-
OpenSSL CHANGES
_______________
Changes between 0.9.6 and 0.9.7 [xx XXX 2000]
+ *) New function BN_swap.
+ [Bodo Moeller]
+
+ *) Use BN_nnmod instead of BN_mod in crypto/bn/bn_exp.c so that
+ the exponentiation functions are more likely to produce reasonable
+ results on negative inputs.
+ [Bodo Moeller]
+
+ *) Change BN_mod_mul so that the result is always non-negative.
+ Previously, it could be negative if one of the factors was negative;
+ I don't think anyone really wanted that behaviour.
+ [Bodo Moeller]
+
+ *) Move BN_mod_... functions into new file crypto/bn/bn_mod.c
+ (except for exponentation, which stays in crypto/bn/bn_exp.c,
+ and BN_mod_mul_reciprocal, which stays in crypto/bn/bn_recp.c)
+ and add new functions:
+ BN_nnmod
+ BN_mod_sqr
+ BN_mod_add
+ BN_mod_sub
+ These functions always generate non-negative results.
+ BN_nnmod otherwise is like BN_mod (if BN_mod computes a remainder r
+ such that |m| < r < 0, BN_nnmod will output rem + |m| instead).
+ [Lenka Fibikova <fibikova@exp-math.uni-essen.de>, Bodo Moeller]
+
*) Remove a few calls to bn_wexpand() in BN_sqr() (the one in there
was actually never needed) and in BN_mul(). The removal in BN_mul()
required a small change in bn_mul_part_recursive() and the addition
$unistd =
$thread_cflag = -D_REENTRANT
$lflags = -ldl
-$bn_ops =
-$bn_obj =
-$des_obj =
-$bf_obj =
-$md5_obj =
-$sha1_obj =
-$cast_obj =
-$rc4_obj =
-$rmd160_obj =
-$rc5_obj =
+$bn_ops = BN_LLONG DES_PTR DES_RISC1 DES_UNROLL RC4_INDEX MD2_INT
+$bn_obj = asm/bn86-elf.o asm/co86-elf.o
+$des_obj = asm/dx86-elf.o asm/yx86-elf.o
+$bf_obj = asm/bx86-elf.o
+$md5_obj = asm/mx86-elf.o
+$sha1_obj = asm/sx86-elf.o
+$cast_obj = asm/cx86-elf.o
+$rc4_obj = asm/rx86-elf.o
+$rmd160_obj = asm/rm86-elf.o
+$rc5_obj = asm/r586-elf.o
$dso_scheme = dlfcn
-$shared_target=
-$shared_cflag =
-$shared_extension =
+$shared_target= linux-shared
+$shared_cflag = -fPIC
+$shared_extension = .so.$(SHLIB_MAJOR).$(SHLIB_MINOR)
*** debug-linux-elf
$cc = gcc
APPS=
LIB=$(TOP)/libcrypto.a
-LIBSRC= bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c \
+LIBSRC= bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c bn_mod.c \
bn_print.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c bn_recp.c bn_mont.c \
bn_mpi.c bn_exp2.c
-LIBOBJ= bn_add.o bn_div.o bn_exp.o bn_lib.o bn_ctx.o bn_mul.o \
+LIBOBJ= bn_add.o bn_div.o bn_exp.o bn_lib.o bn_ctx.o bn_mul.o bn_mod.o \
bn_print.o bn_rand.o bn_shift.o bn_word.o bn_blind.o \
bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) bn_recp.o bn_mont.o \
bn_mpi.o bn_exp2.o
bn_lib.o: ../../include/openssl/opensslconf.h ../../include/openssl/opensslv.h
bn_lib.o: ../../include/openssl/safestack.h ../../include/openssl/stack.h
bn_lib.o: ../../include/openssl/symhacks.h ../cryptlib.h bn_lcl.h
+bn_mod.o: ../../include/openssl/bio.h ../../include/openssl/bn.h
+bn_mod.o: ../../include/openssl/buffer.h ../../include/openssl/crypto.h
+bn_mod.o: ../../include/openssl/e_os.h ../../include/openssl/e_os2.h
+bn_mod.o: ../../include/openssl/err.h ../../include/openssl/lhash.h
+bn_mod.o: ../../include/openssl/opensslconf.h ../../include/openssl/opensslv.h
+bn_mod.o: ../../include/openssl/safestack.h ../../include/openssl/stack.h
+bn_mod.o: ../../include/openssl/symhacks.h ../cryptlib.h bn_lcl.h
bn_mont.o: ../../include/openssl/bio.h ../../include/openssl/bn.h
bn_mont.o: ../../include/openssl/buffer.h ../../include/openssl/crypto.h
bn_mont.o: ../../include/openssl/e_os.h ../../include/openssl/e_os2.h
#define BN_MUL_COMBA
#define BN_SQR_COMBA
#define BN_RECURSION
-#define RECP_MUL_MOD
-#define MONT_MUL_MOD
/* This next option uses the C libraries (2 word)/(1 word) function.
* If it is not defined, I use my C version (which is slower).
int flags;
} BN_RECP_CTX;
-#define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\
- r,a,&((mont)->RR),(mont),ctx)
-
#define BN_prime_checks 0 /* default: select number of iterations
based on the size of the number */
void BN_init(BIGNUM *);
void BN_clear_free(BIGNUM *a);
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
+void BN_swap(BIGNUM *a, BIGNUM *b);
BIGNUM *BN_bin2bn(const unsigned char *s,int len,BIGNUM *ret);
int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(const unsigned char *s,int len,BIGNUM *ret);
int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
-int BN_mod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
-int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
- BN_CTX *ctx);
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx);
+int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
+ BN_CTX *ctx);
+#define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
+int BN_nnmod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
+int BN_mod_mul(BIGNUM *ret, const BIGNUM *a, const BIGNUM *b,
+ const BIGNUM *m, BN_CTX *ctx);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m,BN_CTX *ctx);
int BN_mask_bits(BIGNUM *a,int n);
-int BN_mod_mul(BIGNUM *ret, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *m, BN_CTX *ctx);
#ifndef NO_FP_API
int BN_print_fp(FILE *fp, const BIGNUM *a);
#endif
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);
+#define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\
+ (r),(a),&((mont)->RR),(mont),(ctx))
int BN_from_montgomery(BIGNUM *r,const BIGNUM *a,
BN_MONT_CTX *mont, BN_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
}
#endif
#endif
-
#include "cryptlib.h"
#include "bn_lcl.h"
+
/* The old slow way */
#if 0
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
# endif /* __GNUC__ */
#endif /* NO_ASM */
+
+/* BN_div computes dv := num / divisor, rounding towards zero, and sets up
+ * rm such that dv*divisor + rm = num holds.
+ * Thus:
+ * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
+ * rm->neg == num->neg (unless the remainder is zero)
+ * If 'dv' or 'rm' is NULL, the respective value is not returned.
+ */
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
BN_CTX *ctx)
{
if (rm != NULL)
{
BN_rshift(rm,snum,norm_shift);
- rm->neg=num->neg;
+ if (!BN_is_zero(rm))
+ rm->neg = num->neg;
}
BN_CTX_end(ctx);
return(1);
}
#endif
-
-/* rem != m */
-int BN_mod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx)
- {
-#if 0 /* The old slow way */
- int i,nm,nd;
- BIGNUM *dv;
-
- if (BN_ucmp(m,d) < 0)
- return((BN_copy(rem,m) == NULL)?0:1);
-
- BN_CTX_start(ctx);
- dv=BN_CTX_get(ctx);
-
- if (!BN_copy(rem,m)) goto err;
-
- nm=BN_num_bits(rem);
- nd=BN_num_bits(d);
- if (!BN_lshift(dv,d,nm-nd)) goto err;
- for (i=nm-nd; i>=0; i--)
- {
- if (BN_cmp(rem,dv) >= 0)
- {
- if (!BN_sub(rem,rem,dv)) goto err;
- }
- if (!BN_rshift1(dv,dv)) goto err;
- }
- BN_CTX_end(ctx);
- return(1);
- err:
- BN_CTX_end(ctx);
- return(0);
-#else
- return(BN_div(NULL,rem,m,d,ctx));
-#endif
- }
-
*/
-#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#define TABLE_SIZE 32
-/* slow but works */
-int BN_mod_mul(BIGNUM *ret, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx)
- {
- BIGNUM *t;
- int r=0;
-
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(m);
-
- BN_CTX_start(ctx);
- if ((t = BN_CTX_get(ctx)) == NULL) goto err;
- if (a == b)
- { if (!BN_sqr(t,a,ctx)) goto err; }
- else
- { if (!BN_mul(t,a,b,ctx)) goto err; }
- if (!BN_mod(ret,t,m,ctx)) goto err;
- r=1;
-err:
- BN_CTX_end(ctx);
- return(r);
- }
-
-
/* this one works - simple but works */
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
bn_check_top(p);
bn_check_top(m);
+ /* For even modulus m = 2^k*m_odd, it might make sense to compute
+ * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
+ * exponentiation for the odd part), using appropriate exponent
+ * reductions, and combine the results using the CRT.
+ *
+ * For now, we use Montgomery only if the modulus is odd; otherwise,
+ * exponentiation using the reciprocal-based quick remaindering
+ * algorithm is used.
+ *
+ * (For computations a^p mod m where a, p, m are of the same
+ * length, BN_mod_exp_recp takes roughly 50 .. 70 % the time
+ * required by the standard algorithm, and BN_mod_exp takes
+ * about 33 .. 40 % of it.
+ * [Timings obtained with expspeed.c on a AMD K6-2 platform under Linux,
+ * with various OpenSSL debugging macros defined. YMMV.])
+ */
+
+#define MONT_MUL_MOD
+#define RECP_MUL_MOD
+
#ifdef MONT_MUL_MOD
/* I have finally been able to take out this pre-condition of
* the top bit being set. It was caused by an error in BN_div
if (BN_is_odd(m))
{
- if (a->top == 1)
+ if (a->top == 1 && !a->neg)
{
BN_ULONG A = a->d[0];
ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
BN_init(&(val[0]));
ts=1;
- if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
+ if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */
window = BN_window_bits_for_exponent_size(bits);
if (window > 1)
BN_init(&val[0]);
ts=1;
- if (BN_ucmp(a,m) >= 0)
+ if (!a->neg && BN_ucmp(a,m) >= 0)
{
- if (!BN_mod(&(val[0]),a,m,ctx))
+ if (!BN_nnmod(&(val[0]),a,m,ctx))
goto err;
aa= &(val[0]);
}
BN_init(&(val[0]));
ts=1;
- if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
+ if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */
window = BN_window_bits_for_exponent_size(bits);
if (window > 1)
return(a);
}
+void BN_swap(BIGNUM *a, BIGNUM *b)
+ {
+ int flags_old_a, flags_old_b;
+ BN_ULONG *tmp_d;
+ int tmp_top, tmp_dmax, tmp_neg;
+
+ flags_old_a = a->flags;
+ flags_old_b = b->flags;
+
+ tmp_d = a->d;
+ tmp_top = a->top;
+ tmp_dmax = a->dmax;
+ tmp_neg = a->neg;
+
+ a->d = b->d;
+ a->top = b->top;
+ a->dmax = b->dmax;
+ a->neg = b->neg;
+
+ b->d = tmp_d;
+ b->top = tmp_top;
+ b->dmax = tmp_dmax;
+ b->neg = tmp_neg;
+
+ a->flags = (flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA);
+ b->flags = (flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA);
+ }
+
+
void BN_clear(BIGNUM *a)
{
if (a->d != NULL)
#define MAX_ROUNDS 10
-int BN_smod(BIGNUM *rem, BIGNUM *m, BIGNUM *d, BN_CTX *ctx)
-{
- int r_sign;
-
- assert(rem != NULL && m != NULL && d != NULL && ctx != NULL);
-
- if (d->neg) return 0;
- r_sign = m->neg;
-
- if (r_sign) m->neg = 0;
- if (!(BN_div(NULL,rem,m,d,ctx))) return 0;
- if (r_sign)
- {
- m->neg = r_sign;
- if (!BN_is_zero(rem))
- {
- rem->neg = r_sign;
- BN_add(rem, rem, d);
- }
- }
- return 1;
-}
-
-int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *m, BN_CTX *ctx)
-{
- assert(r != NULL && a != NULL && b != NULL && m != NULL && ctx != NULL);
-
- if (!BN_sub(r, a, b)) return 0;
- return BN_smod(r, r, m, ctx);
-
-}
-
-int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *m, BN_CTX *ctx)
-{
- assert(r != NULL && a != NULL && b != NULL && m != NULL && ctx != NULL);
-
- if (!BN_add(r, a, b)) return 0;
- return BN_smod(r, r, m, ctx);
-
-}
-
-int BN_mod_sqr(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx)
-{
- assert(r != NULL && a != NULL && p != NULL && ctx != NULL);
-
- if (!BN_sqr(r, a, ctx)) return 0;
- return BN_div(NULL, r, r, p, ctx);
-}
-
-int BN_swap(BIGNUM *x, BIGNUM *y)
-{
- BIGNUM *c;
-
- assert(x != NULL && y != NULL);
-
- if ((c = BN_dup(x)) == NULL) goto err;
- if ((BN_copy(x, y)) == NULL) goto err;
- if ((BN_copy(y, c)) == NULL) goto err;
- BN_clear_free(c);
- return 1;
-
-err:
- if (c != NULL) BN_clear_free(c);
- return 0;
-}
-
int BN_legendre(BIGNUM *a, BIGNUM *p, BN_CTX *ctx)
{
ctx->tos += 3;
- if (!BN_smod(x, a, p, ctx)) goto err;
+ if (!BN_nnmod(x, a, p, ctx)) goto err;
if (BN_is_zero(x))
{
if (BN_mod_word(x, 4) == 3 && BN_mod_word(y, 4) == 3) L = -L;
if (!BN_swap(x, y)) goto err;
- if (!BN_smod(x, x, y, ctx)) goto err;
+ if (!BN_nnmod(x, x, y, ctx)) goto err;
}
-/*
- *
- * bn_modfs.h
- *
- * Some Modular Arithmetic Functions.
- *
- * Copyright (C) Lenka Fibikova 2000
- *
- *
- */
-
-#ifndef HEADER_BN_MODFS_H
-#define HEADER_BN_MODFS_H
-
-
-#include "bn.h"
-
-#ifdef BN_is_zero
-#undef BN_is_zero
-#define BN_is_zero(a) (((a)->top == 0) || (((a)->top == 1) && ((a)->d[0] == (BN_ULONG)0)))
-#endif /*BN_is_zero(a)*/
-
-
-int BN_smod(BIGNUM *rem, BIGNUM *m, BIGNUM *d, BN_CTX *ctx);
-int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *m, BN_CTX *ctx);
-int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *m, BN_CTX *ctx);
-int BN_mod_sqr(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
-int BN_swap(BIGNUM *x, BIGNUM *y);
-int BN_legendre(BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
-int BN_mod_sqrt(BIGNUM *x, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
-
-#endif
\ No newline at end of file
+/*\r
+ *\r
+ * bn_modfs.h\r
+ *\r
+ * Some Modular Arithmetic Functions.\r
+ *\r
+ * Copyright (C) Lenka Fibikova 2000\r
+ *\r
+ *\r
+ */\r
+\r
+#ifndef HEADER_BN_MODFS_H\r
+#define HEADER_BN_MODFS_H\r
+\r
+\r
+#include "bn.h"\r
+\r
+\r
+int BN_legendre(BIGNUM *a, BIGNUM *p, BN_CTX *ctx);\r
+int BN_mod_sqrt(BIGNUM *x, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);\r
+\r
+#endif\r
if (i != recp->shift)
recp->shift=BN_reciprocal(&(recp->Nr),&(recp->N),
- i,ctx);
+ i,ctx); /* BN_reciprocal returns i, or -1 for an error */
+ if (recp->shift == -1) goto err;
if (!BN_rshift(a,m,j)) goto err;
if (!BN_mul(b,a,&(recp->Nr),ctx)) goto err;
* We actually calculate with an extra word of precision, so
* we can do faster division if the remainder is not required.
*/
+/* r := 2^len / m */
int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx)
{
int ret= -1;
max=(al+al);
if (bn_wexpand(rr,max+1) == NULL) goto err;
- r->neg=0;
if (al == 4)
{
#ifndef BN_SQR_COMBA
}
rr->top=max;
+ rr->neg=0;
if ((max > 0) && (rr->d[max-1] == 0)) rr->top--;
if (rr != r) BN_copy(r,rr);
ret = 1;
int i,k;
double tm;
long num;
- BN_MONT_CTX m;
-
- memset(&m,0,sizeof(m));
num=BASENUM;
for (i=0; i<NUM_SIZES; i++)
BN_mod(a,a,c,ctx);
BN_mod(b,b,c,ctx);
- BN_MONT_CTX_set(&m,c,ctx);
-
Time_F(START);
for (k=0; k<num; k++)
- BN_mod_exp_mont(r,a,b,c,ctx,&m);
+ BN_mod_exp(r,a,b,c,ctx);
tm=Time_F(STOP);
printf("mul %4d ^ %4d %% %d -> %8.3fms %5.1f\n",sizes[i],sizes[i],sizes[i],tm*1000.0/num,tm*mul_c[i]/num);
num/=7;
=head1 NAME
-BN_add, BN_sub, BN_mul, BN_div, BN_sqr, BN_mod, BN_mod_mul, BN_exp,
-BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs
+BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
+BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
+arithmetic operations on BIGNUMs
=head1 SYNOPSIS
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
+ int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
+
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
- int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
-
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
- int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
+ int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
+
+ int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx);
+
+ int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx);
+
+ int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
+ int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
+
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
=head1 DESCRIPTION
-BN_add() adds B<a> and B<b> and places the result in B<r> (C<r=a+b>).
-B<r> may be the same B<BIGNUM> as B<a> or B<b>.
+BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
+I<r> may be the same B<BIGNUM> as I<a> or I<b>.
-BN_sub() subtracts B<b> from B<a> and places the result in B<r> (C<r=a-b>).
+BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
-BN_mul() multiplies B<a> and B<b> and places the result in B<r> (C<r=a*b>).
-B<r> may be the same B<BIGNUM> as B<a> or B<b>.
+BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
+I<r> may be the same B<BIGNUM> as I<a> or I<b>.
For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>.
-BN_div() divides B<a> by B<d> and places the result in B<dv> and the
-remainder in B<rem> (C<dv=a/d, rem=a%d>). Either of B<dv> and B<rem> may
-be NULL, in which case the respective value is not returned.
+BN_sqr() takes the square of I<a> and places the result in I<r>
+(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
+This function is faster than BN_mul(r,a,a).
+
+BN_div() divides I<a> by I<d> and places the result in I<dv> and the
+remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
+be B<NULL>, in which case the respective value is not returned.
+The result is rounded towards zero; thus if I<a> is negative, the
+remainder will be zero or negative.
For division by powers of 2, use BN_rshift(3).
-BN_sqr() takes the square of B<a> and places the result in B<r>
-(C<r=a^2>). B<r> and B<a> may be the same B<BIGNUM>.
-This function is faster than BN_mul(r,a,a).
+BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
+
+BN_nnmod() finds the non-negative remainder of I<a> divided by I<m>.
+
+BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative
+result in I<r>.
+
+BN_mod_sub() substracts I<b> from I<a> modulo I<m> and places the
+non-negative result in I<r>.
-BN_mod() find the remainder of B<a> divided by B<m> and places it in
-B<rem> (C<rem=a%m>).
+BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative
+remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
+the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
+repeated computations using the same modulus, see
+L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> and
+L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.
-BN_mod_mul() multiplies B<a> by B<b> and finds the remainder when
-divided by B<m> (C<r=(a*b)%m>). B<r> may be the same B<BIGNUM> as B<a>
-or B<b>. For a more efficient algorithm, see
-L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)>; for repeated
-computations using the same modulus, see L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.
+BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
+result in I<r>.
-BN_exp() raises B<a> to the B<p>-th power and places the result in B<r>
+BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
(C<r=a^p>). This function is faster than repeated applications of
BN_mul().
-BN_mod_exp() computes B<a> to the B<p>-th power modulo B<m> (C<r=a^p %
+BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
m>). This function uses less time and space than BN_exp().
-BN_gcd() computes the greatest common divisor of B<a> and B<b> and
-places the result in B<r>. B<r> may be the same B<BIGNUM> as B<a> or
-B<b>.
+BN_gcd() computes the greatest common divisor of I<a> and I<b> and
+places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
+I<b>.
-For all functions, B<ctx> is a previously allocated B<BN_CTX> used for
+For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>.
Unless noted otherwise, the result B<BIGNUM> must be different from
=head1 HISTORY
-BN_add(), BN_sub(), BN_div(), BN_sqr(), BN_mod(), BN_mod_mul(),
+BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
-OpenSSL. The B<ctx> argument to BN_mul() was added in SSLeay
+OpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay
0.9.1b. BN_exp() appeared in SSLeay 0.9.0.
+BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in
+OpenSSL 0.9.7.
=cut
BN_MONT_CTX_new() allocates and initializes a B<BN_MONT_CTX> structure.
BN_MONT_CTX_init() initializes an existing uninitialized B<BN_MONT_CTX>.
-BN_MONT_CTX_set() sets up the B<mont> structure from the modulus B<m>
+BN_MONT_CTX_set() sets up the I<mont> structure from the modulus I<m>
by precomputing its inverse and a value R.
-BN_MONT_CTX_copy() copies the B<BN_MONT_CTX> B<from> to B<to>.
+BN_MONT_CTX_copy() copies the B<BN_MONT_CTX> I<from> to I<to>.
BN_MONT_CTX_free() frees the components of the B<BN_MONT_CTX>, and, if
it was created by BN_MONT_CTX_new(), also the structure itself.
-BN_mod_mul_montgomery() computes Mont(B<a>,B<b>):=B<a>*B<b>*R^-1 and places
-the result in B<r>.
+BN_mod_mul_montgomery() computes Mont(I<a>,I<b>):=I<a>*I<b>*R^-1 and places
+the result in I<r>.
-BN_from_montgomery() performs the Montgomery reduction B<r> = B<a>*R^-1.
+BN_from_montgomery() performs the Montgomery reduction I<r> = I<a>*R^-1.
-BN_to_montgomery() computes Mont(B<a>,R^2), i.e. B<a>*R.
+BN_to_montgomery() computes Mont(I<a>,R^2), i.e. I<a>*R.
+Note that I<a> must be non-negative and smaller than the modulus.
-For all functions, B<ctx> is a previously allocated B<BN_CTX> used for
+For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
temporary variables.
The B<BN_MONT_CTX> structure is defined as follows:
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
BIGNUM *BN_dup(const BIGNUM *a);
+ BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);
+
int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);
- int BN_add(BIGNUM *r, BIGNUM *a, BIGNUM *b);
+ int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
+ int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
- int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
+ int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
+ int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx);
+ int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
+ int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
L<bn_internal(3)|bn_internal(3)>,
L<dh(3)|dh(3)>, L<err(3)|err(3)>, L<rand(3)|rand(3)>, L<rsa(3)|rsa(3)>,
L<BN_new(3)|BN_new(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>,
-L<BN_copy(3)|BN_copy(3)>, L<BN_num_bytes(3)|BN_num_bytes(3)>,
+L<BN_copy(3)|BN_copy(3)>, L<BN_swap(3)|BN_swap(3)>, L<BN_num_bytes(3)|BN_num_bytes(3)>,
L<BN_add(3)|BN_add(3)>, L<BN_add_word(3)|BN_add_word(3)>,
L<BN_cmp(3)|BN_cmp(3)>, L<BN_zero(3)|BN_zero(3)>, L<BN_rand(3)|BN_rand(3)>,
L<BN_generate_prime(3)|BN_generate_prime(3)>, L<BN_set_bit(3)|BN_set_bit(3)>,
#define SSL_R_INVALID_COMMAND 280
#define SSL_R_INVALID_PURPOSE 278
#define SSL_R_INVALID_TRUST 279
+#define SSL_R_KRB5_C_CC_PRINC 1094
+#define SSL_R_KRB5_C_GET_CRED 1095
+#define SSL_R_KRB5_C_INIT 1096
+#define SSL_R_KRB5_C_MK_REQ 1097
+#define SSL_R_KRB5_S_BAD_TICKET 1098
+#define SSL_R_KRB5_S_INIT 1099
+#define SSL_R_KRB5_S_RD_REQ 1100
#define SSL_R_LENGTH_MISMATCH 159
#define SSL_R_LENGTH_TOO_SHORT 160
#define SSL_R_LIBRARY_BUG 274
{SSL_R_INVALID_COMMAND ,"invalid command"},
{SSL_R_INVALID_PURPOSE ,"invalid purpose"},
{SSL_R_INVALID_TRUST ,"invalid trust"},
+{SSL_R_KRB5_C_CC_PRINC ,"krb5 c cc princ"},
+{SSL_R_KRB5_C_GET_CRED ,"krb5 c get cred"},
+{SSL_R_KRB5_C_INIT ,"krb5 c init"},
+{SSL_R_KRB5_C_MK_REQ ,"krb5 c mk req"},
+{SSL_R_KRB5_S_BAD_TICKET ,"krb5 s bad ticket"},
+{SSL_R_KRB5_S_INIT ,"krb5 s init"},
+{SSL_R_KRB5_S_RD_REQ ,"krb5 s rd req"},
{SSL_R_LENGTH_MISMATCH ,"length mismatch"},
{SSL_R_LENGTH_TOO_SHORT ,"length too short"},
{SSL_R_LIBRARY_BUG ,"library bug"},
rijndaelDecryptRound 2645 EXIST::FUNCTION:
rijndaelEncrypt 2646 EXIST::FUNCTION:
rijndaelKeySched 2647 EXIST::FUNCTION:
+OBJ_NAME_do_all_sorted 2648 EXIST::FUNCTION:
+OBJ_NAME_do_all 2649 EXIST::FUNCTION:
+BN_nnmod 2650 EXIST::FUNCTION:
+BN_swap 2651 EXIST::FUNCTION: