# define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135
# define BN_F_BN_GF2M_MOD_SQR 136
# define BN_F_BN_GF2M_MOD_SQRT 137
+# define BN_F_BN_LSHIFT 145
# define BN_F_BN_MOD_EXP2_MONT 118
# define BN_F_BN_MOD_EXP_MONT 109
# define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124
# define BN_F_BN_NEW 113
# define BN_F_BN_RAND 114
# define BN_F_BN_RAND_RANGE 122
+# define BN_F_BN_RSHIFT 146
# define BN_F_BN_USUB 115
/* Reason codes. */
# define BN_R_INPUT_NOT_REDUCED 110
# define BN_R_INVALID_LENGTH 106
# define BN_R_INVALID_RANGE 115
+# define BN_R_INVALID_SHIFT 119
# define BN_R_NOT_A_SQUARE 111
# define BN_R_NOT_INITIALIZED 107
# define BN_R_NO_INVERSE 108
{ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR), "BN_GF2m_mod_solve_quad_arr"},
{ERR_FUNC(BN_F_BN_GF2M_MOD_SQR), "BN_GF2m_mod_sqr"},
{ERR_FUNC(BN_F_BN_GF2M_MOD_SQRT), "BN_GF2m_mod_sqrt"},
+ {ERR_FUNC(BN_F_BN_LSHIFT), "BN_lshift"},
{ERR_FUNC(BN_F_BN_MOD_EXP2_MONT), "BN_mod_exp2_mont"},
{ERR_FUNC(BN_F_BN_MOD_EXP_MONT), "BN_mod_exp_mont"},
{ERR_FUNC(BN_F_BN_MOD_EXP_MONT_CONSTTIME), "BN_mod_exp_mont_consttime"},
{ERR_FUNC(BN_F_BN_NEW), "BN_new"},
{ERR_FUNC(BN_F_BN_RAND), "BN_rand"},
{ERR_FUNC(BN_F_BN_RAND_RANGE), "BN_rand_range"},
+ {ERR_FUNC(BN_F_BN_RSHIFT), "BN_rshift"},
{ERR_FUNC(BN_F_BN_USUB), "BN_usub"},
{0, NULL}
};
{ERR_REASON(BN_R_INPUT_NOT_REDUCED), "input not reduced"},
{ERR_REASON(BN_R_INVALID_LENGTH), "invalid length"},
{ERR_REASON(BN_R_INVALID_RANGE), "invalid range"},
+ {ERR_REASON(BN_R_INVALID_SHIFT), "invalid shift"},
{ERR_REASON(BN_R_NOT_A_SQUARE), "not a square"},
{ERR_REASON(BN_R_NOT_INITIALIZED), "not initialized"},
{ERR_REASON(BN_R_NO_INVERSE), "no inverse"},
shorter than B<n> bits.
BN_lshift() shifts B<a> left by B<n> bits and places the result in
-B<r> (C<r=a*2^n>). BN_lshift1() shifts B<a> left by one and places
-the result in B<r> (C<r=2*a>).
+B<r> (C<r=a*2^n>). Note that B<n> must be non-negative. BN_lshift1() shifts
+B<a> left by one and places the result in B<r> (C<r=2*a>).
BN_rshift() shifts B<a> right by B<n> bits and places the result in
-B<r> (C<r=a/2^n>). BN_rshift1() shifts B<a> right by one and places
-the result in B<r> (C<r=a/2>).
+B<r> (C<r=a/2^n>). Note that B<n> must be non-negative. BN_rshift1() shifts
+B<a> right by one and places the result in B<r> (C<r=a/2>).
For the shift functions, B<r> and B<a> may be the same variable.