.explicit
.text
-.ident "ia64.S, Version 1.2"
+.ident "ia64.S, Version 2.0"
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
//
// disclaimed.
// ====================================================================
//
+// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
+// different from Itanium to this module viewpoint. Most notably, is it
+// "wider" than Itanium? Can you experience loop scalability as
+// discussed in commentary sections? Not really:-( Itanium2 has 6
+// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
+// spin twice as fast, as I need 8 IALU ports. Amount of floating point
+// ports is the same, i.e. 2, while I need 4. In other words, to this
+// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
+// essentially different in respect to this module, and a re-tune was
+// required. Well, because some intruction latencies has changed. Most
+// noticeably those intensively used:
+//
+// Itanium Itanium2
+// ldf8 9 6 L2 hit
+// ld8 2 1 L1 hit
+// getf 2 5
+// xma[->getf] 7[+1] 4[+0]
+// add[->st8] 1[+1] 1[+0]
+//
+// What does it mean? You might ratiocinate that the original code
+// should run just faster... Because sum of latencies is smaller...
+// Wrong! Note that getf latency increased. This means that if a loop is
+// scheduled for lower latency (and they are), then it will suffer from
+// stall condition and the code will therefore turn anti-scalable, e.g.
+// original bn_mul_words spun at 5*n or 2.5 times slower than expected
+// on Itanium2! What to do? Reschedule loops for Itanium2? But then
+// Itanium would exhibit anti-scalability. So I've chosen to reschedule
+// for worst latency for every instruction aiming for best *all-round*
+// performance.
// Q. How much faster does it get?
// A. Here is the output from 'openssl speed rsa dsa' for vanilla
#ifdef XMA_TEMPTATION
{ .mfi; alloc r2=ar.pfs,4,0,0,0 };;
#else
-{ .mfi; alloc r2=ar.pfs,4,4,0,8 };;
+{ .mfi; alloc r2=ar.pfs,4,12,0,16 };;
#endif
{ .mib; mov r8=r0 // return value
cmp4.le p6,p0=r34,r0
.body
{ .mib; setf.sig f8=r35 // w
- mov pr.rot=0x400001<<16
- // ------^----- serves as (p48) at first (p26)
+ mov pr.rot=0x800001<<16
+ // ------^----- serves as (p50) at first (p27)
brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
}
mov r15=r33 // ap
#endif
mov ar.lc=r10 }
-{ .mii; mov r39=0 // serves as r33 at first (p26)
- mov ar.ec=12 };;
+{ .mii; mov r40=0 // serves as r35 at first (p27)
+ mov ar.ec=13 };;
-// This loop spins in 2*(n+11) ticks. It's scheduled for data in L2
-// cache (i.e. 9 ticks away) as floating point load/store instructions
+// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
+// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
// bypass L1 cache and L2 latency is actually best-case scenario for
-// ldf8. The loop is not scalable and shall run in 2*(n+11) even on
-// "wider" IA-64 implementations. It's a trade-off here. n+22 loop
+// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
+// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
// would give us ~5% in *overall* performance improvement on "wider"
// IA-64, but would hurt Itanium for about same because of longer
// epilogue. As it's a matter of few percents in either case I've
// this very instruction sequence in bn_mul_add_words loop which in
// turn is scalable).
.L_bn_mul_words_ctop:
-{ .mfi; (p25) getf.sig r36=f49 // low
- (p21) xmpy.lu f45=f37,f8
- (p27) cmp.ltu p52,p48=r39,r38 }
+{ .mfi; (p25) getf.sig r36=f52 // low
+ (p21) xmpy.lu f48=f37,f8
+ (p28) cmp.ltu p54,p50=r41,r39 }
{ .mfi; (p16) ldf8 f32=[r15],8
- (p21) xmpy.hu f38=f37,f8
+ (p21) xmpy.hu f40=f37,f8
(p0) nop.i 0x0 };;
-{ .mii; (p26) getf.sig r32=f43 // high
- .pred.rel "mutex",p48,p52
- (p48) add r38=r37,r33 // (p26)
- (p52) add r38=r37,r33,1 } // (p26)
-{ .mfb; (p27) st8 [r14]=r39,8
+{ .mii; (p25) getf.sig r32=f44 // high
+ .pred.rel "mutex",p50,p54
+ (p50) add r40=r38,r35 // (p27)
+ (p54) add r40=r38,r35,1 } // (p27)
+{ .mfb; (p28) st8 [r14]=r41,8
(p0) nop.f 0x0
br.ctop.sptk .L_bn_mul_words_ctop };;
.L_bn_mul_words_cend:
{ .mii; nop.m 0x0
-.pred.rel "mutex",p49,p53
-(p49) add r8=r34,r0
-(p53) add r8=r34,r0,1 }
+.pred.rel "mutex",p51,p55
+(p51) add r8=r36,r0
+(p55) add r8=r36,r0,1 }
{ .mfb; nop.m 0x0
nop.f 0x0
nop.b 0x0 }
.body
{ .mib; setf.sig f8=r35 // w
- mov pr.rot=0x400001<<16
- // ------^----- serves as (p48) at first (p26)
+ mov pr.rot=0x800001<<16
+ // ------^----- serves as (p50) at first (p27)
brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
}
{ .mii;
mov r15=r33 // ap
#endif
mov ar.lc=r10 }
-{ .mii; mov r39=0 // serves as r33 at first (p26)
+{ .mii; mov r40=0 // serves as r35 at first (p27)
#if defined(_HPUX_SOURCE) && defined(_ILP32)
addp4 r18=0,r32 // rp copy
#else
mov r18=r32 // rp copy
#endif
- mov ar.ec=14 };;
+ mov ar.ec=15 };;
-// This loop spins in 3*(n+13) ticks on Itanium and should spin in
-// 2*(n+13) on "wider" IA-64 implementations (to be verified with new
+// This loop spins in 3*(n+14) ticks on Itanium and should spin in
+// 2*(n+14) on "wider" IA-64 implementations (to be verified with new
// ยต-architecture manuals as they become available). As usual it's
// possible to compress the epilogue, down to 10 in this case, at the
// cost of scalability. Compressed (and therefore non-scalable) loop
-// running at 3*(n+10) would buy you ~10% on Itanium but take ~35%
+// running at 3*(n+11) would buy you ~10% on Itanium but take ~35%
// from "wider" IA-64 so let it be scalable! Special attention was
// paid for having the loop body split at 64-byte boundary. ld8 is
// scheduled for L1 cache as the data is more than likely there.
// Indeed, bn_mul_words has put it there a moment ago:-)
.L_bn_mul_add_words_ctop:
-{ .mfi; (p25) getf.sig r36=f49 // low
- (p21) xmpy.lu f45=f37,f8
- (p27) cmp.ltu p52,p48=r39,r38 }
+{ .mfi; (p25) getf.sig r36=f52 // low
+ (p21) xmpy.lu f48=f37,f8
+ (p28) cmp.ltu p54,p50=r41,r39 }
{ .mfi; (p16) ldf8 f32=[r15],8
- (p21) xmpy.hu f38=f37,f8
- (p27) add r43=r43,r39 };;
-{ .mii; (p26) getf.sig r32=f43 // high
- .pred.rel "mutex",p48,p52
- (p48) add r38=r37,r33 // (p26)
- (p52) add r38=r37,r33,1 } // (p26)
-{ .mfb; (p27) cmp.ltu.unc p56,p0=r43,r39
+ (p21) xmpy.hu f40=f37,f8
+ (p28) add r45=r45,r41 };;
+{ .mii; (p25) getf.sig r32=f44 // high
+ .pred.rel "mutex",p50,p54
+ (p50) add r40=r38,r35 // (p27)
+ (p54) add r40=r38,r35,1 } // (p27)
+{ .mfb; (p28) cmp.ltu.unc p60,p0=r45,r41
(p0) nop.f 0x0
(p0) nop.b 0x0 }
-{ .mii; (p26) ld8 r42=[r18],8
- (p58) cmp.eq.or p57,p0=-1,r44
- (p58) add r44=1,r44 }
-{ .mfb; (p29) st8 [r14]=r45,8
+{ .mii; (p27) ld8 r44=[r18],8
+ (p62) cmp.eq.or p61,p0=-1,r46
+ (p62) add r46=1,r46 }
+{ .mfb; (p30) st8 [r14]=r47,8
(p0) nop.f 0x0
br.ctop.sptk .L_bn_mul_add_words_ctop};;
.L_bn_mul_add_words_cend:
{ .mii; nop.m 0x0
-.pred.rel "mutex",p51,p55
-(p51) add r8=r36,r0
-(p55) add r8=r36,r0,1 }
+.pred.rel "mutex",p53,p57
+(p53) add r8=r38,r0
+(p57) add r8=r38,r0,1 }
{ .mfb; nop.m 0x0
nop.f 0x0
nop.b 0x0 };;
{ .mii;
-(p59) add r8=1,r8
+(p63) add r8=1,r8
mov pr=r9,0x1ffff
mov ar.lc=r3 }
{ .mfb; rum 1<<5 // clear um.mfh