--- /dev/null
+/*\r
+ *\r
+ * bn_mont2.c\r
+ *\r
+ * Montgomery Modular Arithmetic Functions.\r
+ *\r
+ * Copyright (C) Lenka Fibikova 2000\r
+ *\r
+ *\r
+ */\r
+\r
+\r
+#include <stdio.h>\r
+#include <stdlib.h>\r
+#include <assert.h>\r
+\r
+#include "bn.h"\r
+#include "bn_modfs.h"\r
+#include "bn_mont2.h"\r
+\r
+#define BN_mask_word(x, m) ((x->d[0]) & (m))\r
+\r
+BN_MONTGOMERY *BN_mont_new()\r
+{\r
+ BN_MONTGOMERY *ret;\r
+\r
+ ret=(BN_MONTGOMERY *)malloc(sizeof(BN_MONTGOMERY));\r
+\r
+ if (ret == NULL) return NULL;\r
+\r
+ if ((ret->p = BN_new()) == NULL)\r
+ {\r
+ free(ret);\r
+ return NULL;\r
+ }\r
+\r
+ return ret;\r
+}\r
+\r
+\r
+void BN_mont_clear_free(BN_MONTGOMERY *mont)\r
+{\r
+ if (mont == NULL) return;\r
+\r
+ if (mont->p != NULL) BN_clear_free(mont->p);\r
+\r
+ mont->p_num_bytes = 0;\r
+ mont->R_num_bits = 0;\r
+ mont->p_inv_b_neg = 0;\r
+}\r
+\r
+int BN_to_mont(BIGNUM *x, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+{\r
+ assert(x != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ if (!BN_lshift(x, x, mont->R_num_bits)) return 0;\r
+ if (!BN_mod(x, x, mont->p, ctx)) return 0;\r
+\r
+ return 1;\r
+}\r
+\r
+\r
+static BN_ULONG BN_mont_inv(BIGNUM *a, int e, BN_CTX *ctx)\r
+/* y = a^{-1} (mod 2^e) for an odd number a */\r
+{\r
+ BN_ULONG y, exp, mask;\r
+ BIGNUM *x, *xy, *x_sh;\r
+ int i;\r
+\r
+ assert(a != NULL && ctx != NULL);\r
+ assert(e <= BN_BITS2);\r
+ assert(BN_is_odd(a));\r
+ assert(!BN_is_zero(a) && !a->neg);\r
+\r
+\r
+ y = 1;\r
+ exp = 2;\r
+ mask = 3;\r
+ if((x = BN_dup(a)) == NULL) return 0;\r
+ if(!BN_mask_bits(x, e)) return 0;\r
+\r
+ xy = ctx->bn[ctx->tos]; \r
+ x_sh = ctx->bn[ctx->tos + 1]; \r
+ ctx->tos += 2;\r
+\r
+ if (BN_copy(xy, x) == NULL) goto err;\r
+ if (!BN_lshift1(x_sh, x)) goto err;\r
+\r
+\r
+ for (i = 2; i <= e; i++)\r
+ {\r
+ if (exp < BN_mask_word(xy, mask))\r
+ {\r
+ y = y + exp;\r
+ if (!BN_add(xy, xy, x_sh)) goto err;\r
+ }\r
+\r
+ exp <<= 1;\r
+ if (!BN_lshift1(x_sh, x_sh)) goto err;\r
+ mask <<= 1;\r
+ mask++;\r
+ }\r
+\r
+\r
+#ifdef TEST\r
+ if (xy->d[0] != 1) goto err;\r
+#endif\r
+\r
+ if (x != NULL) BN_clear_free(x);\r
+ ctx->tos -= 2;\r
+ return y;\r
+\r
+\r
+err:\r
+ if (x != NULL) BN_clear_free(x);\r
+ ctx->tos -= 2;\r
+ return 0;\r
+\r
+}\r
+\r
+int BN_mont_set(BIGNUM *p, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+{\r
+ assert(p != NULL && ctx != NULL);\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(!BN_is_zero(p) && !p->neg);\r
+\r
+\r
+ mont->p_num_bytes = p->top;\r
+ mont->R_num_bits = (mont->p_num_bytes) * BN_BITS2;\r
+\r
+ if (BN_copy(mont->p, p) == NULL);\r
+ \r
+ mont->p_inv_b_neg = BN_mont_inv(p, BN_BITS2, ctx);\r
+ mont->p_inv_b_neg = 0 - mont->p_inv_b_neg;\r
+\r
+ return 1;\r
+}\r
+\r
+static int BN_cpy_mul_word(BIGNUM *ret, BIGNUM *a, BN_ULONG w)\r
+/* ret = a * w */\r
+{\r
+ if (BN_copy(ret, a) == NULL) return 0;\r
+\r
+ if (!BN_mul_word(ret, w)) return 0;\r
+\r
+ return 1;\r
+}\r
+\r
+\r
+int BN_mont_red(BIGNUM *y, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* yR^{-1} (mod p) */\r
+{\r
+ int i;\r
+ BIGNUM *up, *p;\r
+ BN_ULONG u;\r
+\r
+ assert(y != NULL && mont != NULL && ctx != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(y, mont->p) < 0);\r
+ assert(!y->neg);\r
+\r
+\r
+ if (BN_is_zero(y)) return 1;\r
+\r
+ p = mont->p;\r
+ up = ctx->bn[ctx->tos]; \r
+ ctx->tos += 1;\r
+\r
+\r
+ for (i = 0; i < mont->p_num_bytes; i++)\r
+ {\r
+ u = (y->d[0]) * mont->p_inv_b_neg; /* u = y_0 * p' */\r
+\r
+ if (!BN_cpy_mul_word(up, p, u)) goto err; /* up = u * p */\r
+\r
+ if (!BN_add(y, y, up)) goto err; \r
+#ifdef TEST\r
+ if (y->d[0]) goto err;\r
+#endif\r
+ if (!BN_rshift(y, y, BN_BITS2)) goto err; /* y = (y + up)/b */\r
+ }\r
+\r
+\r
+ if (BN_cmp(y, mont->p) >= 0) \r
+ {\r
+ if (!BN_sub(y, y, mont->p)) goto err;\r
+ }\r
+\r
+ ctx->tos -= 1;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 1;\r
+ return 0;\r
+\r
+}\r
+\r
+\r
+int BN_mont_mod_mul(BIGNUM *r, BIGNUM *x, BIGNUM *y, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* r = x * y mod p */\r
+/* r != x && r! = y !!! */\r
+{\r
+ BIGNUM *xiy, *up;\r
+ BN_ULONG u;\r
+ int i;\r
+ \r
+\r
+ assert(r != x && r != y);\r
+ assert(r != NULL && x != NULL && y != NULL && mont != NULL && ctx != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(x, mont->p) < 0);\r
+ assert(BN_cmp(y, mont->p) < 0);\r
+ assert(!x->neg);\r
+ assert(!y->neg);\r
+\r
+ if (BN_is_zero(x) || BN_is_zero(y))\r
+ {\r
+ if (!BN_zero(r)) return 0;\r
+ return 1;\r
+ }\r
+\r
+\r
+\r
+ xiy = ctx->bn[ctx->tos]; \r
+ up = ctx->bn[ctx->tos + 1]; \r
+ ctx->tos += 2;\r
+\r
+ if (!BN_zero(r)) goto err;\r
+\r
+ for (i = 0; i < x->top; i++)\r
+ {\r
+ u = (r->d[0] + x->d[i] * y->d[0]) * mont->p_inv_b_neg;\r
+\r
+ if (!BN_cpy_mul_word(xiy, y, x->d[i])) goto err;\r
+ if (!BN_cpy_mul_word(up, mont->p, u)) goto err;\r
+\r
+ if (!BN_add(r, r, xiy)) goto err;\r
+ if (!BN_add(r, r, up)) goto err;\r
+\r
+#ifdef TEST\r
+ if (r->d[0]) goto err;\r
+#endif\r
+ if (!BN_rshift(r, r, BN_BITS2)) goto err; \r
+ }\r
+\r
+ for (i = x->top; i < mont->p_num_bytes; i++)\r
+ {\r
+ u = (r->d[0]) * mont->p_inv_b_neg;\r
+\r
+ if (!BN_cpy_mul_word(up, mont->p, u)) goto err;\r
+\r
+ if (!BN_add(r, r, up)) goto err;\r
+\r
+#ifdef TEST\r
+ if (r->d[0]) goto err;\r
+#endif\r
+ if (!BN_rshift(r, r, BN_BITS2)) goto err; \r
+ }\r
+\r
+\r
+ if (BN_cmp(r, mont->p) >= 0) \r
+ {\r
+ if (!BN_sub(r, r, mont->p)) goto err;\r
+ }\r
+\r
+\r
+ ctx->tos -= 2;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 2;\r
+ return 0;\r
+}\r
+\r
+int BN_mont_mod_add(BIGNUM *r, BIGNUM *x, BIGNUM *y, BN_MONTGOMERY *mont)\r
+{\r
+ assert(r != NULL && x != NULL && y != NULL && mont != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(x, mont->p) < 0);\r
+ assert(BN_cmp(y, mont->p) < 0);\r
+ assert(!x->neg);\r
+ assert(!y->neg);\r
+\r
+ if (!BN_add(r, x, y)) return 0;\r
+ if (BN_cmp(r, mont->p) >= 0) \r
+ {\r
+ if (!BN_sub(r, r, mont->p)) return 0;\r
+ }\r
+\r
+ return 1;\r
+}\r
+\r
+\r
+int BN_mont_mod_sub(BIGNUM *r, BIGNUM *x, BIGNUM *y, BN_MONTGOMERY *mont)\r
+{\r
+ assert(r != NULL && x != NULL && y != NULL && mont != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(x, mont->p) < 0);\r
+ assert(BN_cmp(y, mont->p) < 0);\r
+ assert(!x->neg);\r
+ assert(!y->neg);\r
+\r
+ if (!BN_sub(r, x, y)) return 0;\r
+ if (r->neg) \r
+ {\r
+ if (!BN_add(r, r, mont->p)) return 0;\r
+ }\r
+\r
+ return 1;\r
+}\r
+\r
+int BN_mont_mod_lshift1(BIGNUM *r, BIGNUM *x, BN_MONTGOMERY *mont)\r
+{\r
+ assert(r != NULL && x != NULL && mont != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(x, mont->p) < 0);\r
+ assert(!x->neg);\r
+\r
+ if (!BN_lshift1(r, x)) return 0;\r
+\r
+ if (BN_cmp(r, mont->p) >= 0) \r
+ {\r
+ if (!BN_sub(r, r, mont->p)) return 0;\r
+ }\r
+\r
+ return 1;\r
+}\r
+\r
+int BN_mont_mod_lshift(BIGNUM *r, BIGNUM *x, int n, BN_MONTGOMERY *mont)\r
+{\r
+ int sh_nb;\r
+\r
+ assert(r != NULL && x != NULL && mont != NULL);\r
+ assert(mont->p != NULL);\r
+ assert(BN_cmp(x, mont->p) < 0);\r
+ assert(!x->neg);\r
+ assert(n > 0);\r
+\r
+ if (r != x)\r
+ {\r
+ if (BN_copy(r, x) == NULL) return 0;\r
+ }\r
+\r
+ while (n)\r
+ {\r
+ sh_nb = BN_num_bits(mont->p) - BN_num_bits(r);\r
+ if (sh_nb > n) sh_nb = n;\r
+\r
+ if (sh_nb)\r
+ {\r
+ if(!BN_lshift(r, r, sh_nb)) return 0;\r
+ }\r
+ else \r
+ {\r
+ sh_nb = 1;\r
+ if (!BN_lshift1(r, r)) return 0;\r
+ }\r
+\r
+ if (BN_cmp(r, mont->p) >= 0) \r
+ {\r
+ if (!BN_sub(r, r, mont->p)) return 0;\r
+ }\r
+\r
+ n -= sh_nb;\r
+ }\r
+\r
+ return 1;\r
+}\r
--- /dev/null
+/*\r
+ *\r
+ * ec_point.c\r
+ *\r
+ * Elliptic Curve Arithmetic Functions\r
+ *\r
+ * Copyright (C) Lenka Fibikova 2000\r
+ *\r
+ *\r
+ */\r
+\r
+#include <stdio.h>\r
+#include <stdlib.h>\r
+#include <assert.h>\r
+#include <memory.h>\r
+\r
+#include "bn.h"\r
+\r
+#include "bn_modfs.h"\r
+#include "bn_mont2.h"\r
+#include "ec.h"\r
+\r
+EC_POINT *ECP_new()\r
+{\r
+ EC_POINT *ret;\r
+\r
+ ret=(EC_POINT *)malloc(sizeof(EC_POINT));\r
+ if (ret == NULL) return NULL;\r
+ ret->X = BN_new();\r
+ ret->Y = BN_new();\r
+ ret->Z = BN_new();\r
+ ret->is_in_mont = 0;\r
+\r
+ if (ret->X == NULL || ret->Y == NULL || ret->Z == NULL) \r
+ {\r
+ if (ret->X != NULL) BN_free(ret->X);\r
+ if (ret->Y != NULL) BN_free(ret->Y);\r
+ if (ret->Z != NULL) BN_free(ret->Z);\r
+ free(ret);\r
+ return(NULL);\r
+ }\r
+ return(ret);\r
+}\r
+\r
+void ECP_clear_free(EC_POINT *P)\r
+{\r
+ if (P == NULL) return;\r
+ \r
+ P->is_in_mont = 0;\r
+ if (P->X != NULL) BN_clear_free(P->X);\r
+ if (P->Y != NULL) BN_clear_free(P->Y);\r
+ if (P->Z != NULL) BN_clear_free(P->Z);\r
+ free(P);\r
+}\r
+\r
+void ECP_clear_free_precompute(ECP_PRECOMPUTE *prec)\r
+{\r
+ int i;\r
+ int max;\r
+\r
+ if (prec == NULL) return;\r
+ if (prec->Pi != NULL)\r
+ {\r
+ max = 1;\r
+ max <<= (prec->r - 1);\r
+\r
+ for (i = 0; i < max; i++)\r
+ {\r
+ if (prec->Pi[i] != NULL) ECP_clear_free(prec->Pi[i]);\r
+ }\r
+ }\r
+ free(prec);\r
+}\r
+\r
+int ECP_is_on_ec(EC_POINT *P, EC *E, BN_CTX *ctx)\r
+{\r
+ BIGNUM *n0, *n1, *n2, *p;\r
+ int Pnorm;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ assert(!P->is_in_mont);\r
+\r
+ if (ECP_is_infty(P)) return 1;\r
+ \r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ ctx->tos += 3;\r
+\r
+\r
+ p = E->p;\r
+\r
+ Pnorm = (ECP_is_norm(P));\r
+\r
+ if (!Pnorm)\r
+ {\r
+ if (!BN_mod_mul(n0, P->Z, P->Z, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n1, n0, n0, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n2, n0, n1, p, ctx)) goto err;\r
+ }\r
+\r
+ if (!BN_mod_mul(n0, P->X, P->X, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n0, n0, P->X, p, ctx)) goto err;\r
+\r
+ if (Pnorm)\r
+ {\r
+ if (!BN_mod_mul(n1, P->X, E->A, p, ctx)) goto err;\r
+ }\r
+ else\r
+ {\r
+ if (!BN_mod_mul(n1, n1, P->X, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n1, n1, E->A, p, ctx)) goto err;\r
+ }\r
+ if (!BN_mod_add(n0, n0, n1, p, ctx)) goto err;\r
+\r
+ if (Pnorm)\r
+ {\r
+ if (!BN_mod_add(n0, n0, E->B, p, ctx)) goto err;\r
+ }\r
+ else\r
+ {\r
+ if (!BN_mod_mul(n2, n2, E->B, p, ctx)) goto err;\r
+ if (!BN_mod_add(n0, n0, n2, p, ctx)) goto err;\r
+ }\r
+\r
+ if (!BN_mod_mul(n1, P->Y, P->Y, p, ctx)) goto err;\r
+\r
+ if (BN_cmp(n0, n1)) \r
+ { \r
+ ctx->tos -= 3;\r
+ return 0;\r
+ }\r
+\r
+ ctx->tos -= 3;\r
+ return 1;\r
+ \r
+err:\r
+ ctx->tos -= 3;\r
+ return -1;\r
+}\r
+\r
+\r
+EC_POINT *ECP_generate(BIGNUM *x, BIGNUM *z,EC *E, BN_CTX *ctx)\r
+/* x == NULL || z = 0 -> point of infinity */\r
+/* z == NULL || z = 1 -> normalized */\r
+{\r
+ BIGNUM *n0, *n1;\r
+ EC_POINT *ret;\r
+ int Pnorm, Pinfty, X0, A0;\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ Pinfty = (x == NULL);\r
+ Pnorm = (z == NULL);\r
+ if (!Pnorm) \r
+ {\r
+ Pnorm = BN_is_one(z);\r
+ Pinfty = (Pinfty || BN_is_zero(z));\r
+ }\r
+\r
+ if (Pinfty) \r
+ {\r
+ if ((ret = ECP_new()) == NULL) return NULL;\r
+ if (!BN_zero(ret->Z)) \r
+ { \r
+ ECP_clear_free(ret);\r
+ return NULL;\r
+ }\r
+ return ret;\r
+ }\r
+\r
+ X0 = BN_is_zero(x);\r
+ A0 = BN_is_zero(E->A);\r
+\r
+ if ((ret = ECP_new()) == NULL) return NULL;\r
+\r
+ ret->is_in_mont = 0;\r
+\r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ if (!BN_zero(n0)) return NULL;\r
+ if (!BN_zero(n1)) return NULL;\r
+\r
+ ctx->tos += 2;\r
+\r
+ if (!X0)\r
+ {\r
+ if (!BN_mod_sqr(n0, x, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(n0, n0, x, E->p, ctx)) goto err; /* x^3 */\r
+ }\r
+\r
+ if (!X0 && !A0)\r
+ {\r
+ if (!BN_mod_mul(n1, E->A, x, E->p, ctx)) goto err; /* Ax */\r
+ if (!BN_mod_add(n0, n0, n1, E->p, ctx)) goto err; /* x^3 + Ax */\r
+ }\r
+\r
+ if (!BN_is_zero(E->B))\r
+ if (!BN_mod_add(n0, n0, E->B, E->p, ctx)) goto err; /* x^3 + Ax +B */\r
+\r
+ if (!BN_mod_sqrt(ret->Y, n0, E->p, ctx)) goto err;\r
+ if (BN_copy(ret->X, x) == NULL) goto err;\r
+ \r
+ if (Pnorm)\r
+ {\r
+ if (!BN_one(ret->Z)) goto err;\r
+ }\r
+ else\r
+ {\r
+ if (BN_copy(ret->Z, z) == NULL) goto err;\r
+ if (!BN_mod_sqr(n0, z, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(ret->X, ret->X, n0, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(n0, n0, z, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(ret->Y, ret->Y, n0, E->p, ctx)) goto err;\r
+ }\r
+\r
+#ifdef TEST\r
+ if (!ECP_is_on_ec(ret, E, ctx)) goto err;\r
+#endif\r
+ \r
+ ctx->tos -= 2;\r
+ return ret;\r
+\r
+err:\r
+ if (ret != NULL) ECP_clear_free(ret);\r
+ ctx->tos -= 2;\r
+ return NULL;\r
+}\r
+\r
+int ECP_ecp2bin(EC_POINT *P, unsigned char *to, int form)\r
+/* form = 1 ... compressed\r
+ 2 ... uncompressed\r
+ 3 ... hybrid */\r
+{\r
+ int bytes, bx, by;\r
+\r
+ assert (P != NULL);\r
+ assert (P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+ assert (!P->is_in_mont);\r
+ assert (ECP_is_norm(P) || ECP_is_infty(P));\r
+ assert (to != NULL);\r
+ assert (form > 0 && form < 4);\r
+\r
+ if (BN_is_zero(P->Z))\r
+ {\r
+ to[0] = 0;\r
+ return 1;\r
+ }\r
+\r
+ bx = BN_num_bytes(P->X);\r
+ if (form == 1 ) bytes = bx + 1;\r
+ else \r
+ {\r
+ by = BN_num_bytes(P->Y);\r
+ bytes = (bx > by ? bx : by);\r
+ bytes = bytes * 2 + 1;\r
+ }\r
+ memset(to, 0, bytes);\r
+\r
+ switch (form)\r
+ {\r
+ case 1: to[0] = 2; break;\r
+ case 2: to[0] = 4; break;\r
+ case 3: to[0] = 6; break;\r
+ }\r
+ if (form != 2) to[0] += BN_is_bit_set(P->Y, 0);\r
+\r
+ \r
+ if ((BN_bn2bin(P->X, to + 1)) != bx) return 0;\r
+ if (form != 1)\r
+ {\r
+ if ((BN_bn2bin(P->Y, to + bx + 1)) != by) return 0;\r
+ }\r
+\r
+ return bytes;\r
+}\r
+\r
+int ECP_bin2ecp(unsigned char *from, int len, EC_POINT *P, EC *E, BN_CTX *ctx)\r
+{\r
+ int y;\r
+ BIGNUM *x;\r
+ EC_POINT *pp;\r
+\r
+ assert (E != NULL);\r
+ assert (E->A != NULL && E->B != NULL && E->p != NULL);\r
+ assert (!E->is_in_mont);\r
+\r
+ assert (ctx != NULL);\r
+ assert (from != NULL);\r
+ assert (P != NULL);\r
+ assert (P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ if (len == 1 && from[0] != 0) return 0;\r
+\r
+ if (len == 0 || len == 1)\r
+ { \r
+ if (!BN_zero(P->Z)) return 0;\r
+ return 1;\r
+ }\r
+\r
+ switch (from[0])\r
+ {\r
+ case 2:\r
+ case 3:\r
+ y = from[0] - 2;\r
+ if ((x = BN_new()) == NULL) return 0;\r
+ if (BN_bin2bn(from + 1, len - 1, x) == NULL) return 0;\r
+\r
+ pp = ECP_generate(x, NULL, E, ctx);\r
+ BN_clear_free(x);\r
+ if (pp == NULL) return 0;\r
+\r
+ ECP_copy(P, pp);\r
+ ECP_clear_free(pp);\r
+\r
+ if (BN_is_bit_set(P->Y, 0) != y)\r
+ if (!BN_sub(P->Y, E->p, P->Y)) return 0;\r
+ break;\r
+\r
+ case 4:\r
+ case 6:\r
+ case 7:\r
+ y = (len - 1)/2;\r
+ if (BN_bin2bn(from + 1, y, P->X) == NULL) return 0;\r
+ if (BN_bin2bn(from + y + 1, y, P->Y) == NULL) return 0;\r
+ if (!BN_set_word(P->Z, 1)) return 0;\r
+ break;\r
+\r
+ default:\r
+ assert(0);\r
+\r
+ }\r
+\r
+ if (!ECP_is_on_ec(P, E, ctx)) return 0;\r
+ return 1;\r
+}\r
+\r
+int ECP_normalize(EC_POINT *P, EC *E, BN_CTX *ctx)\r
+{\r
+ BIGNUM *z, *zm;\r
+\r
+ assert (P != NULL);\r
+ assert (P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert (E != NULL);\r
+ assert (E->A != NULL && E->B != NULL && E->p != NULL);\r
+\r
+ assert (ctx != NULL);\r
+\r
+ if (ECP_is_norm(P)) return 1;\r
+ if (ECP_is_infty(P)) return 0;\r
+\r
+ if ((zm = BN_mod_inverse(P->Z, E->p, ctx)) == NULL) return 0;\r
+\r
+ assert(!P->is_in_mont);\r
+\r
+\r
+ z = ctx->bn[ctx->tos]; \r
+ ctx->tos++;\r
+\r
+ if (!BN_mod_mul(z, zm, zm, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(P->X, P->X, z, E->p, ctx)) goto err;\r
+\r
+ if (!BN_mod_mul(z, z, zm, E->p, ctx)) goto err;\r
+ if (!BN_mod_mul(P->Y, P->Y, z, E->p, ctx)) goto err;\r
+\r
+ if (!BN_one(P->Z)) goto err;\r
+\r
+ if (zm != NULL) BN_clear_free(zm);\r
+\r
+ ctx->tos--;\r
+ return 1;\r
+\r
+err:\r
+ if (zm != NULL) BN_clear_free(zm);\r
+ ctx->tos--;\r
+ return 0;\r
+}\r
+\r
+int ECP_copy(EC_POINT *R, EC_POINT *P)\r
+{\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ if (BN_copy(R->X, P->X) == NULL) return 0;\r
+ if (BN_copy(R->Y, P->Y) == NULL) return 0;\r
+ if (BN_copy(R->Z, P->Z) == NULL) return 0;\r
+ R->is_in_mont = P->is_in_mont;\r
+\r
+ return 1;\r
+}\r
+\r
+EC_POINT *ECP_dup(EC_POINT *P)\r
+{\r
+ EC_POINT *ret;\r
+\r
+ ret = ECP_new();\r
+ if (ret == NULL) return NULL;\r
+\r
+ if (!ECP_copy(ret, P))\r
+ {\r
+ ECP_clear_free(ret);\r
+ return(NULL);\r
+ }\r
+\r
+ return(ret);\r
+}\r
+\r
+\r
+EC_POINT *ECP_minus(EC_POINT *P, BIGNUM *p) /* mont || non-mont */\r
+{\r
+ EC_POINT *ret;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(p != NULL);\r
+\r
+ assert(BN_cmp(P->Y, p) < 0);\r
+\r
+ ret = ECP_dup(P);\r
+ if (ret == NULL) return NULL;\r
+\r
+ if (BN_is_zero(ret->Y)) return ret;\r
+\r
+ if (!BN_sub(ret->Y, p, ret->Y))\r
+ {\r
+ ECP_clear_free(ret);\r
+ return NULL;\r
+ }\r
+\r
+ return ret;\r
+}\r
+\r
+\r
+#ifdef SIMPLE\r
+int ECP_cmp(EC_POINT *P, EC_POINT *Q, BIGNUM *p, BN_CTX *ctx)\r
+/* return values: \r
+ -2 ... error\r
+ 0 ... P = Q \r
+ -1 ... P = -Q\r
+ 1 ... else\r
+*/\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *n4;\r
+ int Pnorm, Qnorm;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(Q != NULL);\r
+ assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL);\r
+\r
+ assert(p != NULL);\r
+ assert(ctx != NULL);\r
+\r
+ assert(!P->is_in_mont);\r
+ assert(!Q->is_in_mont);\r
+\r
+ if (ECP_is_infty(P) && ECP_is_infty(Q)) return 0;\r
+ if (ECP_is_infty(P) || ECP_is_infty(Q)) return 1;\r
+\r
+ \r
+ Pnorm = (ECP_is_norm(P));\r
+ Qnorm = (ECP_is_norm(Q));\r
+ \r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+ n4 = ctx->bn[ctx->tos + 4]; \r
+ ctx->tos += 5;\r
+ \r
+ if (Qnorm)\r
+ {\r
+ if (BN_copy(n1, P->X) == NULL) goto err; /* L1 = x_p */\r
+ if (BN_copy(n2, P->Y) == NULL) goto err; /* L2 = y_p */\r
+ }\r
+ else\r
+ {\r
+ if (!BN_sqr(n0, Q->Z, ctx)) goto err;\r
+ if (!BN_mod_mul(n1, P->X, n0, p, ctx)) goto err; /* L1 = x_p * z_q^2 */\r
+\r
+ if (!BN_mod_mul(n0, n0, Q->Z, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n2, P->Y, n0, p, ctx)) goto err; /* L2 = y_p * z_q^3 */\r
+ }\r
+\r
+ if (Pnorm)\r
+ {\r
+ if (BN_copy(n3, Q->X) == NULL) goto err; /* L3 = x_q */\r
+ if (BN_copy(n4, Q->Y) == NULL) goto err; /* L4 = y_q */\r
+ }\r
+ else\r
+ {\r
+ if (!BN_sqr(n0, P->Z, ctx)) goto err;\r
+ if (!BN_mod_mul(n3, Q->X, n0, p, ctx)) goto err; /* L3 = x_q * z_p^2 */\r
+\r
+ if (!BN_mod_mul(n0, n0, P->Z, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n4, Q->Y, n0, p, ctx)) goto err; /* L4 = y_q * z_p^3 */\r
+ }\r
+\r
+ if (!BN_mod_sub(n0, n1, n3, p, ctx)) goto err; /* L5 = L1 - L3 */\r
+\r
+ if (!BN_is_zero(n0))\r
+ {\r
+ ctx->tos -= 5;\r
+ return 1;\r
+ }\r
+ \r
+ if (!BN_mod_sub(n0, n2, n4, p, ctx)) goto err; /* L6 = L2 - L4 */\r
+\r
+ if (!BN_is_zero(n0))\r
+ {\r
+ ctx->tos -= 5;\r
+ return -1;\r
+ }\r
+\r
+ ctx->tos -= 5;\r
+ return 0;\r
+\r
+err:\r
+ ctx->tos -= 5;\r
+ return -2;\r
+}\r
+\r
+int ECP_double(EC_POINT *R, EC_POINT *P, EC *E, BN_CTX *ctx)\r
+/* R <- 2P (on E) */\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *p;\r
+ int Pnorm, A0;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ assert(!P->is_in_mont);\r
+\r
+ if (ECP_is_infty(P))\r
+ {\r
+ if (!BN_zero(R->Z)) return 0;\r
+ return 1;\r
+ }\r
+\r
+ Pnorm = (ECP_is_norm(P));\r
+ A0 = (BN_is_zero(E->A));\r
+\r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+ ctx->tos += 4;\r
+\r
+ p = E->p;\r
+\r
+ /* L1 */\r
+ if (Pnorm || A0)\r
+ {\r
+ if (!BN_mod_sqr(n1, P->X, p, ctx)) goto err;\r
+ if (!BN_mul_word(n1, 3)) goto err; \r
+ if (!A0) /* if A = 0: L1 = 3 * x^2 + a * z^4 = 3 * x ^2 */\r
+ if (!BN_mod_add(n1, n1, E->A, p, ctx)) goto err; /* L1 = 3 * x^2 + a * z^4 = 3 * x^2 + a */\r
+ }\r
+ else\r
+ {\r
+ if (!BN_mod_sqr(n0, P->Z, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n0, n0, n0, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n0, n0, E->A, p, ctx)) goto err; \r
+ if (!BN_mod_sqr(n1, P->X, p, ctx)) goto err;\r
+ if (!BN_mul_word(n1, 3)) goto err; \r
+ if (!BN_mod_add(n1, n1, n0, p, ctx)) goto err; /* L1 = 3 * x^2 + a * z^4 */\r
+ }\r
+\r
+ /* Z */\r
+ if (Pnorm)\r
+ {\r
+ if (BN_copy(n0, P->Y) == NULL) goto err;\r
+ }\r
+ else\r
+ {\r
+ if (!BN_mod_mul(n0, P->Y, P->Z, p, ctx)) goto err; \r
+ }\r
+ if (!BN_lshift1(n0, n0)) goto err; \r
+ if (!BN_smod(R->Z, n0, p, ctx)) goto err; /* Z = 2 * y * z */\r
+\r
+ /* L2 */\r
+ if (!BN_mod_sqr(n3, P->Y, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n2, P->X, n3, p, ctx)) goto err; \r
+ if (!BN_lshift(n2, n2, 2)) goto err; \r
+ if (!BN_smod(n2, n2, p, ctx)) goto err; /* L2 = 4 * x * y^2 */\r
+\r
+ /* X */\r
+ if (!BN_lshift1(n0, n2)) goto err; \r
+ if (!BN_mod_sqr(R->X, n1, p, ctx)) goto err;\r
+ if (!BN_mod_sub(R->X, R->X, n0, p, ctx)) goto err; /* X = L1^2 - 2 * L2 */\r
+ \r
+ /* L3 */\r
+ if (!BN_mod_sqr(n0, n3, p, ctx)) goto err;\r
+ if (!BN_lshift(n3, n0, 3)) goto err; \r
+ if (!BN_smod(n3, n3, p, ctx)) goto err; /* L3 = 8 * y^4 */\r
+ \r
+ /* Y */\r
+ if (!BN_mod_sub(n0, n2, R->X, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n0, n1, n0, p, ctx)) goto err; \r
+ if (!BN_mod_sub(R->Y, n0, n3, p, ctx)) goto err; /* Y = L1 * (L2 - X) - L3 */\r
+\r
+\r
+#ifdef TEST\r
+ if (!ECP_is_on_ec(R, E, ctx)) return 0;\r
+#endif\r
+\r
+ ctx->tos -= 4;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 4;\r
+ return 0;\r
+}\r
+\r
+int ECP_add(EC_POINT *R, EC_POINT *P, EC_POINT *Q, EC *E, BN_CTX *ctx)\r
+/* R <- P + Q (on E) */\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6, *p;\r
+ int Pnorm, Qnorm;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(Q != NULL);\r
+ assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL);\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+ assert(!BN_is_zero(E->h));;\r
+\r
+ assert(ctx != NULL);\r
+\r
+ assert(!P->is_in_mont);\r
+ assert(!Q->is_in_mont);\r
+\r
+ if (P == Q) return ECP_double(R, P, E, ctx);\r
+\r
+ if (ECP_is_infty(P)) return ECP_copy(R, Q);\r
+ if (ECP_is_infty(Q)) return ECP_copy(R, P);\r
+ \r
+ Pnorm = (ECP_is_norm(P));\r
+ Qnorm = (ECP_is_norm(Q));\r
+ \r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+ n4 = ctx->bn[ctx->tos + 4]; \r
+ n5 = ctx->bn[ctx->tos + 5]; \r
+ n6 = ctx->bn[ctx->tos + 6]; \r
+ ctx->tos += 7;\r
+ p = E->p;\r
+ \r
+ /* L1; L2 */\r
+ if (Qnorm)\r
+ {\r
+ if (BN_copy(n1, P->X) == NULL) goto err; /* L1 = x_p */\r
+ if (BN_copy(n2, P->Y) == NULL) goto err; /* L2 = y_p */\r
+ }\r
+ else\r
+ {\r
+ if (!BN_sqr(n0, Q->Z, ctx)) goto err;\r
+ if (!BN_mod_mul(n1, P->X, n0, p, ctx)) goto err; /* L1 = x_p * z_q^2 */\r
+\r
+ if (!BN_mod_mul(n0, n0, Q->Z, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n2, P->Y, n0, p, ctx)) goto err; /* L2 = y_p * z_q^3 */\r
+ }\r
+\r
+ /* L3; L4 */\r
+ if (Pnorm)\r
+ {\r
+ if (BN_copy(n3, Q->X) == NULL) goto err; /* L3 = x_q */\r
+ if (BN_copy(n4, Q->Y) == NULL) goto err; /* L4 = y_q */\r
+ }\r
+ else\r
+ {\r
+ if (!BN_sqr(n0, P->Z, ctx)) goto err;\r
+ if (!BN_mod_mul(n3, Q->X, n0, p, ctx)) goto err; /* L3 = x_q * z_p^2 */\r
+\r
+ if (!BN_mod_mul(n0, n0, P->Z, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n4, Q->Y, n0, p, ctx)) goto err; /* L4 = y_q * z_p^3 */\r
+ }\r
+\r
+ /* L5; L6 */\r
+ if (!BN_mod_sub(n5, n1, n3, p, ctx)) goto err; /* L5 = L1 - L3 */\r
+ if (!BN_mod_sub(n6, n2, n4, p, ctx)) goto err; /* L6 = L2 - L4 */\r
+\r
+ /* pata */\r
+ if (BN_is_zero(n5))\r
+ {\r
+ if (BN_is_zero(n6)) /* P = Q => P + Q = 2P */\r
+ {\r
+ ctx->tos -= 7;\r
+ return ECP_double(R, P, E, ctx);\r
+ }\r
+ else /* P = -Q => P + Q = \infty */\r
+ { \r
+ ctx->tos -= 7;\r
+ if (!BN_zero(R->Z)) return 0;\r
+ return 1;\r
+ }\r
+ }\r
+\r
+ /* L7; L8 */\r
+ if (!BN_mod_add(n1, n1, n3, p, ctx)) goto err; /* L7 = L1 + L3 */\r
+ if (!BN_mod_add(n2, n2, n4, p, ctx)) goto err; /* L8 = L2 + L4 */\r
+\r
+ /* Z */\r
+ if (Pnorm) \r
+ {\r
+ if (BN_copy(n0, Q->Z) == NULL) goto err;\r
+ }\r
+ else\r
+ {\r
+ if (!BN_mod_mul(n0, P->Z, Q->Z, p, ctx)) goto err;\r
+ }\r
+ if (!BN_mod_mul(R->Z, n0, n5, p, ctx)) goto err; /* Z = z_p * z_q * L_5 */\r
+\r
+ /* X */\r
+ if (!BN_mod_sqr(n0, n6, p, ctx)) goto err;\r
+ if (!BN_mod_sqr(n4, n5, p, ctx)) goto err;\r
+ if (!BN_mod_mul(n3, n1, n4, p, ctx)) goto err; \r
+ if (!BN_mod_sub(R->X, n0, n3, p, ctx)) goto err; /* X = L6^2 - L5^2 * L7 */\r
+ \r
+ /* L9 */\r
+ if (!BN_lshift1(n0, R->X)) goto err;\r
+ if (!BN_mod_sub(n0, n3, n0, p, ctx)) goto err; /* L9 = L5^2 * L7 - 2X */\r
+\r
+ /* Y */\r
+ if (!BN_mod_mul(n0, n0, n6, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n5, n4, n5, p, ctx)) goto err; \r
+ if (!BN_mod_mul(n1, n2, n5, p, ctx)) goto err; \r
+ if (!BN_mod_sub(n0, n0, n1, p, ctx)) goto err; \r
+ if (!BN_mod_mul(R->Y, n0, E->h, p, ctx)) goto err; /* Y = (L6 * L9 - L8 * L5^3) / 2 */\r
+\r
+\r
+\r
+#ifdef TEST\r
+ if (!ECP_is_on_ec(R, E, ctx)) return 0;\r
+#endif\r
+\r
+ ctx->tos -= 7;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 7;\r
+ return 0;\r
+}\r
+\r
+\r
+ECP_PRECOMPUTE *ECP_precompute(int r, EC_POINT *P, EC *E, BN_CTX *ctx)\r
+{\r
+ ECP_PRECOMPUTE *ret;\r
+ EC_POINT *P2;\r
+ int i, max;\r
+\r
+ assert(r > 2);\r
+ assert(!P->is_in_mont);\r
+ assert(!E->is_in_mont);\r
+\r
+ ret=(ECP_PRECOMPUTE *)malloc(sizeof(ECP_PRECOMPUTE));\r
+ if (ret == NULL) return NULL;\r
+\r
+ max = 1;\r
+ max <<= (r - 1);\r
+\r
+ ret->r = 0;\r
+\r
+ ret->Pi=(EC_POINT **)malloc(sizeof(EC_POINT *) * max);\r
+ if (ret->Pi == NULL) goto err;\r
+\r
+ \r
+ /* P2 = [2]P */\r
+ if ((P2 = ECP_new()) == NULL) goto err;\r
+ if (!ECP_double(P2, P, E, ctx)) goto err;\r
+\r
+ /* P_0 = P */\r
+ if((ret->Pi[0] = ECP_dup(P)) == NULL) goto err;\r
+\r
+\r
+ /* P_i = P_(i-1) + P2 */\r
+ for (i = 1; i < max; i++)\r
+ {\r
+ if ((ret->Pi[i] = ECP_new()) == NULL) goto err;\r
+ \r
+ if (!ECP_add(ret->Pi[i], P2, ret->Pi[i - 1], E, ctx)) goto err;\r
+ }\r
+\r
+ ret->r = r;\r
+ ECP_clear_free(P2);\r
+\r
+ return ret;\r
+\r
+err:\r
+ ECP_clear_free(P2);\r
+ ECP_clear_free_precompute(ret);\r
+ return NULL;\r
+}\r
+\r
+int ECP_multiply(EC_POINT *R, BIGNUM *k, ECP_PRECOMPUTE *prec, EC *E, BN_CTX *ctx)\r
+/* R = [k]P */\r
+{\r
+ int j;\r
+ int t, nextw, h, r;\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(k != NULL);\r
+ assert(!k->neg);\r
+\r
+ assert(ctx != NULL);\r
+ assert(prec != NULL);\r
+\r
+ assert(!E->is_in_mont);\r
+\r
+ if (BN_is_zero(k))\r
+ {\r
+ if (!BN_zero(R->Z)) return 0;\r
+ R->is_in_mont = 0;\r
+ return 1;\r
+ }\r
+\r
+\r
+ j = BN_num_bits(k);\r
+ j--;\r
+\r
+ r = prec->r;\r
+\r
+ if (!BN_zero(R->Z)) return 0;\r
+ R->is_in_mont = 0;\r
+\r
+ while(j >= 0)\r
+ {\r
+ if (!BN_is_bit_set(k, j))\r
+ {\r
+ if (!ECP_double(R, R, E, ctx)) return 0;\r
+ j--;\r
+ }\r
+ else\r
+ {\r
+ nextw = j - r;\r
+ if (nextw < -1) nextw = -1;\r
+ t = nextw + 1; \r
+ while(!BN_is_bit_set(k, t))\r
+ {\r
+ t++;\r
+ }\r
+\r
+ if (!ECP_double(R, R, E, ctx)) return 0;\r
+\r
+ j--;\r
+ if (j < t) h = 0;\r
+ else \r
+ {\r
+ h = 1;\r
+ for(; j > t; j--)\r
+ {\r
+ h <<= 1;\r
+ if (BN_is_bit_set(k, j)) h++;\r
+ if (!ECP_double(R, R, E, ctx)) return 0;\r
+ }\r
+ if (!ECP_double(R, R, E, ctx)) return 0;\r
+ j--;\r
+ }\r
+\r
+ if (!ECP_add(R, R, prec->Pi[h], E, ctx)) return 0;\r
+\r
+ for (; j > nextw; j--)\r
+ {\r
+ if (!ECP_double(R, R, E, ctx)) return 0;\r
+ }\r
+\r
+ }\r
+ }\r
+\r
+ return 1;\r
+}\r
+\r
+#endif /* SIMPLE */\r
+\r
+#ifdef MONTGOMERY\r
+\r
+int ECP_to_montgomery(EC_POINT *P, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+{\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ if (P->is_in_mont) return 1;\r
+\r
+ if (!BN_lshift(P->X, P->X, mont->R_num_bits)) return 0;\r
+ if (!BN_mod(P->X, P->X, mont->p, ctx)) return 0;\r
+\r
+ if (!BN_lshift(P->Y, P->Y, mont->R_num_bits)) return 0;\r
+ if (!BN_mod(P->Y, P->Y, mont->p, ctx)) return 0;\r
+\r
+ if (!BN_lshift(P->Z, P->Z, mont->R_num_bits)) return 0;\r
+ if (!BN_mod(P->Z, P->Z, mont->p, ctx)) return 0;\r
+\r
+ P->is_in_mont = 1;\r
+ return 1;\r
+}\r
+\r
+\r
+int ECP_from_montgomery(EC_POINT *P, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+{\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ if (!P->is_in_mont) return 1;\r
+\r
+ if (!BN_mont_red(P->X, mont, ctx)) return 0;\r
+ if (!BN_mont_red(P->Y, mont, ctx)) return 0;\r
+ if (!BN_mont_red(P->Z, mont, ctx)) return 0;\r
+\r
+ P->is_in_mont = 0;\r
+ return 1;\r
+}\r
+\r
+int ECP_mont_cmp(EC_POINT *P, EC_POINT *Q, BN_MONTGOMERY *mont, BN_CTX *ctx) \r
+/* return values: \r
+ -2 ... error\r
+ 0 ... P = Q \r
+ -1 ... P = -Q\r
+ 1 ... else\r
+*/\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *p;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(Q != NULL);\r
+ assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ if (!P->is_in_mont)\r
+ if (!ECP_to_montgomery(P, mont, ctx)) return 0;\r
+\r
+ if (!Q->is_in_mont)\r
+ if (!ECP_to_montgomery(Q, mont, ctx)) return 0;\r
+\r
+\r
+ if (ECP_is_infty(P) && ECP_is_infty(Q)) return 0;\r
+ if (ECP_is_infty(P) || ECP_is_infty(Q)) return 1;\r
+\r
+ \r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+ n4 = ctx->bn[ctx->tos + 4]; \r
+ n5 = ctx->bn[ctx->tos + 5]; \r
+ ctx->tos += 6;\r
+\r
+ p = mont->p;\r
+ \r
+\r
+ if (!BN_mont_mod_mul(n5, Q->Z, Q->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n1, P->X, n5, mont, ctx)) goto err; /* L1 = x_p * z_q^2 */\r
+\r
+ if (!BN_mont_mod_mul(n0, n5, Q->Z, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n2, P->Y, n0, mont, ctx)) goto err; /* L2 = y_p * z_q^3 */\r
+\r
+ if (!BN_mont_mod_mul(n5, P->Z, P->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n3, Q->X, n5, mont, ctx)) goto err; /* L3 = x_q * z_p^2 */\r
+\r
+ if (!BN_mont_mod_mul(n0, n5, P->Z, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n4, Q->Y, n0, mont, ctx)) goto err; /* L4 = y_q * z_p^3 */\r
+\r
+\r
+ if (!BN_mont_mod_sub(n0, n1, n3, mont)) goto err; /* L5 = L1 - L3 */\r
+\r
+ if (!BN_is_zero(n0))\r
+ {\r
+ ctx->tos -= 6;\r
+ return 1;\r
+ }\r
+ \r
+ if (!BN_mont_mod_sub(n0, n2, n4, mont)) goto err; /* L6 = L2 - L4 */\r
+\r
+ if (!BN_is_zero(n0))\r
+ {\r
+ ctx->tos -= 6;\r
+ return -1;\r
+ }\r
+\r
+ ctx->tos -= 6;\r
+ return 0;\r
+\r
+err:\r
+ ctx->tos -= 6;\r
+ return -2;\r
+}\r
+\r
+\r
+int ECP_mont_double(EC_POINT *R, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* R <- 2P (on E) */\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *p;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(ctx != NULL);\r
+ \r
+ if (!P->is_in_mont)\r
+ if (!ECP_to_montgomery(P, mont, ctx)) return 0;\r
+\r
+ if (!E->is_in_mont) \r
+ if (!EC_to_montgomery(E, mont, ctx)) return 0;\r
+\r
+ R->is_in_mont = 1;\r
+\r
+ if (ECP_is_infty(P))\r
+ {\r
+ if (!BN_zero(R->Z)) return 0;\r
+ return 1;\r
+ }\r
+\r
+\r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+\r
+ ctx->tos += 4;\r
+\r
+ p = E->p;\r
+\r
+ /* L1 */\r
+ if (!BN_mont_mod_mul(n0, P->Z, P->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n2, n0, n0, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n0, n2, E->A, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n1, P->X, P->X, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_lshift1(n2, n1, mont)) goto err;\r
+ if (!BN_mont_mod_add(n1, n1, n2, mont)) goto err;\r
+ if (!BN_mont_mod_add(n1, n1, n0, mont)) goto err; /* L1 = 3 * x^2 + a * z^4 */\r
+\r
+ /* Z */\r
+ if (!BN_mont_mod_mul(n0, P->Y, P->Z, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_lshift1(R->Z, n0, mont)) goto err; /* Z = 2 * y * z */\r
+\r
+ /* L2 */\r
+ if (!BN_mont_mod_mul(n3, P->Y, P->Y, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n2, P->X, n3, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_lshift(n2, n2, 2, mont)) goto err; /* L2 = 4 * x * y^2 */\r
+\r
+ /* X */\r
+ if (!BN_mont_mod_lshift1(n0, n2, mont)) goto err; \r
+ if (!BN_mont_mod_mul(R->X, n1, n1, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_sub(R->X, R->X, n0, mont)) goto err; /* X = L1^2 - 2 * L2 */\r
+ \r
+ /* L3 */\r
+ if (!BN_mont_mod_mul(n0, n3, n3, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_lshift(n3, n0, 3, mont)) goto err; /* L3 = 8 * y^4 */\r
+\r
+ \r
+ /* Y */\r
+ if (!BN_mont_mod_sub(n2, n2, R->X, mont)) goto err; \r
+ if (!BN_mont_mod_mul(n0, n1, n2, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_sub(R->Y, n0, n3, mont)) goto err; /* Y = L1 * (L2 - X) - L3 */\r
+\r
+ ctx->tos -= 4;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 4;\r
+ return 0;\r
+}\r
+\r
+\r
+int ECP_mont_add(EC_POINT *R, EC_POINT *P, EC_POINT *Q, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* R <- P + Q (on E) */\r
+{\r
+ BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6, *p;\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(Q != NULL);\r
+ assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL);\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+ assert(!BN_is_zero(E->h));;\r
+\r
+ assert(ctx != NULL);\r
+\r
+ if (!Q->is_in_mont)\r
+ if (!ECP_to_montgomery(Q, mont, ctx)) return 0;\r
+\r
+ if (!P->is_in_mont)\r
+ if (!ECP_to_montgomery(P, mont, ctx)) return 0;\r
+\r
+ if (!E->is_in_mont) \r
+ if (!EC_to_montgomery(E, mont, ctx)) return 0;\r
+\r
+ if (P == Q) return ECP_mont_double(R, P, E, mont, ctx);\r
+\r
+ if (ECP_is_infty(P)) return ECP_copy(R, Q);\r
+ if (ECP_is_infty(Q)) return ECP_copy(R, P);\r
+ \r
+\r
+ n0 = ctx->bn[ctx->tos]; \r
+ n1 = ctx->bn[ctx->tos + 1]; \r
+ n2 = ctx->bn[ctx->tos + 2]; \r
+ n3 = ctx->bn[ctx->tos + 3]; \r
+ n4 = ctx->bn[ctx->tos + 4]; \r
+ n5 = ctx->bn[ctx->tos + 5]; \r
+ n6 = ctx->bn[ctx->tos + 6]; \r
+ ctx->tos += 7;\r
+\r
+\r
+ p = E->p;\r
+\r
+ R->is_in_mont = 1;\r
+ \r
+ /* L1; L2 */\r
+ if (!BN_mont_mod_mul(n6, Q->Z, Q->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n1, P->X, n6, mont, ctx)) goto err; /* L1 = x_p * z_q^2 */\r
+\r
+ if (!BN_mont_mod_mul(n0, n6, Q->Z, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n2, P->Y, n0, mont, ctx)) goto err; /* L2 = y_p * z_q^3 */\r
+\r
+\r
+ /* L3; L4 */\r
+ if (!BN_mont_mod_mul(n6, P->Z, P->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n3, Q->X, n6, mont, ctx)) goto err; /* L3 = x_q * z_p^2 */\r
+\r
+ if (!BN_mont_mod_mul(n0, n6, P->Z, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n4, Q->Y, n0, mont, ctx)) goto err; /* L4 = y_q * z_p^3 */\r
+\r
+\r
+ /* L5; L6 */\r
+ if (!BN_mont_mod_sub(n5, n1, n3, mont)) goto err; /* L5 = L1 - L3 */\r
+ if (!BN_mont_mod_sub(n6, n2, n4, mont)) goto err; /*L6 = L2 - L4 */\r
+\r
+\r
+ /* pata */\r
+ if (BN_is_zero(n5))\r
+ {\r
+ if (BN_is_zero(n6)) /* P = Q => P + Q = 2P */\r
+ {\r
+ ctx->tos -= 7;\r
+ return ECP_mont_double(R, P, E, mont, ctx);\r
+ }\r
+ else /* P = -Q => P + Q = \infty */\r
+ { \r
+ ctx->tos -= 7;\r
+ if (!BN_zero(R->Z)) return 0;\r
+ return 1;\r
+ }\r
+ }\r
+\r
+ /* L7; L8 */\r
+ if (!BN_mont_mod_add(n1, n1, n3, mont)) goto err; /* L7 = L1 + L3 */\r
+ if (!BN_mont_mod_add(n2, n2, n4, mont)) goto err; /* L8 = L2 + L4 */\r
+\r
+\r
+ /* Z */\r
+ if (!BN_mont_mod_mul(n0, P->Z, Q->Z, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(R->Z, n0, n5, mont, ctx)) goto err; /* Z = z_p * z_q * L_5 */\r
+\r
+\r
+ /* X */\r
+ if (!BN_mont_mod_mul(n0, n6, n6, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n4, n5, n5, mont, ctx)) goto err;\r
+ if (!BN_mont_mod_mul(n3, n1, n4, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_sub(R->X, n0, n3, mont)) goto err; /* X = L6^2 - L5^2 * L7 */\r
+\r
+ \r
+ /* L9 */\r
+ if (!BN_mont_mod_lshift1(n0, R->X, mont)) goto err;\r
+ if (!BN_mont_mod_sub(n3, n3, n0, mont)) goto err; /* L9 = L5^2 * L7 - 2X */\r
+\r
+\r
+ /* Y */\r
+ if (!BN_mont_mod_mul(n0, n3, n6, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n6, n4, n5, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_mul(n1, n2, n6, mont, ctx)) goto err; \r
+ if (!BN_mont_mod_sub(n0, n0, n1, mont)) goto err; \r
+ if (!BN_mont_mod_mul(R->Y, n0, E->h, mont, ctx)) goto err; /* Y = (L6 * L9 - L8 * L5^3) / 2 */\r
+\r
+\r
+ ctx->tos -= 7;\r
+ return 1;\r
+\r
+err:\r
+ ctx->tos -= 7;\r
+ return 0;\r
+}\r
+\r
+\r
+ECP_PRECOMPUTE *ECP_mont_precompute(int r, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+{\r
+ ECP_PRECOMPUTE *ret;\r
+ EC_POINT *P2;\r
+ int i, max;\r
+\r
+ assert(r > 2);\r
+ assert(r < sizeof(unsigned int) * 8 - 1);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+ \r
+ if (!P->is_in_mont)\r
+ if (!ECP_to_montgomery(P, mont, ctx)) return 0;\r
+\r
+ if (!E->is_in_mont) \r
+ if (!EC_to_montgomery(E, mont, ctx)) return 0;\r
+\r
+ ret=(ECP_PRECOMPUTE *)malloc(sizeof(ECP_PRECOMPUTE));\r
+ if (ret == NULL) return NULL;\r
+\r
+ max = 1;\r
+ max <<= (r - 1);\r
+\r
+ ret->r = 0;\r
+\r
+ ret->Pi=(EC_POINT **)malloc(sizeof(EC_POINT *) * max);\r
+ if (ret->Pi == NULL) goto err;\r
+\r
+ \r
+ /* P2 = [2]P */\r
+ if ((P2 = ECP_new()) == NULL) goto err;\r
+ if (!ECP_mont_double(P2, P, E, mont, ctx)) goto err;\r
+\r
+ /* P_0 = P */\r
+ if((ret->Pi[0] = ECP_dup(P)) == NULL) goto err;\r
+\r
+\r
+ /* P_i = P_(i-1) + P2 */\r
+ for (i = 1; i < max; i++)\r
+ {\r
+ if ((ret->Pi[i] = ECP_new()) == NULL) goto err;\r
+ if (!ECP_mont_add(ret->Pi[i], P2, ret->Pi[i - 1], E, mont, ctx)) goto err;\r
+ }\r
+\r
+ ret->r = r;\r
+ ECP_clear_free(P2);\r
+\r
+ return ret;\r
+\r
+err:\r
+ ECP_clear_free(P2);\r
+ ECP_clear_free_precompute(ret);\r
+ return NULL;\r
+}\r
+\r
+int ECP_mont_multiply(EC_POINT *R, BIGNUM *k, ECP_PRECOMPUTE *prec, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* R = [k]P P = prec->Pi[0]*/\r
+{\r
+ int j;\r
+ int t, nextw, h, r;\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(k != NULL);\r
+ assert(!k->neg);\r
+\r
+ assert(ctx != NULL);\r
+ assert(prec != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ if (!E->is_in_mont) \r
+ if (!EC_to_montgomery(E, mont, ctx)) return 0;\r
+\r
+\r
+ if (BN_is_zero(k))\r
+ {\r
+ if (!BN_zero(R->Z)) return 0;\r
+ R->is_in_mont = 1;\r
+ return 1;\r
+ }\r
+\r
+ j = BN_num_bits(k);\r
+ j--;\r
+\r
+ r = prec->r;\r
+\r
+ if (!BN_zero(R->Z)) return 0;\r
+ R->is_in_mont = 1;\r
+\r
+ while(j >= 0)\r
+ {\r
+ if (!BN_is_bit_set(k, j))\r
+ {\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) return 0;\r
+ j--;\r
+ }\r
+ else\r
+ {\r
+ nextw = j - r;\r
+ if (nextw < -1) nextw = -1;\r
+ t = nextw + 1; \r
+ while(!BN_is_bit_set(k, t))\r
+ {\r
+ t++;\r
+ }\r
+\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) return 0;\r
+\r
+ j--;\r
+ if (j < t) h = 0;\r
+ else \r
+ {\r
+ h = 1;\r
+ for(; j > t; j--)\r
+ {\r
+ h <<= 1;\r
+ if (BN_is_bit_set(k, j)) h++;\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) return 0;\r
+ }\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) return 0;\r
+ j--;\r
+ }\r
+\r
+ if (!ECP_mont_add(R, R, prec->Pi[h], E, mont, ctx)) return 0;\r
+\r
+ for (; j > nextw; j--)\r
+ {\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) return 0;\r
+ }\r
+\r
+ }\r
+ }\r
+\r
+ return 1;\r
+}\r
+\r
+\r
+int ECP_mont_multiply2(EC_POINT *R, BIGNUM *k, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx)\r
+/* R = [k]P */\r
+{\r
+ int j, hj, kj;\r
+ BIGNUM *h;\r
+ EC_POINT *mP;\r
+\r
+ assert(R != NULL);\r
+ assert(R->X != NULL && R->Y != NULL && R->Z != NULL);\r
+\r
+ assert(P != NULL);\r
+ assert(P->X != NULL && P->Y != NULL && P->Z != NULL);\r
+\r
+ assert(E != NULL);\r
+ assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL);\r
+\r
+ assert(k != NULL);\r
+ assert(!k->neg);\r
+\r
+ assert(ctx != NULL);\r
+\r
+ assert(mont != NULL);\r
+ assert(mont->p != NULL);\r
+\r
+ if (!E->is_in_mont) \r
+ if (!EC_to_montgomery(E, mont, ctx)) return 0;\r
+\r
+ if (!P->is_in_mont) \r
+ if (!ECP_to_montgomery(P, mont, ctx)) return 0;\r
+\r
+\r
+ if (BN_is_zero(k))\r
+ {\r
+ if (!BN_zero(R->Z)) return 0;\r
+ R->is_in_mont = 1;\r
+ return 1;\r
+ }\r
+\r
+ if ((h = BN_dup(k)) == NULL) return 0;\r
+ \r
+ if (!BN_lshift1(h, h)) goto err;\r
+ if (!BN_add(h, h, k)) goto err;\r
+\r
+ if (!ECP_copy(R, P)) goto err;\r
+ if ((mP = ECP_mont_minus(P, mont)) == NULL) goto err;\r
+\r
+ for(j = BN_num_bits(h) - 2; j > 0; j--)\r
+ {\r
+ if (!ECP_mont_double(R, R, E, mont, ctx)) goto err;\r
+ kj = BN_is_bit_set(k, j);\r
+ hj = BN_is_bit_set(h, j);\r
+ if (hj == 1 && kj == 0)\r
+ if (!ECP_mont_add(R, R, P, E, mont, ctx)) goto err;\r
+ if (hj == 0 && kj == 1)\r
+ if (!ECP_mont_add(R, R, mP, E, mont, ctx)) goto err;\r
+ }\r
+\r
+ if (h != NULL) BN_free(h);\r
+ if (mP != NULL) ECP_clear_free(mP);\r
+ return 1;\r
+\r
+err:\r
+ if (h != NULL) BN_free(h);\r
+ if (mP != NULL) ECP_clear_free(mP);\r
+ return 0;\r
+}\r
+\r
+#endif /* MONTGOMERY */\r