want to exceed that many bits.
- */
- if (is_single_word) {
- BN_ULONG size_limit;
-
- if (bits == BN_BITS2) {
- /*
- * Shifting by this much has undefined behaviour so we do it a
- * different way
- */
- size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
- } else {
- size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
- }
- if (size_limit < maxdelta)
- maxdelta = size_limit;
- }
delta = 0;
loop:
- if (is_single_word) {
- BN_ULONG rnd_word = BN_get_word(rnd);
-
- /*-
- * In the case that the candidate prime is a single word then
- * we check that:
- * 1) It's greater than primes[i] because we shouldn't reject
- * 3 as being a prime number because it's a multiple of
- * three.
- * 2) That it's not a multiple of a known prime. We don't
- * check that rnd-1 is also coprime to all the known
- * primes because there aren't many small primes where
- * that's true.
+ for (i = 1; i < NUMPRIMES; i++) {
+ /*
+ * check that rnd is a prime and also that
+ * gcd(rnd-1,primes) == 1 (except for 2)
+ * do the second check only if we are interested in safe primes
+ * in the case that the candidate prime is a single word then
+ * we check only the primes up to sqrt(rnd)
*/
- for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
- if ((mods[i] + delta) % primes[i] == 0) {
- delta += 2;
- if (delta > maxdelta)
- goto again;
- goto loop;
- }
- }
- } else {
- for (i = 1; i < NUMPRIMES; i++) {
- /*
- * check that rnd is not a prime and also that gcd(rnd-1,primes)
- * == 1 (except for 2)
- */
- if (((mods[i] + delta) % primes[i]) <= 1) {
- delta += 2;
- if (delta > maxdelta)
- goto again;
- goto loop;
- }
+ if (bits <= 31 && delta <= 0x7fffffff
+ && square(primes[i]) > BN_get_word(rnd) + delta)
+ break;
+ if (safe ? (mods[i] + delta) % primes[i] <= 1
+ : (mods[i] + delta) % primes[i] == 0) {
+ delta += safe ? 4 : 2;
+ if (delta > maxdelta)
+ goto again;
+ goto loop;
}
}
if (!BN_add_word(rnd, delta))