} else {
/* addressing...CHS? See section 6.2 of ATA specs 4 or 5 */
ll = (uint32_t)val[LBA_SECTS_MSB] << 16 | val[LBA_SECTS_LSB];
- mm = 0; bbbig = 0;
+ mm = 0;
+ bbbig = 0;
if ((ll > 0x00FBFC10) && (!val[LCYLS]))
printf("\tCHS addressing not supported\n");
else {
jj = val[WHATS_VALID] & OK_W54_58;
- printf("\tLogical\t\tmax\tcurrent\n\tcylinders\t%u\t%u\n\theads\t\t%u\t%u\n\tsectors/track\t%u\t%u\n\t--\n",
- val[LCYLS],jj?val[LCYLS_CUR]:0, val[LHEADS],jj?val[LHEADS_CUR]:0, val[LSECTS],jj?val[LSECTS_CUR]:0);
+ printf("\tLogical\t\tmax\tcurrent\n"
+ "\tcylinders\t%u\t%u\n"
+ "\theads\t\t%u\t%u\n"
+ "\tsectors/track\t%u\t%u\n"
+ "\t--\n",
+ val[LCYLS],
+ jj ? val[LCYLS_CUR] : 0,
+ val[LHEADS],
+ jj ? val[LHEADS_CUR] : 0,
+ val[LSECTS],
+ jj ? val[LSECTS_CUR] : 0);
if ((min_std == 1) && (val[TRACK_BYTES] || val[SECT_BYTES]))
- printf("\tbytes/track: %u\tbytes/sector: %u\n", val[TRACK_BYTES], val[SECT_BYTES]);
+ printf("\tbytes/track: %u\tbytes/sector: %u\n",
+ val[TRACK_BYTES], val[SECT_BYTES]);
if (jj) {
mm = (uint32_t)val[CAPACITY_MSB] << 16 | val[CAPACITY_LSB];
printf("Capabilities:\n\t");
if (dev == ATAPI_DEV) {
- if (eqpt != CDROM && (val[CAPAB_0] & CMD_Q_SUP)) printf("Cmd queuing, ");
- if (val[CAPAB_0] & OVLP_SUP) printf("Cmd overlap, ");
+ if (eqpt != CDROM && (val[CAPAB_0] & CMD_Q_SUP))
+ printf("Cmd queuing, ");
+ if (val[CAPAB_0] & OVLP_SUP)
+ printf("Cmd overlap, ");
}
if (val[CAPAB_0] & LBA_SUP) printf("LBA, ");
if (like_std != 1) {
printf("IORDY%s(can%s be disabled)\n",
- !(val[CAPAB_0] & IORDY_SUP) ? "(may be)" : "",
- (val[CAPAB_0] & IORDY_OFF) ? "" :"not");
+ !(val[CAPAB_0] & IORDY_SUP) ? "(may be)" : "",
+ (val[CAPAB_0] & IORDY_OFF) ? "" :"not");
} else
printf("no IORDY\n");
if ((like_std == 1) && val[BUF_TYPE]) {
printf("\tBuffer type: %04x: %s%s\n", val[BUF_TYPE],
- (val[BUF_TYPE] < 2) ? "single port, single-sector" : "dual port, multi-sector",
- (val[BUF_TYPE] > 2) ? " with read caching ability" : "");
+ (val[BUF_TYPE] < 2) ? "single port, single-sector" : "dual port, multi-sector",
+ (val[BUF_TYPE] > 2) ? " with read caching ability" : "");
}
if ((min_std == 1) && (val[BUFFER__SIZE] && (val[BUFFER__SIZE] != NOVAL_1))) {
if (like_std == 1)
printf("\tCan%s perform double-word IO\n", (!val[DWORD_IO]) ? "not" : "");
else {
- printf("\tStandby timer values: spec'd by %s", (val[CAPAB_0] & STD_STBY) ? "Standard" : "Vendor");
+ printf("\tStandby timer values: spec'd by %s",
+ (val[CAPAB_0] & STD_STBY) ? "standard" : "vendor");
if ((like_std > 3) && ((val[CAPAB_1] & VALID) == VALID_VAL))
- printf(", %s device specific minimum\n", (val[CAPAB_1] & MIN_STANDBY_TIMER) ? "with" : "no");
+ printf(", %s device specific minimum\n",
+ (val[CAPAB_1] & MIN_STANDBY_TIMER) ? "with" : "no");
else
bb_putchar('\n');
}
}
if (like_std > 5 && val[ACOUSTIC]) {
printf("\tRecommended acoustic management value: %u, current value: %u\n",
- (val[ACOUSTIC] >> 8) & 0x00ff, val[ACOUSTIC] & 0x00ff);
+ (val[ACOUSTIC] >> 8) & 0x00ff,
+ val[ACOUSTIC] & 0x00ff);
}
} else {
/* ATAPI */
if (val[PKT_REL] || val[SVC_NBSY]) {
printf("\tOverlap support:");
- if (val[PKT_REL]) printf(" %uus to release bus.", val[PKT_REL]);
- if (val[SVC_NBSY]) printf(" %uus to clear BSY after SERVICE cmd.", val[SVC_NBSY]);
+ if (val[PKT_REL])
+ printf(" %uus to release bus.", val[PKT_REL]);
+ if (val[SVC_NBSY])
+ printf(" %uus to clear BSY after SERVICE cmd.",
+ val[SVC_NBSY]);
bb_putchar('\n');
}
}
if (val[WHATS_VALID] & OK_W64_70) {
if (val[PIO_NO_FLOW] || val[PIO_FLOW]) {
printf("\t\tCycle time:");
- if (val[PIO_NO_FLOW]) printf(" no flow control=%uns", val[PIO_NO_FLOW]);
- if (val[PIO_FLOW]) printf(" IORDY flow control=%uns", val[PIO_FLOW]);
+ if (val[PIO_NO_FLOW])
+ printf(" no flow control=%uns", val[PIO_NO_FLOW]);
+ if (val[PIO_FLOW])
+ printf(" IORDY flow control=%uns", val[PIO_FLOW]);
bb_putchar('\n');
}
}
if ((val[CMDS_SUPP_1] & VALID) == VALID_VAL) {
- printf("Commands/features:\n\tEnabled\tSupported:\n");
+ printf("Commands/features:\n"
+ "\tEnabled\tSupported:\n");
jj = val[CMDS_SUPP_0];
kk = val[CMDS_EN_0];
for (ii = 0; ii < NUM_CMD_FEAT_STR; ii++) {
jj = val[SECU_STATUS];
if (jj) {
for (ii = 0; ii < NUM_SECU_STR; ii++) {
- printf("\t%s\t%s\n", (!(jj & 0x0001)) ? "not" : "", nth_string(secu_str, ii));
+ printf("\t%s\t%s\n",
+ (!(jj & 0x0001)) ? "not" : "",
+ nth_string(secu_str, ii));
jj >>=1;
}
if (val[SECU_STATUS] & SECU_ENABLED) {
- printf("\tSecurity level %s\n", (val[SECU_STATUS] & SECU_LEVEL) ? "maximum" : "high");
+ printf("\tSecurity level %s\n",
+ (val[SECU_STATUS] & SECU_LEVEL) ? "maximum" : "high");
}
}
jj = val[ERASE_TIME] & ERASE_BITS;
strng = " determined by CSEL";
else
strng = "";
- printf("HW reset results:\n\tCBLID- %s Vih\n\tDevice num = %i%s\n",
- (val[HWRST_RSLT] & CBLID) ? "above" : "below", !(oo), strng);
+ printf("HW reset results:\n"
+ "\tCBLID- %s Vih\n"
+ "\tDevice num = %i%s\n",
+ (val[HWRST_RSLT] & CBLID) ? "above" : "below",
+ !(oo), strng);
}
/* more stuff from std 5 */
if ((like_std > 4) && (eqpt != CDROM)) {
if (val[CFA_PWR_MODE] & VALID_W160) {
- printf("CFA power mode 1:\n\t%s%s\n", (val[CFA_PWR_MODE] & PWR_MODE_OFF) ? "disabled" : "enabled",
- (val[CFA_PWR_MODE] & PWR_MODE_REQ) ? " and required by some commands" : "");
-
+ printf("CFA power mode 1:\n"
+ "\t%s%s\n",
+ (val[CFA_PWR_MODE] & PWR_MODE_OFF) ? "disabled" : "enabled",
+ (val[CFA_PWR_MODE] & PWR_MODE_REQ) ? " and required by some commands" : "");
if (val[CFA_PWR_MODE] & MAX_AMPS)
printf("\tMaximum current = %uma\n", val[CFA_PWR_MODE] & MAX_AMPS);
}
printf(" %s", nth_string(cfg_str, i));
}
printf(" }\n RawCHS=%u/%u/%u, TrkSize=%u, SectSize=%u, ECCbytes=%u\n"
- " BuffType=(%u) %s, BuffSize=%ukB, MaxMultSect=%u",
- id->cyls, id->heads, id->sectors, id->track_bytes,
- id->sector_bytes, id->ecc_bytes,
- id->buf_type, nth_string(BuffType, (id->buf_type > 3) ? 0 : id->buf_type),
- id->buf_size/2, id->max_multsect);
+ " BuffType=(%u) %s, BuffSize=%ukB, MaxMultSect=%u",
+ id->cyls, id->heads, id->sectors, id->track_bytes,
+ id->sector_bytes, id->ecc_bytes,
+ id->buf_type,
+ nth_string(BuffType, (id->buf_type > 3) ? 0 : id->buf_type),
+ id->buf_size/2, id->max_multsect);
if (id->max_multsect) {
printf(", MultSect=");
if (!(id->multsect_valid & 1))
if (id->capability & 2)
printf(", LBAsects=%u", id->lba_capacity);
- printf("\n IORDY=%s", (id->capability & 8) ? (id->capability & 4) ? "on/off" : "yes" : "no");
+ printf("\n IORDY=%s",
+ (id->capability & 8)
+ ? ((id->capability & 4) ? "on/off" : "yes")
+ : "no");
if (((id->capability & 8) || (id->field_valid & 2)) && (id->field_valid & 2))
printf(", tPIO={min:%u,w/IORDY:%u}", id->eide_pio, id->eide_pio_iordy);
if ((id->minor_rev_num && id->minor_rev_num <= 31)
|| (id->major_rev_num && id->minor_rev_num <= 31)
) {
- printf("\n Drive conforms to: %s: ", (id->minor_rev_num <= 31) ? nth_string(minor_str, id->minor_rev_num) : "unknown");
- if (id->major_rev_num != 0x0000 && /* NOVAL_0 */
- id->major_rev_num != 0xFFFF) { /* NOVAL_1 */
+ printf("\n Drive conforms to: %s: ",
+ (id->minor_rev_num <= 31) ? nth_string(minor_str, id->minor_rev_num) : "unknown");
+ if (id->major_rev_num != 0x0000 /* NOVAL_0 */
+ && id->major_rev_num != 0xFFFF /* NOVAL_1 */
+ ) {
for (i = 0; i <= 15; i++) {
if (id->major_rev_num & (1<<i))
- printf(" ATA/ATAPI-%u", i);
+ printf(" ATA/ATAPI-%u", i);
}
}
}
printf("off");
} else if (standby <= 240 || standby == 252 || standby == 255) {
/* standby is in 5 sec units */
- printf("%u minutes %u seconds", standby / 12, (standby*5) % 60);
+ printf("%u minutes %u seconds", standby / (60/5), standby % (60/5));
} else if (standby <= 251) {
unsigned t = (standby - 240); /* t is in 30 min units */;
- printf("%u.%c hours", t / 2, (t & 1) ? '0' : '5');
+ printf("%u.%c hours", t / 2, (t & 1) ? '5' : '0');
}
if (standby == 253)
printf("vendor-specific");
ioctl_or_warn(fd, HDIO_DRIVE_CMD, &args);
}
if (set_apmmode) {
- args[2] = (apmmode == 255) ? 0x85 /* disable */ : 0x05 /* set */; /* feature register */
+ /* feature register */
+ args[2] = (apmmode == 255) ? 0x85 /* disable */ : 0x05 /* set */;
args[1] = apmmode; /* sector count register 1-255 */
if (get_apmmode)
- printf(" setting APM level to %s 0x%02lX (%ld)\n", (apmmode == 255) ? "disabled" : "", apmmode, apmmode);
+ printf(" setting APM level to %s 0x%02lX (%ld)\n",
+ (apmmode == 255) ? "disabled" : "",
+ apmmode, apmmode);
ioctl_or_warn(fd, HDIO_DRIVE_CMD, &args);
args[1] = 0;
}
}
if (set_seagate) {
args[0] = 0xfb;
- if (get_seagate) printf(" disabling Seagate auto powersaving mode\n");
+ if (get_seagate)
+ printf(" disabling Seagate auto powersaving mode\n");
ioctl_or_warn(fd, HDIO_DRIVE_CMD, &args);
}
if (set_standby) {
char buf[512];
flush_buffer_cache();
if (-1 == read(fd, buf, sizeof(buf)))
- bb_perror_msg("read(%d bytes) failed (rc=-1)", sizeof(buf));
+ bb_perror_msg("read of 512 bytes failed");
}
#endif /* HDIO_DRIVE_CMD */
if (get_mult || get_identity) {
multcount = -1;
if (ioctl(fd, HDIO_GET_MULTCOUNT, &multcount)) {
- if (get_mult && ENABLE_IOCTL_HEX2STR_ERROR) /* To be coherent with ioctl_or_warn. */
+ /* To be coherent with ioctl_or_warn. */
+ if (get_mult && ENABLE_IOCTL_HEX2STR_ERROR)
bb_perror_msg("HDIO_GET_MULTCOUNT");
else
bb_perror_msg("ioctl %#x failed", HDIO_GET_MULTCOUNT);
if (!ioctl_or_warn(fd, HDIO_GETGEO, &g))
printf(" geometry\t= %u/%u/%u, sectors = %ld, start = %ld\n",
- g.cylinders, g.heads, g.sectors, parm, g.start);
+ g.cylinders, g.heads, g.sectors, parm, g.start);
}
}
#ifdef HDIO_DRIVE_CMD