Add UltraSPARC VIS-powered SHA1 block procedure.
authorAndy Polyakov <appro@openssl.org>
Mon, 5 Jan 2009 14:52:31 +0000 (14:52 +0000)
committerAndy Polyakov <appro@openssl.org>
Mon, 5 Jan 2009 14:52:31 +0000 (14:52 +0000)
crypto/sha/asm/sha1-sparcv9a.pl [new file with mode: 0644]

diff --git a/crypto/sha/asm/sha1-sparcv9a.pl b/crypto/sha/asm/sha1-sparcv9a.pl
new file mode 100644 (file)
index 0000000..6902b52
--- /dev/null
@@ -0,0 +1,591 @@
+#!/usr/bin/env perl
+
+# ====================================================================
+# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+
+# January 2009
+#
+# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
+# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
+# Graphic Unit would make it possible to achieve higher instruction-
+# level parallelism, ILP, and thus higher performance. It should be
+# explicitly noted that ILP is the keyword, and it means that this
+# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
+# not really novel, Sun had VIS-powered implementation for a while.
+# Unlike Sun's implementation this one can process multiple unaligned
+# input blocks, and as such works as drop-in replacement for OpenSSL
+# sha1_block_data_order. Performance improvement was measured to be
+# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
+# UltraSPARC-III. See below for discussion...
+#
+# (*)  "Pipe-lined" means that even if it takes several cycles to
+#      complete, next instruction using same functional unit [but not
+#      depending on the result of the current instruction] can start
+#      execution without having to wait for the unit. "Pairable"
+#      means that two [or more] independent instructions can be
+#      issued at the very same time.
+
+$bits=32;
+for (@ARGV)    { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
+if ($bits==64) { $bias=2047; $frame=192; }
+else           { $bias=0;    $frame=112; }
+
+$output=shift;
+open STDOUT,">$output";
+
+$ctx="%i0";
+$inp="%i1";
+$len="%i2";
+$tmp0="%i3";
+$tmp1="%i4";
+$tmp2="%i5";
+$tmp3="%g5";
+
+$base="%g1";
+$align="%g4";
+$Xfer="%o5";
+$nXfer=$tmp3;
+$Xi="%o7";
+
+$A="%l0";
+$B="%l1";
+$C="%l2";
+$D="%l3";
+$E="%l4";
+@V=($A,$B,$C,$D,$E);
+
+$Actx="%o0";
+$Bctx="%o1";
+$Cctx="%o2";
+$Dctx="%o3";
+$Ectx="%o4";
+
+$fmul="%f32";
+$VK_00_19="%f34";
+$VK_20_39="%f36";
+$VK_40_59="%f38";
+$VK_60_79="%f40";
+@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
+@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
+    "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
+
+# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
+# covers even K_NN_MM addition...
+sub Xupdate {
+my ($i)=@_;
+my $K=@VK[($i+16)/20];
+my $j=($i+16)%16;
+
+#      [ provided that GSR.alignaddr_offset is 5, $mul contains
+#        0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
+#        chosen registers... ]
+$code.=<<___;
+       fxors           @X[($j+13)%16],@X[$j],@X[$j]    !-1/-1/-1:X[0]^=X[13]
+       fxors           @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
+       fxor            @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
+       fxor            %f18,@X[$j],@X[$j]              ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
+       faligndata      @X[$j],@X[$j],%f18              ! 3/ 7/ 5:Tmp=X[0,1]>>>24
+       fpadd32         @X[$j],@X[$j],@X[$j]            ! 4/ 8/ 6:X[0,1]<<=1
+       fmul8ulx16      %f18,$fmul,%f18                 ! 5/10/ 7:Tmp>>=7, Tmp&=1
+       ![fxors         %f15,%f2,%f2]
+       for             %f18,@X[$j],@X[$j]              ! 8/14/10:X[0,1]|=Tmp
+       ![fxors         %f0,%f3,%f3]                    !10/17/12:X[0] dependency
+       fpadd32         $K,@X[$j],%f20
+       std             %f20,[$Xfer+`4*$j`]
+___
+# The numbers delimited with slash are the earliest possible dispatch
+# cycles for given instruction assuming 1 cycle latency for simple VIS
+# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
+# on UltraSPARC-III&IV, and 2 cycles latency, such as on SPARC64-V[?],
+# respectively. Being 2x-parallelized the procedure is "worth" 5, 8.5
+# or 6 ticks per SHA1 round. As FPU/VIS instructions are perfectly
+# pairable with IALU ones, the round timing is defined by the maximum
+# between VIS and IALU timings. The latter varies from round to round
+# and averages out at 6.25 ticks. This means that USI&II and SPARC64-V
+# should operate at IALU rate, while USIII&IV - at VIS rate. This
+# explains why performance improvement varies among processors. Well,
+# it should be noted that pure IALU sha1-sparcv9.pl module exhibits
+# virtually uniform performance of ~9.3 cycles per SHA1 round. Timings
+# mentioned above are theoretical lower limits. Real-life performance
+# was measured to be 6.6 cycles per SHA1 round on USIIi and 8.3 on
+# USIII. The latter means that processor manual must have an error in
+# instruction latency table or there is some unmentioned shortcut...
+}
+
+# The reference Xupdate procedure is then "strained" over *pairs* of
+# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
+# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
+# plenty of room to amortize for read-after-write hazard, as well as
+# to fetch and align input for the next spin. The VIS instructions are
+# scheduled for latency of 2 cycles, because there are not enough IALU
+# instructions to schedule for latency of 3, while scheduling for 1
+# would give no gain on USI&II, but loss on SPARC64-V.
+
+sub BODY_00_19 {
+my ($i,$a,$b,$c,$d,$e)=@_;
+my $j=$i&~1;
+my $k=($j+16+2)%16;    # ahead reference
+my $l=($j+16-2)%16;    # behind reference
+my $K=@VK[($j+16-2)/20];
+
+$j=($j+16)%16;
+
+$code.=<<___ if (!($i&1));
+       sll             $a,5,$tmp0                      !! $i
+       and             $c,$b,$tmp3
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fxors          @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fxor           @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
+       sll             $b,30,$tmp2
+       add             $tmp1,$e,$e
+       andn            $d,$b,$tmp1
+       add             $Xi,$e,$e
+        fxor           %f18,@X[$j],@X[$j]              ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
+       srl             $b,2,$b
+       or              $tmp1,$tmp3,$tmp1
+       or              $tmp2,$b,$b
+       add             $tmp1,$e,$e
+        faligndata     @X[$j],@X[$j],%f18              ! 3/ 7/ 5:Tmp=X[0,1]>>>24
+___
+$code.=<<___ if ($i&1);
+       sll             $a,5,$tmp0                      !! $i
+       and             $c,$b,$tmp3
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fpadd32        @X[$j],@X[$j],@X[$j]            ! 4/ 8/ 6:X[0,1]<<=1
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fmul8ulx16     %f18,$fmul,%f18                 ! 5/10/ 7:Tmp>>=7, Tmp&=1
+       sll             $b,30,$tmp2
+       add             $tmp1,$e,$e
+        fpadd32        $K,@X[$l],%f20                  !
+       andn            $d,$b,$tmp1
+       add             $Xi,$e,$e
+        fxors          @X[($k+13)%16],@X[$k],@X[$k]    !-1/-1/-1:X[0]^=X[13]
+       srl             $b,2,$b
+       or              $tmp1,$tmp3,$tmp1
+        fxor           %f18,@X[$j],@X[$j]              ! 8/14/10:X[0,1]|=Tmp
+       or              $tmp2,$b,$b
+       add             $tmp1,$e,$e
+___
+$code.=<<___ if ($i&1 && $i>=2);
+        std            %f20,[$Xfer+`4*$l`]             !
+___
+}
+
+sub BODY_20_39 {
+my ($i,$a,$b,$c,$d,$e)=@_;
+my $j=$i&~1;
+my $k=($j+16+2)%16;    # ahead reference
+my $l=($j+16-2)%16;    # behind reference
+my $K=@VK[($j+16-2)/20];
+
+$j=($j+16)%16;
+
+$code.=<<___ if (!($i&1) && $i<64);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fxors          @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fxor           @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+        fxor           %f18,@X[$j],@X[$j]              ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+        faligndata     @X[$j],@X[$j],%f18              ! 3/ 7/ 5:Tmp=X[0,1]>>>24
+___
+$code.=<<___ if ($i&1 && $i<64);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fpadd32        @X[$j],@X[$j],@X[$j]            ! 4/ 8/ 6:X[0,1]<<=1
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fmul8ulx16     %f18,$fmul,%f18                 ! 5/10/ 7:Tmp>>=7, Tmp&=1
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+        fpadd32        $K,@X[$l],%f20                  !
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+        fxors          @X[($k+13)%16],@X[$k],@X[$k]    !-1/-1/-1:X[0]^=X[13]
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+        fxor           %f18,@X[$j],@X[$j]              ! 8/14/10:X[0,1]|=Tmp
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+        std            %f20,[$Xfer+`4*$l`]             !
+___
+$code.=<<___ if ($i==64);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fpadd32        $K,@X[$l],%f20
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+        std            %f20,[$Xfer+`4*$l`]
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+___
+$code.=<<___ if ($i>64);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+___
+}
+
+sub BODY_40_59 {
+my ($i,$a,$b,$c,$d,$e)=@_;
+my $j=$i&~1;
+my $k=($j+16+2)%16;    # ahead reference
+my $l=($j+16-2)%16;    # behind reference
+my $K=@VK[($j+16-2)/20];
+
+$j=($j+16)%16;
+
+$code.=<<___ if (!($i&1));
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+        fxors          @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fxor           @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
+       and             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       or              $c,$b,$tmp1
+        fxor           %f18,@X[$j],@X[$j]              ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
+       srl             $b,2,$b
+       and             $d,$tmp1,$tmp1
+       add             $Xi,$e,$e
+       or              $tmp1,$tmp0,$tmp1
+        faligndata     @X[$j],@X[$j],%f18              ! 3/ 7/ 5:Tmp=X[0,1]>>>24
+       or              $tmp2,$b,$b
+       add             $tmp1,$e,$e
+        fpadd32        @X[$j],@X[$j],@X[$j]            ! 4/ 8/ 6:X[0,1]<<=1
+___
+$code.=<<___ if ($i&1);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        fmul8ulx16     %f18,$fmul,%f18                 ! 5/10/ 7:Tmp>>=7, Tmp&=1
+       and             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+        fpadd32        $K,@X[$l],%f20                  !
+       sll             $b,30,$tmp2
+       or              $c,$b,$tmp1
+        fxors          @X[($k+13)%16],@X[$k],@X[$k]    !-1/-1/-1:X[0]^=X[13]
+       srl             $b,2,$b
+       and             $d,$tmp1,$tmp1
+        fxor           %f18,@X[$j],@X[$j]              ! 8/14/10:X[0,1]|=Tmp
+       add             $Xi,$e,$e
+       or              $tmp1,$tmp0,$tmp1
+       or              $tmp2,$b,$b
+       add             $tmp1,$e,$e
+        std            %f20,[$Xfer+`4*$l`]             !
+___
+}
+
+# If there is more data to process, then we pre-fetch the data for
+# next iteration in last ten rounds...
+sub BODY_70_79 {
+my ($i,$a,$b,$c,$d,$e)=@_;
+my $j=$i&~1;
+my $m=($i%8)*2;
+
+$j=($j+16)%16;
+
+$code.=<<___ if ($i==70);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+        ldd            [$inp+64],@X[0]
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+
+       and             $inp,-64,$nXfer
+       inc             64,$inp
+       and             $nXfer,255,$nXfer
+       alignaddr       %g0,$align,%g0
+       add             $base,$nXfer,$nXfer
+___
+$code.=<<___ if ($i==71);
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+___
+$code.=<<___ if ($i>=72);
+        faligndata     @X[$m],@X[$m+2],@X[$m]
+       sll             $a,5,$tmp0                      !! $i
+       ld              [$Xfer+`4*($i%16)`],$Xi
+       srl             $a,27,$tmp1
+       add             $tmp0,$e,$e
+       xor             $c,$b,$tmp0
+       add             $tmp1,$e,$e
+        fpadd32        $VK_00_19,@X[$m],%f20
+       sll             $b,30,$tmp2
+       xor             $d,$tmp0,$tmp1
+       srl             $b,2,$b
+       add             $tmp1,$e,$e
+       or              $tmp2,$b,$b
+       add             $Xi,$e,$e
+___
+$code.=<<___ if ($i<77);
+        ldd            [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
+___
+$code.=<<___ if ($i==77);      # redundant if $inp was aligned
+        add            $align,63,$tmp0
+        and            $tmp0,-8,$tmp0
+        ldd            [$inp+$tmp0],@X[16]
+___
+$code.=<<___ if ($i>=72);
+        std            %f20,[$nXfer+`4*$m`]
+___
+}
+
+$code.=<<___;
+.section       ".text",#alloc,#execinstr
+
+.align 64
+vis_const:
+.long  0x5a827999,0x5a827999   ! K_00_19
+.long  0x6ed9eba1,0x6ed9eba1   ! K_20_39
+.long  0x8f1bbcdc,0x8f1bbcdc   ! K_40_59
+.long  0xca62c1d6,0xca62c1d6   ! K_60_79
+.long  0x00000100,0x00000100
+.align 64
+.type  vis_const,#object
+.size  vis_const,(.-vis_const)
+load_vis_const:
+       ldd     [$tmp0+0],$VK_00_19
+       ldd     [$tmp0+8],$VK_20_39
+       ldd     [$tmp0+16],$VK_40_59
+       ldd     [$tmp0+24],$VK_60_79
+       retl
+       ldd     [$tmp0+32],$fmul
+.type  load_vis_const,#function
+.size  load_vis_const,(.-load_vis_const)
+
+.align 32
+.globl sha1_block_data_order
+sha1_block_data_order:
+       save    %sp,-$frame,%sp
+       add     %fp,$bias-256,$base
+
+1:     call    load_vis_const
+       sub     %o7,1b-vis_const,$tmp0
+
+       ld      [$ctx+0],$Actx
+       and     $base,-256,$base
+       ld      [$ctx+4],$Bctx
+       sub     $base,$bias+$frame,%sp
+       ld      [$ctx+8],$Cctx
+       and     $inp,7,$align
+       ld      [$ctx+12],$Dctx
+       and     $inp,-8,$inp
+       ld      [$ctx+16],$Ectx
+
+       # X[16] is maintained in FP register bank
+       alignaddr       %g0,$align,%g0
+       ldd             [$inp+0],@X[0]
+       sub             $inp,-64,$Xfer
+       ldd             [$inp+8],@X[2]
+       and             $Xfer,-64,$Xfer
+       ldd             [$inp+16],@X[4]
+       and             $Xfer,255,$Xfer
+       ldd             [$inp+24],@X[6]
+       add             $base,$Xfer,$Xfer
+       ldd             [$inp+32],@X[8]
+       ldd             [$inp+40],@X[10]
+       ldd             [$inp+48],@X[12]
+       brz,pt          $align,.Laligned
+       ldd             [$inp+56],@X[14]
+
+       ldd             [$inp+64],@X[16]
+       faligndata      @X[0],@X[2],@X[0]
+       faligndata      @X[2],@X[4],@X[2]
+       faligndata      @X[4],@X[6],@X[4]
+       faligndata      @X[6],@X[8],@X[6]
+       faligndata      @X[8],@X[10],@X[8]
+       faligndata      @X[10],@X[12],@X[10]
+       faligndata      @X[12],@X[14],@X[12]
+       faligndata      @X[14],@X[16],@X[14]
+
+.Laligned:
+       mov             5,$tmp0
+       dec             1,$len
+       alignaddr       %g0,$tmp0,%g0
+       fpadd32         $VK_00_19,@X[0],%f16
+       fpadd32         $VK_00_19,@X[2],%f18
+       fpadd32         $VK_00_19,@X[4],%f20
+       fpadd32         $VK_00_19,@X[6],%f22
+       fpadd32         $VK_00_19,@X[8],%f24
+       fpadd32         $VK_00_19,@X[10],%f26
+       fpadd32         $VK_00_19,@X[12],%f28
+       fpadd32         $VK_00_19,@X[14],%f30
+       std             %f16,[$Xfer+0]
+       mov             $Actx,$A
+       std             %f18,[$Xfer+8]
+       mov             $Bctx,$B
+       std             %f20,[$Xfer+16]
+       mov             $Cctx,$C
+       std             %f22,[$Xfer+24]
+       mov             $Dctx,$D
+       std             %f24,[$Xfer+32]
+       mov             $Ectx,$E
+       std             %f26,[$Xfer+40]
+       fxors           @X[13],@X[0],@X[0]
+       std             %f28,[$Xfer+48]
+       ba              .Loop
+       std             %f30,[$Xfer+56]
+.align 32
+.Loop:
+___
+for ($i=0;$i<20;$i++)  { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
+for (;$i<40;$i++)      { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
+for (;$i<60;$i++)      { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
+for (;$i<70;$i++)      { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
+$code.=<<___;
+       brz,pn          $len,.Ltail
+       nop
+___
+for (;$i<80;$i++)      { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
+$code.=<<___;
+       add             $A,$Actx,$Actx
+       add             $B,$Bctx,$Bctx
+       add             $C,$Cctx,$Cctx
+       add             $D,$Dctx,$Dctx
+       add             $E,$Ectx,$Ectx
+       mov             5,$tmp0
+       fxors           @X[13],@X[0],@X[0]
+       mov             $Actx,$A
+       mov             $Bctx,$B
+       mov             $Cctx,$C
+       mov             $Dctx,$D
+       mov             $Ectx,$E
+       alignaddr       %g0,$tmp0,%g0   
+       dec             1,$len
+       ba              .Loop
+       mov             $nXfer,$Xfer
+
+.align 32
+.Ltail:
+___
+for($i=70;$i<80;$i++)  { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
+$code.=<<___;
+       add     $A,$Actx,$Actx
+       add     $B,$Bctx,$Bctx
+       add     $C,$Cctx,$Cctx
+       add     $D,$Dctx,$Dctx
+       add     $E,$Ectx,$Ectx
+
+       st      $Actx,[$ctx+0]
+       st      $Bctx,[$ctx+4]
+       st      $Cctx,[$ctx+8]
+       st      $Dctx,[$ctx+12]
+       st      $Ectx,[$ctx+16]
+
+       ret
+       restore
+.type  sha1_block_data_order,#function
+.size  sha1_block_data_order,(.-sha1_block_data_order)
+.asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+# Purpose of these subroutines is to explicitly encode VIS instructions,
+# so that one can compile the module without having to specify VIS
+# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
+# Idea is to reserve for option to produce "universal" binary and let
+# programmer detect if current CPU is VIS capable at run-time.
+sub unvis {
+my ($mnemonic,$rs1,$rs2,$rd)=@_;
+my $ref,$opf;
+my %visopf = ( "fmul8ulx16"    => 0x037,
+               "faligndata"    => 0x048,
+               "fpadd32"       => 0x052,
+               "fxor"          => 0x06c,
+               "fxors"         => 0x06d        );
+
+    $ref = "$mnemonic\t$rs1,$rs2,$rd";
+
+    if ($opf=$visopf{$mnemonic}) {
+       foreach ($rs1,$rs2,$rd) {
+           return $ref if (!/%f([0-9]{1,2})/);
+           $_=$1;
+           if ($1>=32) {
+               return $ref if ($1&1);
+               # re-encode for upper double register addressing
+               $_=($1|$1>>5)&31;
+           }
+       }
+
+       return  sprintf ".word\t0x%08x !%s",
+                       0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
+                       $ref;
+    } else {
+       return $ref;
+    }
+}
+sub unalignaddr {
+my ($mnemonic,$rs1,$rs2,$rd)=@_;
+my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
+my $ref="$mnemonic\t$rs1,$rs2,$rd";
+
+    foreach ($rs1,$rs2,$rd) {
+       if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
+       else                    { return $ref; }
+    }
+    return  sprintf ".word\t0x%08x !%s",
+                   0x81b00300|$rd<<25|$rs1<<14|$rs2,
+                   $ref;
+}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
+               &unvis($1,$2,$3,$4)
+         /gem;
+$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
+               &unalignaddr($1,$2,$3,$4)
+         /gem;
+print $code;
+close STDOUT;