unxz: new applet, complete with xzcat and xz -d aliases
authorDenys Vlasenko <vda.linux@googlemail.com>
Sun, 30 May 2010 01:35:18 +0000 (03:35 +0200)
committerDenys Vlasenko <vda.linux@googlemail.com>
Sun, 30 May 2010 01:35:18 +0000 (03:35 +0200)
function                                             old     new   delta
unpack_xz_stream_stdin                                 -    3953   +3953
lzma_main                                              -    2601   +2601
lzma_len                                               -     516    +516
dec_vli                                                -     165    +165
dict_repeat                                            -     103    +103
lzma_reset                                             -      98     +98
fill_temp                                              -      98     +98
crc32_validate                                         -      93     +93
xz_dec_reset                                           -      77     +77
unxz_main                                              -      77     +77
index_update                                           -      47     +47
xz_crc32                                               -      40     +40
packed_usage                                       27044   27060     +16
make_new_name_unxz                                     -      14     +14
applet_names                                        2240    2254     +14
applet_main                                         1312    1324     +12
applet_nameofs                                       656     662      +6
unpack_unxz                                            -       5      +5
send_tree                                            355     360      +5
applet_install_loc                                   164     166      +2
------------------------------------------------------------------------------
(add/remove: 15/0 grow/shrink: 6/0 up/down: 7942/0)          Total: 7942 bytes
   text    data     bss     dec     hex filename
 844032     453    6812  851297   cfd61 busybox_old
 852063     453    6812  859328   d1cc0 busybox_unstripped

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
16 files changed:
archival/Config.in
archival/Kbuild
archival/bbunzip.c
archival/libunarchive/Kbuild
archival/libunarchive/unxz/README [new file with mode: 0644]
archival/libunarchive/unxz/xz.h [new file with mode: 0644]
archival/libunarchive/unxz/xz_config.h [new file with mode: 0644]
archival/libunarchive/unxz/xz_dec_bcj.c [new file with mode: 0644]
archival/libunarchive/unxz/xz_dec_lzma2.c [new file with mode: 0644]
archival/libunarchive/unxz/xz_dec_stream.c [new file with mode: 0644]
archival/libunarchive/unxz/xz_lzma2.h [new file with mode: 0644]
archival/libunarchive/unxz/xz_private.h [new file with mode: 0644]
archival/libunarchive/unxz/xz_stream.h [new file with mode: 0644]
include/applets.h
include/unarchive.h
include/usage.h

index 028fce32fd815ff41e399ab9241953832ab7656f..4f762e860d0f5eb2288d3c0262317c321e7e9d76 100644 (file)
@@ -5,6 +5,12 @@
 
 menu "Archival Utilities"
 
+config FEATURE_SEAMLESS_XZ
+       bool "Make tar, rpm, modprobe etc understand .xz data"
+       default n
+       help
+         Make tar, rpm, modprobe etc understand .xz data.
+
 config FEATURE_SEAMLESS_LZMA
        bool "Make tar, rpm, modprobe etc understand .lzma data"
        default n
@@ -225,7 +231,7 @@ config FEATURE_TAR_CREATE
 config FEATURE_TAR_AUTODETECT
        bool "Autodetect compressed tarballs"
        default n
-       depends on TAR && (FEATURE_SEAMLESS_Z || FEATURE_SEAMLESS_GZ || FEATURE_SEAMLESS_BZ2 || FEATURE_SEAMLESS_LZMA)
+       depends on TAR && (FEATURE_SEAMLESS_Z || FEATURE_SEAMLESS_GZ || FEATURE_SEAMLESS_BZ2 || FEATURE_SEAMLESS_LZMA || FEATURE_SEAMLESS_XZ)
        help
          With this option tar can automatically detect compressed
          tarballs. Currently it works only on files (not pipes etc).
@@ -335,6 +341,20 @@ config LZMA
          Enable this option if you want commands like "lzma -d" to work.
          IOW: you'll get lzma applet, but it will always require -d option.
 
+config UNXZ
+       bool "unxz"
+       default n
+       help
+         unxz is a unlzma successor.
+
+config XZ
+       bool "Provide xz alias which supports only unpacking"
+       default n
+       depends on UNXZ
+       help
+         Enable this option if you want commands like "xz -d" to work.
+         IOW: you'll get xz applet, but it will always require -d option.
+
 config UNZIP
        bool "unzip"
        default n
index 53bd7e21e3d0cb8853a3c46e347442d0b0db8d74..3300ea90ffab243f7378788076eef5fb8cbe7365 100644 (file)
@@ -8,18 +8,21 @@ libs-y                                += libunarchive/
 
 lib-y:=
 lib-$(CONFIG_AR)               += ar.o
-lib-$(CONFIG_BUNZIP2)          += bbunzip.o
-lib-$(CONFIG_BZIP2)            += bzip2.o bbunzip.o
-lib-$(CONFIG_UNLZMA)           += bbunzip.o
 lib-$(CONFIG_CPIO)             += cpio.o
 lib-$(CONFIG_DPKG)             += dpkg.o
 lib-$(CONFIG_DPKG_DEB)         += dpkg_deb.o
-lib-$(CONFIG_GUNZIP)           += bbunzip.o
-lib-$(CONFIG_GZIP)             += gzip.o bbunzip.o
-lib-$(CONFIG_LZOP)             += lzop.o lzo1x_1.o lzo1x_1o.o lzo1x_d.o bbunzip.o
-lib-$(CONFIG_LZOP_COMPR_HIGH)  += lzo1x_9x.o
 lib-$(CONFIG_RPM2CPIO)         += rpm2cpio.o
 lib-$(CONFIG_RPM)              += rpm.o
 lib-$(CONFIG_TAR)              += tar.o
-lib-$(CONFIG_UNCOMPRESS)       += bbunzip.o
 lib-$(CONFIG_UNZIP)            += unzip.o
+
+lib-$(CONFIG_LZOP)             += lzop.o lzo1x_1.o lzo1x_1o.o lzo1x_d.o bbunzip.o
+lib-$(CONFIG_LZOP_COMPR_HIGH)  += lzo1x_9x.o
+lib-$(CONFIG_GZIP)             += gzip.o bbunzip.o
+lib-$(CONFIG_BZIP2)            += bzip2.o bbunzip.o
+
+lib-$(CONFIG_UNXZ)             += bbunzip.o
+lib-$(CONFIG_UNLZMA)           += bbunzip.o
+lib-$(CONFIG_BUNZIP2)          += bbunzip.o
+lib-$(CONFIG_GUNZIP)           += bbunzip.o
+lib-$(CONFIG_UNCOMPRESS)       += bbunzip.o
index 178dc63be95f0d4e98665fd0c0d8d86a7bfde279..824b0027fdbb508cd930dd3b6e10197ec3796185 100644 (file)
@@ -387,3 +387,36 @@ int uncompress_main(int argc UNUSED_PARAM, char **argv)
 }
 
 #endif
+
+#if ENABLE_UNXZ
+
+static
+char* make_new_name_unxz(char *filename)
+{
+       return make_new_name_generic(filename, "xz");
+}
+
+static
+IF_DESKTOP(long long) int unpack_unxz(unpack_info_t *info UNUSED_PARAM)
+{
+       return unpack_xz_stream_stdin();
+}
+
+int unxz_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
+int unxz_main(int argc UNUSED_PARAM, char **argv)
+{
+       int opts = getopt32(argv, "cfvdt");
+# if ENABLE_XZ
+       /* xz without -d or -t? */
+       if (applet_name[2] == '\0' && !(opts & (OPT_DECOMPRESS|OPT_TEST)))
+               bb_show_usage();
+# endif
+       /* xzcat? */
+       if (applet_name[2] == 'c')
+               option_mask32 |= OPT_STDOUT;
+
+       argv += optind;
+       return bbunpack(argv, make_new_name_unxz, unpack_unxz);
+}
+
+#endif
index 11d23b25f223762dfe47f4495e60c37bb2abdac7..ed8e85793c4296ff7e017ea7196574b1060347af 100644 (file)
@@ -49,6 +49,7 @@ lib-$(CONFIG_FEATURE_SEAMLESS_Z)        += open_transformer.o decompress_uncompr
 lib-$(CONFIG_FEATURE_SEAMLESS_GZ)       += open_transformer.o decompress_unzip.o get_header_tar_gz.o
 lib-$(CONFIG_FEATURE_SEAMLESS_BZ2)      += open_transformer.o decompress_bunzip2.o get_header_tar_bz2.o
 lib-$(CONFIG_FEATURE_SEAMLESS_LZMA)     += open_transformer.o decompress_unlzma.o get_header_tar_lzma.o
+lib-$(CONFIG_FEATURE_SEAMLESS_XZ)       += open_transformer.o decompress_unxz.o
 lib-$(CONFIG_FEATURE_COMPRESS_USAGE)    += decompress_bunzip2.o
 
 ifneq ($(lib-y),)
diff --git a/archival/libunarchive/unxz/README b/archival/libunarchive/unxz/README
new file mode 100644 (file)
index 0000000..f79b0a4
--- /dev/null
@@ -0,0 +1,136 @@
+
+XZ Embedded
+===========
+
+    XZ Embedded is a relatively small, limited implementation of the .xz
+    file format. Currently only decoding is implemented.
+
+    XZ Embedded was written for use in the Linux kernel, but the code can
+    be easily used in other environments too, including regular userspace
+    applications.
+
+    This README contains information that is useful only when the copy
+    of XZ Embedded isn't part of the Linux kernel tree. You should also
+    read linux/Documentation/xz.txt even if you aren't using XZ Embedded
+    as part of Linux; information in that file is not repeated in this
+    README.
+
+Compiling the Linux kernel module
+
+    The xz_dec module depends on crc32 module, so make sure that you have
+    it enabled (CONFIG_CRC32).
+
+    Building the xz_dec and xz_dec_test modules without support for BCJ
+    filters:
+
+        cd linux/lib/xz
+        make -C /path/to/kernel/source \
+                KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
+                CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m
+
+    Building the xz_dec and xz_dec_test modules with support for BCJ
+    filters:
+
+        cd linux/lib/xz
+        make -C /path/to/kernel/source \
+                KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
+                CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m CONFIG_XZ_DEC_BCJ=y \
+                CONFIG_XZ_DEC_X86=y CONFIG_XZ_DEC_POWERPC=y \
+                CONFIG_XZ_DEC_IA64=y CONFIG_XZ_DEC_ARM=y \
+                CONFIG_XZ_DEC_ARMTHUMB=y CONFIG_XZ_DEC_SPARC=y
+
+    If you want only one or a few of the BCJ filters, omit the appropriate
+    variables. CONFIG_XZ_DEC_BCJ=y is always required to build the support
+    code shared between all BCJ filters.
+
+    Most people don't need the xz_dec_test module. You can skip building
+    it by omitting CONFIG_XZ_DEC_TEST=m from the make command line.
+
+Compiler requirements
+
+    XZ Embedded should compile as either GNU-C89 (used in the Linux
+    kernel) or with any C99 compiler. Getting the code to compile with
+    non-GNU C89 compiler or a C++ compiler should be quite easy as
+    long as there is a data type for unsigned 64-bit integer (or the
+    code is modified not to support large files, which needs some more
+    care than just using 32-bit integer instead of 64-bit).
+
+    If you use GCC, try to use a recent version. For example, on x86,
+    xz_dec_lzma2.c compiled with GCC 3.3.6 is 15-25 % slower than when
+    compiled with GCC 4.3.3.
+
+Embedding into userspace applications
+
+    To embed the XZ decoder, copy the following files into a single
+    directory in your source code tree:
+
+        linux/include/linux/xz.h
+        linux/lib/xz/xz_crc32.c
+        linux/lib/xz/xz_dec_lzma2.c
+        linux/lib/xz/xz_dec_stream.c
+        linux/lib/xz/xz_lzma2.h
+        linux/lib/xz/xz_private.h
+        linux/lib/xz/xz_stream.h
+        userspace/xz_config.h
+
+    Alternatively, xz.h may be placed into a different directory but then
+    that directory must be in the compiler include path when compiling
+    the .c files.
+
+    Your code should use only the functions declared in xz.h. The rest of
+    the .h files are meant only for internal use in XZ Embedded.
+
+    You may want to modify xz_config.h to be more suitable for your build
+    environment. Probably you should at least skim through it even if the
+    default file works as is.
+
+BCJ filter support
+
+    If you want support for one or more BCJ filters, you need to copy also
+    linux/lib/xz/xz_dec_bcj.c into your application, and use appropriate
+    #defines in xz_config.h or in compiler flags. You don't need these
+    #defines in the code that just uses XZ Embedded via xz.h, but having
+    them always #defined doesn't hurt either.
+
+        #define             Instruction set     BCJ filter endianness
+        XZ_DEC_X86          x86 or x86-64       Little endian only
+        XZ_DEC_POWERPC      PowerPC             Big endian only
+        XZ_DEC_IA64         Itanium (IA-64)     Big or little endian
+        XZ_DEC_ARM          ARM                 Little endian only
+        XZ_DEC_ARMTHUMB     ARM-Thumb           Little endian only
+        XZ_DEC_SPARC        SPARC               Big or little endian
+
+    While some architectures are (partially) bi-endian, the endianness
+    setting doesn't change the endianness of the instructions on all
+    architectures. That's why Itanium and SPARC filters work for both big
+    and little endian executables (Itanium has little endian instructions
+    and SPARC has big endian instructions).
+
+    There currently is no filter for little endian PowerPC or big endian
+    ARM or ARM-Thumb. Implementing filters for them can be considered if
+    there is a need for such filters in real-world applications.
+
+Notes about shared libraries
+
+    If you are including XZ Embedded into a shared library, you very
+    probably should rename the xz_* functions to prevent symbol
+    conflicts in case your library is linked against some other library
+    or application that also has XZ Embedded in it (which may even be
+    a different version of XZ Embedded). TODO: Provide an easy way
+    to do this.
+
+    Please don't create a shared library of XZ Embedded itself unless
+    it is fine to rebuild everything depending on that shared library
+    everytime you upgrade to a newer version of XZ Embedded. There are
+    no API or ABI stability guarantees between different versions of
+    XZ Embedded.
+
+Specifying the calling convention
+
+    XZ_FUNC macro was included to support declaring functions with __init
+    in Linux. Outside Linux, it can be used to specify the calling
+    convention on systems that support multiple calling conventions.
+    For example, on Windows, you may make all functions use the stdcall
+    calling convention by defining XZ_FUNC=__stdcall when building and
+    using the functions from XZ Embedded.
+
diff --git a/archival/libunarchive/unxz/xz.h b/archival/libunarchive/unxz/xz.h
new file mode 100644 (file)
index 0000000..82f16ee
--- /dev/null
@@ -0,0 +1,212 @@
+/*
+ * XZ decompressor
+ *
+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
+ *          Igor Pavlov <http://7-zip.org/>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef XZ_H
+#define XZ_H
+
+#ifdef __KERNEL__
+#      include <linux/stddef.h>
+#      include <linux/types.h>
+#else
+#      include <stddef.h>
+#      include <stdint.h>
+#endif
+
+#ifndef XZ_DEBUG_MSG
+#      define XZ_DEBUG_MSG(...) ((void)0)
+#endif
+
+/* In Linux, this is used to make extern functions static when needed. */
+#ifndef XZ_EXTERN
+#      define XZ_EXTERN extern
+#endif
+
+/* In Linux, this is used to mark the functions with __init when needed. */
+#ifndef XZ_FUNC
+#      define XZ_FUNC
+#endif
+
+/**
+ * enum xz_ret - Return codes
+ * @XZ_OK:              Everything is OK so far. More input or more output
+ *                      space is required to continue.
+ * @XZ_STREAM_END:      Operation finished successfully.
+ * @XZ_MEMLIMIT_ERROR:  Not enough memory was preallocated at decoder
+ *                      initialization time.
+ * @XZ_FORMAT_ERROR:    File format was not recognized (wrong magic bytes).
+ * @XZ_OPTIONS_ERROR:   This implementation doesn't support the requested
+ *                      compression options. In the decoder this means that
+ *                      the header CRC32 matches, but the header itself
+ *                      specifies something that we don't support.
+ * @XZ_DATA_ERROR:      Compressed data is corrupt.
+ * @XZ_BUF_ERROR:       Cannot make any progress. Details are slightly
+ *                      different between multi-call and single-call mode;
+ *                      more information below.
+ *
+ * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
+ * to XZ code cannot consume any input and cannot produce any new output.
+ * This happens when there is no new input available, or the output buffer
+ * is full while at least one output byte is still pending. Assuming your
+ * code is not buggy, you can get this error only when decoding a compressed
+ * stream that is truncated or otherwise corrupt.
+ *
+ * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
+ * is too small, or the compressed input is corrupt in a way that makes the
+ * decoder produce more output than the caller expected. When it is
+ * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
+ * is used instead of XZ_BUF_ERROR.
+ */
+enum xz_ret {
+       XZ_OK,
+       XZ_STREAM_END,
+       XZ_MEMLIMIT_ERROR,
+       XZ_FORMAT_ERROR,
+       XZ_OPTIONS_ERROR,
+       XZ_DATA_ERROR,
+       XZ_BUF_ERROR
+};
+
+/**
+ * struct xz_buf - Passing input and output buffers to XZ code
+ * @in:         Beginning of the input buffer. This may be NULL if and only
+ *              if in_pos is equal to in_size.
+ * @in_pos:     Current position in the input buffer. This must not exceed
+ *              in_size.
+ * @in_size:    Size of the input buffer
+ * @out:        Beginning of the output buffer. This may be NULL if and only
+ *              if out_pos is equal to out_size.
+ * @out_pos:    Current position in the output buffer. This must not exceed
+ *              out_size.
+ * @out_size:   Size of the output buffer
+ *
+ * Only the contents of the output buffer from out[out_pos] onward, and
+ * the variables in_pos and out_pos are modified by the XZ code.
+ */
+struct xz_buf {
+       const uint8_t *in;
+       size_t in_pos;
+       size_t in_size;
+
+       uint8_t *out;
+       size_t out_pos;
+       size_t out_size;
+};
+
+/**
+ * struct xz_dec - Opaque type to hold the XZ decoder state
+ */
+struct xz_dec;
+
+/**
+ * xz_dec_init() - Allocate and initialize a XZ decoder state
+ * @dict_max:   Maximum size of the LZMA2 dictionary (history buffer) for
+ *              multi-call decoding, or special value of zero to indicate
+ *              single-call decoding mode.
+ *
+ * If dict_max > 0, the decoder is initialized to work in multi-call mode.
+ * dict_max number of bytes of memory is preallocated for the LZMA2
+ * dictionary. This way there is no risk that xz_dec_run() could run out
+ * of memory, since xz_dec_run() will never allocate any memory. Instead,
+ * if the preallocated dictionary is too small for decoding the given input
+ * stream, xz_dec_run() will return XZ_MEMLIMIT_ERROR. Thus, it is important
+ * to know what kind of data will be decoded to avoid allocating excessive
+ * amount of memory for the dictionary.
+ *
+ * LZMA2 dictionary is always 2^n bytes or 2^n + 2^(n-1) bytes (the latter
+ * sizes are less common in practice). In the kernel, dictionary sizes of
+ * 64 KiB, 128 KiB, 256 KiB, 512 KiB, and 1 MiB are probably the only
+ * reasonable values.
+ *
+ * If dict_max == 0, the decoder is initialized to work in single-call mode.
+ * In single-call mode, xz_dec_run() decodes the whole stream at once. The
+ * caller must provide enough output space or the decoding will fail. The
+ * output space is used as the dictionary buffer, which is why there is
+ * no need to allocate the dictionary as part of the decoder's internal
+ * state.
+ *
+ * Because the output buffer is used as the workspace, streams encoded using
+ * a big dictionary are not a problem in single-call. It is enough that the
+ * output buffer is is big enough to hold the actual uncompressed data; it
+ * can be smaller than the dictionary size stored in the stream headers.
+ *
+ * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
+ * ready to be used with xz_dec_run(). On error, xz_dec_init() returns NULL.
+ */
+XZ_EXTERN struct xz_dec * XZ_FUNC xz_dec_init(uint32_t dict_max);
+
+/**
+ * xz_dec_run() - Run the XZ decoder
+ * @s:          Decoder state allocated using xz_dec_init()
+ * @b:          Input and output buffers
+ *
+ * In multi-call mode, this function may return any of the values listed in
+ * enum xz_ret.
+ *
+ * In single-call mode, this function never returns XZ_OK. If an error occurs
+ * in single-call mode (return value is not XZ_STREAM_END), b->in_pos and
+ * b->out_pos are not modified, and the contents of the output buffer from
+ * b->out[b->out_pos] onward are undefined.
+ *
+ * NOTE: In single-call mode, the contents of the output buffer are undefined
+ * also after XZ_BUF_ERROR. This is because with some filter chains, there
+ * may be a second pass over the output buffer, and this pass cannot be
+ * properly done if the output buffer is truncated. Thus, you cannot give
+ * the single-call decoder a too small buffer and then expect to get that
+ * amount valid data from the beginning of the stream. You must use the
+ * multi-call decoder if you don't want to uncompress the whole stream.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_run(struct xz_dec *s, struct xz_buf *b);
+
+/**
+ * xz_dec_reset() - Reset an already allocated decoder state
+ * @s:          Decoder state allocated using xz_dec_init()
+ *
+ * This function can be used to reset the multi-call decoder state without
+ * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
+ *
+ * In single-call mode, xz_dec_reset() is always called in the beginning of
+ * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
+ * multi-call mode.
+ */
+XZ_EXTERN void XZ_FUNC xz_dec_reset(struct xz_dec *s);
+
+/**
+ * xz_dec_end() - Free the memory allocated for the decoder state
+ * @s:          Decoder state allocated using xz_dec_init(). If s is NULL,
+ *              this function does nothing.
+ */
+XZ_EXTERN void XZ_FUNC xz_dec_end(struct xz_dec *s);
+
+/*
+ * Standalone build (userspace build or in-kernel build for boot time use)
+ * needs a CRC32 implementation. For normal in-kernel use, kernel's own
+ * CRC32 module is used instead, and users of this module don't need to
+ * care about the functions below.
+ */
+#if !defined(__KERNEL__) || defined(XZ_INTERNAL_CRC32)
+/*
+ * This must be called before any other xz_* function to initialize
+ * the CRC32 lookup table.
+ */
+#ifndef xz_crc32_init
+XZ_EXTERN void XZ_FUNC xz_crc32_init(uint32_t *crc32_table);
+#endif
+
+/*
+ * Update CRC32 value using the polynomial from IEEE-802.3. To start a new
+ * calculation, the third argument must be zero. To continue the calculation,
+ * the previously returned value is passed as the third argument.
+ */
+#ifndef xz_crc32
+XZ_EXTERN uint32_t XZ_FUNC xz_crc32(uint32_t *crc32_table,
+               const uint8_t *buf, size_t size, uint32_t crc);
+#endif
+#endif
+#endif
diff --git a/archival/libunarchive/unxz/xz_config.h b/archival/libunarchive/unxz/xz_config.h
new file mode 100644 (file)
index 0000000..3259815
--- /dev/null
@@ -0,0 +1,119 @@
+/*
+ * Private includes and definitions for userspace use of XZ Embedded
+ *
+ * Author: Lasse Collin <lasse.collin@tukaani.org>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef XZ_CONFIG_H
+#define XZ_CONFIG_H
+
+/* Uncomment as needed to enable BCJ filter decoders. */
+/* #define XZ_DEC_X86 */
+/* #define XZ_DEC_POWERPC */
+/* #define XZ_DEC_IA64 */
+/* #define XZ_DEC_ARM */
+/* #define XZ_DEC_ARMTHUMB */
+/* #define XZ_DEC_SPARC */
+
+#include <stdbool.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "xz.h"
+
+#define kmalloc(size, flags) malloc(size)
+#define kfree(ptr) free(ptr)
+#define vmalloc(size) malloc(size)
+#define vfree(ptr) free(ptr)
+
+#define memeq(a, b, size) (memcmp(a, b, size) == 0)
+#define memzero(buf, size) memset(buf, 0, size)
+
+#define min(x, y) ((x) < (y) ? (x) : (y))
+#define min_t(type, x, y) min(x, y)
+
+/*
+ * Some functions have been marked with __always_inline to keep the
+ * performance reasonable even when the compiler is optimizing for
+ * small code size. You may be able to save a few bytes by #defining
+ * __always_inline to plain inline, but don't complain if the code
+ * becomes slow.
+ *
+ * NOTE: System headers on GNU/Linux may #define this macro already,
+ * so if you want to change it, it you need to #undef it first.
+ */
+#ifndef __always_inline
+#      ifdef __GNUC__
+#              define __always_inline \
+                       inline __attribute__((__always_inline__))
+#      else
+#              define __always_inline inline
+#      endif
+#endif
+
+/*
+ * Some functions are marked to never be inlined to reduce stack usage.
+ * If you don't care about stack usage, you may want to modify this so
+ * that noinline_for_stack is #defined to be empty even when using GCC.
+ * Doing so may save a few bytes in binary size.
+ */
+#ifndef noinline_for_stack
+#      ifdef __GNUC__
+#              define noinline_for_stack __attribute__((__noinline__))
+#      else
+#              define noinline_for_stack
+#      endif
+#endif
+
+/* Inline functions to access unaligned unsigned 32-bit integers */
+#ifndef get_unaligned_le32
+static inline uint32_t XZ_FUNC get_unaligned_le32(const uint8_t *buf)
+{
+       return (uint32_t)buf[0]
+                       | ((uint32_t)buf[1] << 8)
+                       | ((uint32_t)buf[2] << 16)
+                       | ((uint32_t)buf[3] << 24);
+}
+#endif
+
+#ifndef get_unaligned_be32
+static inline uint32_t XZ_FUNC get_unaligned_be32(const uint8_t *buf)
+{
+       return (uint32_t)(buf[0] << 24)
+                       | ((uint32_t)buf[1] << 16)
+                       | ((uint32_t)buf[2] << 8)
+                       | (uint32_t)buf[3];
+}
+#endif
+
+#ifndef put_unaligned_le32
+static inline void XZ_FUNC put_unaligned_le32(uint32_t val, uint8_t *buf)
+{
+       buf[0] = (uint8_t)val;
+       buf[1] = (uint8_t)(val >> 8);
+       buf[2] = (uint8_t)(val >> 16);
+       buf[3] = (uint8_t)(val >> 24);
+}
+#endif
+
+#ifndef put_unaligned_be32
+static inline void XZ_FUNC put_unaligned_be32(uint32_t val, uint8_t *buf)
+{
+       buf[0] = (uint8_t)(val >> 24);
+       buf[1] = (uint8_t)(val >> 16);
+       buf[2] = (uint8_t)(val >> 8);
+       buf[3] = (uint8_t)val;
+}
+#endif
+
+/*
+ * Use get_unaligned_le32() also for aligned access for simplicity. On
+ * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
+ * could save a few bytes in code size.
+ */
+#define get_le32 get_unaligned_le32
+
+#endif
diff --git a/archival/libunarchive/unxz/xz_dec_bcj.c b/archival/libunarchive/unxz/xz_dec_bcj.c
new file mode 100644 (file)
index 0000000..d4b6ef7
--- /dev/null
@@ -0,0 +1,560 @@
+/*
+ * Branch/Call/Jump (BCJ) filter decoders
+ *
+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
+ *          Igor Pavlov <http://7-zip.org/>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#include "xz_private.h"
+
+struct xz_dec_bcj {
+       /* Type of the BCJ filter being used */
+       enum {
+               BCJ_X86 = 4,        /* x86 or x86-64 */
+               BCJ_POWERPC = 5,    /* Big endian only */
+               BCJ_IA64 = 6,       /* Big or little endian */
+               BCJ_ARM = 7,        /* Little endian only */
+               BCJ_ARMTHUMB = 8,   /* Little endian only */
+               BCJ_SPARC = 9       /* Big or little endian */
+       } type;
+
+       /*
+        * Return value of the next filter in the chain. We need to preserve
+        * this information across calls, because we must not call the next
+        * filter anymore once it has returned XZ_STREAM_END.
+        */
+       enum xz_ret ret;
+
+       /* True if we are operating in single-call mode. */
+       bool single_call;
+
+       /*
+        * Absolute position relative to the beginning of the uncompressed
+        * data (in a single .xz Block). We care only about the lowest 32
+        * bits so this doesn't need to be uint64_t even with big files.
+        */
+       uint32_t pos;
+
+       /* x86 filter state */
+       uint32_t x86_prev_mask;
+
+       /* Temporary space to hold the variables from struct xz_buf */
+       uint8_t *out;
+       size_t out_pos;
+       size_t out_size;
+
+       struct {
+               /* Amount of already filtered data in the beginning of buf */
+               size_t filtered;
+
+               /* Total amount of data currently stored in buf  */
+               size_t size;
+
+               /*
+                * Buffer to hold a mix of filtered and unfiltered data. This
+                * needs to be big enough to hold Alignment + 2 * Look-ahead:
+                *
+                * Type         Alignment   Look-ahead
+                * x86              1           4
+                * PowerPC          4           0
+                * IA-64           16           0
+                * ARM              4           0
+                * ARM-Thumb        2           2
+                * SPARC            4           0
+                */
+               uint8_t buf[16];
+       } temp;
+};
+
+#ifdef XZ_DEC_X86
+/*
+ * This is macro used to test the most significant byte of a memory address
+ * in an x86 instruction.
+ */
+#define bcj_x86_test_msbyte(b) ((b) == 0x00 || (b) == 0xFF)
+
+static noinline_for_stack size_t XZ_FUNC bcj_x86(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       static const bool mask_to_allowed_status[8]
+               = { true, true, true, false, true, false, false, false };
+
+       static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
+
+       size_t i;
+       size_t prev_pos = (size_t)-1;
+       uint32_t prev_mask = s->x86_prev_mask;
+       uint32_t src;
+       uint32_t dest;
+       uint32_t j;
+       uint8_t b;
+
+       if (size <= 4)
+               return 0;
+
+       size -= 4;
+       for (i = 0; i < size; ++i) {
+               if ((buf[i] & 0xFE) != 0xE8)
+                       continue;
+
+               prev_pos = i - prev_pos;
+               if (prev_pos > 3) {
+                       prev_mask = 0;
+               } else {
+                       prev_mask = (prev_mask << (prev_pos - 1)) & 7;
+                       if (prev_mask != 0) {
+                               b = buf[i + 4 - mask_to_bit_num[prev_mask]];
+                               if (!mask_to_allowed_status[prev_mask]
+                                               || bcj_x86_test_msbyte(b)) {
+                                       prev_pos = i;
+                                       prev_mask = (prev_mask << 1) | 1;
+                                       continue;
+                               }
+                       }
+               }
+
+               prev_pos = i;
+
+               if (bcj_x86_test_msbyte(buf[i + 4])) {
+                       src = get_unaligned_le32(buf + i + 1);
+                       while (true) {
+                               dest = src - (s->pos + (uint32_t)i + 5);
+                               if (prev_mask == 0)
+                                       break;
+
+                               j = mask_to_bit_num[prev_mask] * 8;
+                               b = (uint8_t)(dest >> (24 - j));
+                               if (!bcj_x86_test_msbyte(b))
+                                       break;
+
+                               src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
+                       }
+
+                       dest &= 0x01FFFFFF;
+                       dest |= (uint32_t)0 - (dest & 0x01000000);
+                       put_unaligned_le32(dest, buf + i + 1);
+                       i += 4;
+               } else {
+                       prev_mask = (prev_mask << 1) | 1;
+               }
+       }
+
+       prev_pos = i - prev_pos;
+       s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_POWERPC
+static noinline_for_stack size_t XZ_FUNC bcj_powerpc(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       size_t i;
+       uint32_t instr;
+
+       for (i = 0; i + 4 <= size; i += 4) {
+               instr = get_unaligned_be32(buf + i);
+               if ((instr & 0xFC000003) == 0x48000001) {
+                       instr &= 0x03FFFFFC;
+                       instr -= s->pos + (uint32_t)i;
+                       instr &= 0x03FFFFFC;
+                       instr |= 0x48000001;
+                       put_unaligned_be32(instr, buf + i);
+               }
+       }
+
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_IA64
+static noinline_for_stack size_t XZ_FUNC bcj_ia64(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       static const uint8_t branch_table[32] = {
+               0, 0, 0, 0, 0, 0, 0, 0,
+               0, 0, 0, 0, 0, 0, 0, 0,
+               4, 4, 6, 6, 0, 0, 7, 7,
+               4, 4, 0, 0, 4, 4, 0, 0
+       };
+
+       /*
+        * The local variables take a little bit stack space, but it's less
+        * than what LZMA2 decoder takes, so it doesn't make sense to reduce
+        * stack usage here without doing that for the LZMA2 decoder too.
+        */
+
+       /* Loop counters */
+       size_t i;
+       size_t j;
+
+       /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
+       uint32_t slot;
+
+       /* Bitwise offset of the instruction indicated by slot */
+       uint32_t bit_pos;
+
+       /* bit_pos split into byte and bit parts */
+       uint32_t byte_pos;
+       uint32_t bit_res;
+
+       /* Address part of an instruction */
+       uint32_t addr;
+
+       /* Mask used to detect which instructions to convert */
+       uint32_t mask;
+
+       /* 41-bit instruction stored somewhere in the lowest 48 bits */
+       uint64_t instr;
+
+       /* Instruction normalized with bit_res for easier manipulation */
+       uint64_t norm;
+
+       for (i = 0; i + 16 <= size; i += 16) {
+               mask = branch_table[buf[i] & 0x1F];
+               for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
+                       if (((mask >> slot) & 1) == 0)
+                               continue;
+
+                       byte_pos = bit_pos >> 3;
+                       bit_res = bit_pos & 7;
+                       instr = 0;
+                       for (j = 0; j < 6; ++j)
+                               instr |= (uint64_t)(buf[i + j + byte_pos])
+                                               << (8 * j);
+
+                       norm = instr >> bit_res;
+
+                       if (((norm >> 37) & 0x0F) == 0x05
+                                       && ((norm >> 9) & 0x07) == 0) {
+                               addr = (norm >> 13) & 0x0FFFFF;
+                               addr |= ((uint32_t)(norm >> 36) & 1) << 20;
+                               addr <<= 4;
+                               addr -= s->pos + (uint32_t)i;
+                               addr >>= 4;
+
+                               norm &= ~((uint64_t)0x8FFFFF << 13);
+                               norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
+                               norm |= (uint64_t)(addr & 0x100000)
+                                               << (36 - 20);
+
+                               instr &= (1 << bit_res) - 1;
+                               instr |= norm << bit_res;
+
+                               for (j = 0; j < 6; j++)
+                                       buf[i + j + byte_pos]
+                                               = (uint8_t)(instr >> (8 * j));
+                       }
+               }
+       }
+
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_ARM
+static noinline_for_stack size_t XZ_FUNC bcj_arm(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       size_t i;
+       uint32_t addr;
+
+       for (i = 0; i + 4 <= size; i += 4) {
+               if (buf[i + 3] == 0xEB) {
+                       addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
+                                       | ((uint32_t)buf[i + 2] << 16);
+                       addr <<= 2;
+                       addr -= s->pos + (uint32_t)i + 8;
+                       addr >>= 2;
+                       buf[i] = (uint8_t)addr;
+                       buf[i + 1] = (uint8_t)(addr >> 8);
+                       buf[i + 2] = (uint8_t)(addr >> 16);
+               }
+       }
+
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_ARMTHUMB
+static noinline_for_stack size_t XZ_FUNC bcj_armthumb(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       size_t i;
+       uint32_t addr;
+
+       for (i = 0; i + 4 <= size; i += 2) {
+               if ((buf[i + 1] & 0xF8) == 0xF0
+                               && (buf[i + 3] & 0xF8) == 0xF8) {
+                       addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
+                                       | ((uint32_t)buf[i] << 11)
+                                       | (((uint32_t)buf[i + 3] & 0x07) << 8)
+                                       | (uint32_t)buf[i + 2];
+                       addr <<= 1;
+                       addr -= s->pos + (uint32_t)i + 4;
+                       addr >>= 1;
+                       buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
+                       buf[i] = (uint8_t)(addr >> 11);
+                       buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
+                       buf[i + 2] = (uint8_t)addr;
+                       i += 2;
+               }
+       }
+
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_SPARC
+static noinline_for_stack size_t XZ_FUNC bcj_sparc(
+               struct xz_dec_bcj *s, uint8_t *buf, size_t size)
+{
+       size_t i;
+       uint32_t instr;
+
+       for (i = 0; i + 4 <= size; i += 4) {
+               instr = get_unaligned_be32(buf + i);
+               if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
+                       instr <<= 2;
+                       instr -= s->pos + (uint32_t)i;
+                       instr >>= 2;
+                       instr = ((uint32_t)0x40000000 - (instr & 0x400000))
+                                       | 0x40000000 | (instr & 0x3FFFFF);
+                       put_unaligned_be32(instr, buf + i);
+               }
+       }
+
+       return i;
+}
+#endif
+
+#ifdef XZ_DEC_BCJ
+/*
+ * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
+ * of data that got filtered.
+ *
+ * NOTE: This is implemented as a switch statement to avoid using function
+ * pointers, which could be problematic in the kernel boot code, which must
+ * avoid pointers to static data (at least on x86).
+ */
+static void XZ_FUNC bcj_apply(struct xz_dec_bcj *s,
+               uint8_t *buf, size_t *pos, size_t size)
+{
+       size_t filtered;
+
+       buf += *pos;
+       size -= *pos;
+
+       switch (s->type) {
+#ifdef XZ_DEC_X86
+       case BCJ_X86:
+               filtered = bcj_x86(s, buf, size);
+               break;
+#endif
+#ifdef XZ_DEC_POWERPC
+       case BCJ_POWERPC:
+               filtered = bcj_powerpc(s, buf, size);
+               break;
+#endif
+#ifdef XZ_DEC_IA64
+       case BCJ_IA64:
+               filtered = bcj_ia64(s, buf, size);
+               break;
+#endif
+#ifdef XZ_DEC_ARM
+       case BCJ_ARM:
+               filtered = bcj_arm(s, buf, size);
+               break;
+#endif
+#ifdef XZ_DEC_ARMTHUMB
+       case BCJ_ARMTHUMB:
+               filtered = bcj_armthumb(s, buf, size);
+               break;
+#endif
+#ifdef XZ_DEC_SPARC
+       case BCJ_SPARC:
+               filtered = bcj_sparc(s, buf, size);
+               break;
+#endif
+       default:
+               /* Never reached but silence compiler warnings. */
+               filtered = 0;
+               break;
+       }
+
+       *pos += filtered;
+       s->pos += filtered;
+}
+#endif
+
+#ifdef XZ_DEC_BCJ
+/*
+ * Flush pending filtered data from temp to the output buffer.
+ * Move the remaining mixture of possibly filtered and unfiltered
+ * data to the beginning of temp.
+ */
+static void XZ_FUNC bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
+{
+       size_t copy_size;
+
+       copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
+       memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
+       b->out_pos += copy_size;
+
+       s->temp.filtered -= copy_size;
+       s->temp.size -= copy_size;
+       memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
+}
+
+/*
+ * The BCJ filter functions are primitive in sense that they process the
+ * data in chunks of 1-16 bytes. To hide this issue, this function does
+ * some buffering.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_run(struct xz_dec_bcj *s,
+               struct xz_dec_lzma2 *lzma2, struct xz_buf *b)
+{
+       size_t out_start;
+
+       /*
+        * Flush pending already filtered data to the output buffer. Return
+        * immediatelly if we couldn't flush everything, or if the next
+        * filter in the chain had already returned XZ_STREAM_END.
+        */
+       if (s->temp.filtered > 0) {
+               bcj_flush(s, b);
+               if (s->temp.filtered > 0)
+                       return XZ_OK;
+
+               if (s->ret == XZ_STREAM_END)
+                       return XZ_STREAM_END;
+       }
+
+       /*
+        * If we have more output space than what is currently pending in
+        * temp, copy the unfiltered data from temp to the output buffer
+        * and try to fill the output buffer by decoding more data from the
+        * next filter in the chain. Apply the BCJ filter on the new data
+        * in the output buffer. If everything cannot be filtered, copy it
+        * to temp and rewind the output buffer position accordingly.
+        */
+       if (s->temp.size < b->out_size - b->out_pos) {
+               out_start = b->out_pos;
+               memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
+               b->out_pos += s->temp.size;
+
+               s->ret = xz_dec_lzma2_run(lzma2, b);
+               if (s->ret != XZ_STREAM_END
+                               && (s->ret != XZ_OK || s->single_call))
+                       return s->ret;
+
+               bcj_apply(s, b->out, &out_start, b->out_pos);
+
+               /*
+                * As an exception, if the next filter returned XZ_STREAM_END,
+                * we can do that too, since the last few bytes that remain
+                * unfiltered are meant to remain unfiltered.
+                */
+               if (s->ret == XZ_STREAM_END)
+                       return XZ_STREAM_END;
+
+               s->temp.size = b->out_pos - out_start;
+               b->out_pos -= s->temp.size;
+               memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
+       }
+
+       /*
+        * If we have unfiltered data in temp, try to fill by decoding more
+        * data from the next filter. Apply the BCJ filter on temp. Then we
+        * hopefully can fill the actual output buffer by copying filtered
+        * data from temp. A mix of filtered and unfiltered data may be left
+        * in temp; it will be taken care on the next call to this function.
+        */
+       if (s->temp.size > 0) {
+               /* Make b->out{,_pos,_size} temporarily point to s->temp. */
+               s->out = b->out;
+               s->out_pos = b->out_pos;
+               s->out_size = b->out_size;
+               b->out = s->temp.buf;
+               b->out_pos = s->temp.size;
+               b->out_size = sizeof(s->temp.buf);
+
+               s->ret = xz_dec_lzma2_run(lzma2, b);
+
+               s->temp.size = b->out_pos;
+               b->out = s->out;
+               b->out_pos = s->out_pos;
+               b->out_size = s->out_size;
+
+               if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
+                       return s->ret;
+
+               bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
+
+               /*
+                * If the next filter returned XZ_STREAM_END, we mark that
+                * everything is filtered, since the last unfiltered bytes
+                * of the stream are meant to be left as is.
+                */
+               if (s->ret == XZ_STREAM_END)
+                       s->temp.filtered = s->temp.size;
+
+               bcj_flush(s, b);
+               if (s->temp.filtered > 0)
+                       return XZ_OK;
+       }
+
+       return s->ret;
+}
+
+XZ_EXTERN struct xz_dec_bcj * XZ_FUNC xz_dec_bcj_create(bool single_call)
+{
+       struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
+       if (s != NULL)
+               s->single_call = single_call;
+
+       return s;
+}
+
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_reset(
+               struct xz_dec_bcj *s, uint8_t id)
+{
+       switch (id) {
+#ifdef XZ_DEC_X86
+       case BCJ_X86:
+#endif
+#ifdef XZ_DEC_POWERPC
+       case BCJ_POWERPC:
+#endif
+#ifdef XZ_DEC_IA64
+       case BCJ_IA64:
+#endif
+#ifdef XZ_DEC_ARM
+       case BCJ_ARM:
+#endif
+#ifdef XZ_DEC_ARMTHUMB
+       case BCJ_ARMTHUMB:
+#endif
+#ifdef XZ_DEC_SPARC
+       case BCJ_SPARC:
+#endif
+               break;
+
+       default:
+               /* Unsupported Filter ID */
+               return XZ_OPTIONS_ERROR;
+       }
+
+       s->type = id;
+       s->ret = XZ_OK;
+       s->pos = 0;
+       s->x86_prev_mask = 0;
+       s->temp.filtered = 0;
+       s->temp.size = 0;
+
+       return XZ_OK;
+}
+#endif
diff --git a/archival/libunarchive/unxz/xz_dec_lzma2.c b/archival/libunarchive/unxz/xz_dec_lzma2.c
new file mode 100644 (file)
index 0000000..890141b
--- /dev/null
@@ -0,0 +1,1157 @@
+/*
+ * LZMA2 decoder
+ *
+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
+ *          Igor Pavlov <http://7-zip.org/>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#include "xz_private.h"
+#include "xz_lzma2.h"
+
+/*
+ * Range decoder initialization eats the first five bytes of each LZMA chunk.
+ */
+#define RC_INIT_BYTES 5
+
+/*
+ * Minimum number of usable input buffer to safely decode one LZMA symbol.
+ * The worst case is that we decode 22 bits using probabilities and 26
+ * direct bits. This may decode at maximum of 20 bytes of input. However,
+ * lzma_main() does an extra normalization before returning, thus we
+ * need to put 21 here.
+ */
+#define LZMA_IN_REQUIRED 21
+
+/*
+ * Dictionary (history buffer)
+ *
+ * These are always true:
+ *    start <= pos <= full <= end
+ *    pos <= limit <= end
+ *
+ * In multi-call mode, also these are true:
+ *    end == size
+ *    size <= allocated
+ *
+ * Most of these variables are size_t to support single-call mode,
+ * in which the dictionary variables address the actual output
+ * buffer directly.
+ */
+struct dictionary {
+       /* Beginning of the history buffer */
+       uint8_t *buf;
+
+       /* Old position in buf (before decoding more data) */
+       size_t start;
+
+       /* Position in buf */
+       size_t pos;
+
+       /*
+        * How full dictionary is. This is used to detect corrupt input that
+        * would read beyond the beginning of the uncompressed stream.
+        */
+       size_t full;
+
+       /* Write limit; we don't write to buf[limit] or later bytes. */
+       size_t limit;
+
+       /*
+        * End of the dictionary buffer. In multi-call mode, this is
+        * the same as the dictionary size. In single-call mode, this
+        * indicates the size of the output buffer.
+        */
+       size_t end;
+
+       /*
+        * Size of the dictionary as specified in Block Header. This is used
+        * together with "full" to detect corrupt input that would make us
+        * read beyond the beginning of the uncompressed stream.
+        */
+       uint32_t size;
+
+       /*
+        * Amount of memory allocated for the dictionary. A special
+        * value of zero indicates that we are in single-call mode,
+        * where the output buffer works as the dictionary.
+        */
+       uint32_t allocated;
+};
+
+/* Range decoder */
+struct rc_dec {
+       uint32_t range;
+       uint32_t code;
+
+       /*
+        * Number of initializing bytes remaining to be read
+        * by rc_read_init().
+        */
+       uint32_t init_bytes_left;
+
+       /*
+        * Buffer from which we read our input. It can be either
+        * temp.buf or the caller-provided input buffer.
+        */
+       const uint8_t *in;
+       size_t in_pos;
+       size_t in_limit;
+};
+
+/* Probabilities for a length decoder. */
+struct lzma_len_dec {
+       /* Probability of match length being at least 10 */
+       uint16_t choice;
+
+       /* Probability of match length being at least 18 */
+       uint16_t choice2;
+
+       /* Probabilities for match lengths 2-9 */
+       uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
+
+       /* Probabilities for match lengths 10-17 */
+       uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
+
+       /* Probabilities for match lengths 18-273 */
+       uint16_t high[LEN_HIGH_SYMBOLS];
+};
+
+struct lzma_dec {
+       /*
+        * LZMA properties or related bit masks (number of literal
+        * context bits, a mask dervied from the number of literal
+        * position bits, and a mask dervied from the number
+        * position bits)
+        */
+       uint32_t lc;
+       uint32_t literal_pos_mask; /* (1 << lp) - 1 */
+       uint32_t pos_mask;         /* (1 << pb) - 1 */
+
+       /* Types of the most recently seen LZMA symbols */
+       enum lzma_state state;
+
+       /* Distances of latest four matches */
+       uint32_t rep0;
+       uint32_t rep1;
+       uint32_t rep2;
+       uint32_t rep3;
+
+       /*
+        * Length of a match. This is updated so that dict_repeat can
+        * be called again to finish repeating the whole match.
+        */
+       uint32_t len;
+
+       /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
+       uint16_t is_match[STATES][POS_STATES_MAX];
+
+       /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
+       uint16_t is_rep[STATES];
+
+       /*
+        * If 0, distance of a repeated match is rep0.
+        * Otherwise check is_rep1.
+        */
+       uint16_t is_rep0[STATES];
+
+       /*
+        * If 0, distance of a repeated match is rep1.
+        * Otherwise check is_rep2.
+        */
+       uint16_t is_rep1[STATES];
+
+       /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
+       uint16_t is_rep2[STATES];
+
+       /*
+        * If 1, the repeated match has length of one byte. Otherwise
+        * the length is decoded from rep_len_decoder.
+        */
+       uint16_t is_rep0_long[STATES][POS_STATES_MAX];
+
+       /*
+        * Probability tree for the highest two bits of the match
+        * distance. There is a separate probability tree for match
+        * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
+        */
+       uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
+
+       /*
+        * Probility trees for additional bits for match distance
+        * when the distance is in the range [4, 127].
+        */
+       uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
+
+       /*
+        * Probability tree for the lowest four bits of a match
+        * distance that is equal to or greater than 128.
+        */
+       uint16_t dist_align[ALIGN_SIZE];
+
+       /* Length of a normal match */
+       struct lzma_len_dec match_len_dec;
+
+       /* Length of a repeated match */
+       struct lzma_len_dec rep_len_dec;
+
+       /* Probabilities of literals */
+       uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
+};
+
+struct xz_dec_lzma2 {
+       /* LZMA2 */
+       struct {
+               /* Position in xz_dec_lzma2_run(). */
+               enum lzma2_seq {
+                       SEQ_CONTROL,
+                       SEQ_UNCOMPRESSED_1,
+                       SEQ_UNCOMPRESSED_2,
+                       SEQ_COMPRESSED_0,
+                       SEQ_COMPRESSED_1,
+                       SEQ_PROPERTIES,
+                       SEQ_LZMA_PREPARE,
+                       SEQ_LZMA_RUN,
+                       SEQ_COPY
+               } sequence;
+
+               /*
+                * Next position after decoding the compressed size of
+                * the chunk.
+                */
+               enum lzma2_seq next_sequence;
+
+               /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
+               uint32_t uncompressed;
+
+               /*
+                * Compressed size of LZMA chunk or compressed/uncompressed
+                * size of uncompressed chunk (64 KiB at maximum)
+                */
+               uint32_t compressed;
+
+               /*
+                * True if dictionary reset is needed. This is false before
+                * the first chunk (LZMA or uncompressed).
+                */
+               bool need_dict_reset;
+
+               /*
+                * True if new LZMA properties are needed. This is false
+                * before the first LZMA chunk.
+                */
+               bool need_props;
+       } lzma2;
+
+       /*
+        * Temporary buffer which holds small number of input bytes between
+        * decoder calls. See lzma2_lzma() for details.
+        */
+       struct {
+               uint32_t size;
+               uint8_t buf[3 * LZMA_IN_REQUIRED];
+       } temp;
+
+       struct dictionary dict;
+       struct rc_dec rc;
+       struct lzma_dec lzma;
+};
+
+/**************
+ * Dictionary *
+ **************/
+
+/*
+ * Reset the dictionary state. When in single-call mode, set up the beginning
+ * of the dictionary to point to the actual output buffer.
+ */
+static void XZ_FUNC dict_reset(struct dictionary *dict, struct xz_buf *b)
+{
+       if (dict->allocated == 0) {
+               dict->buf = b->out + b->out_pos;
+               dict->end = b->out_size - b->out_pos;
+       }
+
+       dict->start = 0;
+       dict->pos = 0;
+       dict->limit = 0;
+       dict->full = 0;
+}
+
+/* Set dictionary write limit */
+static void XZ_FUNC dict_limit(struct dictionary *dict, size_t out_max)
+{
+       if (dict->end - dict->pos <= out_max)
+               dict->limit = dict->end;
+       else
+               dict->limit = dict->pos + out_max;
+}
+
+/* Return true if at least one byte can be written into the dictionary. */
+static __always_inline bool XZ_FUNC dict_has_space(const struct dictionary *dict)
+{
+       return dict->pos < dict->limit;
+}
+
+/*
+ * Get a byte from the dictionary at the given distance. The distance is
+ * assumed to valid, or as a special case, zero when the dictionary is
+ * still empty. This special case is needed for single-call decoding to
+ * avoid writing a '\0' to the end of the destination buffer.
+ */
+static __always_inline uint32_t XZ_FUNC dict_get(
+               const struct dictionary *dict, uint32_t dist)
+{
+       size_t offset = dict->pos - dist - 1;
+
+       if (dist >= dict->pos)
+               offset += dict->end;
+
+       return dict->full > 0 ? dict->buf[offset] : 0;
+}
+
+/*
+ * Put one byte into the dictionary. It is assumed that there is space for it.
+ */
+static inline void XZ_FUNC dict_put(struct dictionary *dict, uint8_t byte)
+{
+       dict->buf[dict->pos++] = byte;
+
+       if (dict->full < dict->pos)
+               dict->full = dict->pos;
+}
+
+/*
+ * Repeat given number of bytes from the given distance. If the distance is
+ * invalid, false is returned. On success, true is returned and *len is
+ * updated to indicate how many bytes were left to be repeated.
+ */
+static bool XZ_FUNC dict_repeat(
+               struct dictionary *dict, uint32_t *len, uint32_t dist)
+{
+       size_t back;
+       uint32_t left;
+
+       if (dist >= dict->full || dist >= dict->size)
+               return false;
+
+       left = min_t(size_t, dict->limit - dict->pos, *len);
+       *len -= left;
+
+       back = dict->pos - dist - 1;
+       if (dist >= dict->pos)
+               back += dict->end;
+
+       do {
+               dict->buf[dict->pos++] = dict->buf[back++];
+               if (back == dict->end)
+                       back = 0;
+       } while (--left > 0);
+
+       if (dict->full < dict->pos)
+               dict->full = dict->pos;
+
+       return true;
+}
+
+/* Copy uncompressed data as is from input to dictionary and output buffers. */
+static void XZ_FUNC dict_uncompressed(
+               struct dictionary *dict, struct xz_buf *b, uint32_t *left)
+{
+       size_t copy_size;
+
+       while (*left > 0 && b->in_pos < b->in_size
+                       && b->out_pos < b->out_size) {
+               copy_size = min(b->in_size - b->in_pos,
+                               b->out_size - b->out_pos);
+               if (copy_size > dict->end - dict->pos)
+                       copy_size = dict->end - dict->pos;
+               if (copy_size > *left)
+                       copy_size = *left;
+
+               *left -= copy_size;
+
+               memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
+               dict->pos += copy_size;
+
+               if (dict->full < dict->pos)
+                       dict->full = dict->pos;
+
+               if (dict->allocated != 0) {
+                       if (dict->pos == dict->end)
+                               dict->pos = 0;
+
+                       memcpy(b->out + b->out_pos, b->in + b->in_pos,
+                                       copy_size);
+               }
+
+               dict->start = dict->pos;
+
+               b->out_pos += copy_size;
+               b->in_pos += copy_size;
+
+       }
+}
+
+/*
+ * Flush pending data from dictionary to b->out. It is assumed that there is
+ * enough space in b->out. This is guaranteed because caller uses dict_limit()
+ * before decoding data into the dictionary.
+ */
+static uint32_t XZ_FUNC dict_flush(struct dictionary *dict, struct xz_buf *b)
+{
+       size_t copy_size = dict->pos - dict->start;
+
+       if (dict->allocated != 0) {
+               if (dict->pos == dict->end)
+                       dict->pos = 0;
+
+               memcpy(b->out + b->out_pos, dict->buf + dict->start,
+                               copy_size);
+       }
+
+       dict->start = dict->pos;
+       b->out_pos += copy_size;
+       return copy_size;
+}
+
+/*****************
+ * Range decoder *
+ *****************/
+
+/* Reset the range decoder. */
+static __always_inline void XZ_FUNC rc_reset(struct rc_dec *rc)
+{
+       rc->range = (uint32_t)-1;
+       rc->code = 0;
+       rc->init_bytes_left = RC_INIT_BYTES;
+}
+
+/*
+ * Read the first five initial bytes into rc->code if they haven't been
+ * read already. (Yes, the first byte gets completely ignored.)
+ */
+static bool XZ_FUNC rc_read_init(struct rc_dec *rc, struct xz_buf *b)
+{
+       while (rc->init_bytes_left > 0) {
+               if (b->in_pos == b->in_size)
+                       return false;
+
+               rc->code = (rc->code << 8) + b->in[b->in_pos++];
+               --rc->init_bytes_left;
+       }
+
+       return true;
+}
+
+/* Return true if there may not be enough input for the next decoding loop. */
+static inline bool XZ_FUNC rc_limit_exceeded(const struct rc_dec *rc)
+{
+       return rc->in_pos > rc->in_limit;
+}
+
+/*
+ * Return true if it is possible (from point of view of range decoder) that
+ * we have reached the end of the LZMA chunk.
+ */
+static inline bool XZ_FUNC rc_is_finished(const struct rc_dec *rc)
+{
+       return rc->code == 0;
+}
+
+/* Read the next input byte if needed. */
+static __always_inline void XZ_FUNC rc_normalize(struct rc_dec *rc)
+{
+       if (rc->range < RC_TOP_VALUE) {
+               rc->range <<= RC_SHIFT_BITS;
+               rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
+       }
+}
+
+/*
+ * Decode one bit. In some versions, this function has been splitted in three
+ * functions so that the compiler is supposed to be able to more easily avoid
+ * an extra branch. In this particular version of the LZMA decoder, this
+ * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
+ * on x86). Using a non-splitted version results in nicer looking code too.
+ *
+ * NOTE: This must return an int. Do not make it return a bool or the speed
+ * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
+ * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
+ */
+static __always_inline int XZ_FUNC rc_bit(struct rc_dec *rc, uint16_t *prob)
+{
+       uint32_t bound;
+       int bit;
+
+       rc_normalize(rc);
+       bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
+       if (rc->code < bound) {
+               rc->range = bound;
+               *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
+               bit = 0;
+       } else {
+               rc->range -= bound;
+               rc->code -= bound;
+               *prob -= *prob >> RC_MOVE_BITS;
+               bit = 1;
+       }
+
+       return bit;
+}
+
+/* Decode a bittree starting from the most significant bit. */
+static __always_inline uint32_t XZ_FUNC rc_bittree(
+               struct rc_dec *rc, uint16_t *probs, uint32_t limit)
+{
+       uint32_t symbol = 1;
+
+       do {
+               if (rc_bit(rc, &probs[symbol]))
+                       symbol = (symbol << 1) + 1;
+               else
+                       symbol <<= 1;
+       } while (symbol < limit);
+
+       return symbol;
+}
+
+/* Decode a bittree starting from the least significant bit. */
+static __always_inline void XZ_FUNC rc_bittree_reverse(struct rc_dec *rc,
+               uint16_t *probs, uint32_t *dest, uint32_t limit)
+{
+       uint32_t symbol = 1;
+       uint32_t i = 0;
+
+       do {
+               if (rc_bit(rc, &probs[symbol])) {
+                       symbol = (symbol << 1) + 1;
+                       *dest += 1 << i;
+               } else {
+                       symbol <<= 1;
+               }
+       } while (++i < limit);
+}
+
+/* Decode direct bits (fixed fifty-fifty probability) */
+static inline void XZ_FUNC rc_direct(
+               struct rc_dec *rc, uint32_t *dest, uint32_t limit)
+{
+       uint32_t mask;
+
+       do {
+               rc_normalize(rc);
+               rc->range >>= 1;
+               rc->code -= rc->range;
+               mask = (uint32_t)0 - (rc->code >> 31);
+               rc->code += rc->range & mask;
+               *dest = (*dest << 1) + (mask + 1);
+       } while (--limit > 0);
+}
+
+/********
+ * LZMA *
+ ********/
+
+/* Get pointer to literal coder probability array. */
+static uint16_t * XZ_FUNC lzma_literal_probs(struct xz_dec_lzma2 *s)
+{
+       uint32_t prev_byte = dict_get(&s->dict, 0);
+       uint32_t low = prev_byte >> (8 - s->lzma.lc);
+       uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
+       return s->lzma.literal[low + high];
+}
+
+/* Decode a literal (one 8-bit byte) */
+static void XZ_FUNC lzma_literal(struct xz_dec_lzma2 *s)
+{
+       uint16_t *probs;
+       uint32_t symbol;
+       uint32_t match_byte;
+       uint32_t match_bit;
+       uint32_t offset;
+       uint32_t i;
+
+       probs = lzma_literal_probs(s);
+
+       if (lzma_state_is_literal(s->lzma.state)) {
+               symbol = rc_bittree(&s->rc, probs, 0x100);
+       } else {
+               symbol = 1;
+               match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
+               offset = 0x100;
+
+               do {
+                       match_bit = match_byte & offset;
+                       match_byte <<= 1;
+                       i = offset + match_bit + symbol;
+
+                       if (rc_bit(&s->rc, &probs[i])) {
+                               symbol = (symbol << 1) + 1;
+                               offset &= match_bit;
+                       } else {
+                               symbol <<= 1;
+                               offset &= ~match_bit;
+                       }
+               } while (symbol < 0x100);
+       }
+
+       dict_put(&s->dict, (uint8_t)symbol);
+       lzma_state_literal(&s->lzma.state);
+}
+
+/* Decode the length of the match into s->lzma.len. */
+static void XZ_FUNC lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
+               uint32_t pos_state)
+{
+       uint16_t *probs;
+       uint32_t limit;
+
+       if (!rc_bit(&s->rc, &l->choice)) {
+               probs = l->low[pos_state];
+               limit = LEN_LOW_SYMBOLS;
+               s->lzma.len = MATCH_LEN_MIN;
+       } else {
+               if (!rc_bit(&s->rc, &l->choice2)) {
+                       probs = l->mid[pos_state];
+                       limit = LEN_MID_SYMBOLS;
+                       s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
+               } else {
+                       probs = l->high;
+                       limit = LEN_HIGH_SYMBOLS;
+                       s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
+                                       + LEN_MID_SYMBOLS;
+               }
+       }
+
+       s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
+}
+
+/* Decode a match. The distance will be stored in s->lzma.rep0. */
+static void XZ_FUNC lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
+{
+       uint16_t *probs;
+       uint32_t dist_slot;
+       uint32_t limit;
+
+       lzma_state_match(&s->lzma.state);
+
+       s->lzma.rep3 = s->lzma.rep2;
+       s->lzma.rep2 = s->lzma.rep1;
+       s->lzma.rep1 = s->lzma.rep0;
+
+       lzma_len(s, &s->lzma.match_len_dec, pos_state);
+
+       probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
+       dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
+
+       if (dist_slot < DIST_MODEL_START) {
+               s->lzma.rep0 = dist_slot;
+       } else {
+               limit = (dist_slot >> 1) - 1;
+               s->lzma.rep0 = 2 + (dist_slot & 1);
+
+               if (dist_slot < DIST_MODEL_END) {
+                       s->lzma.rep0 <<= limit;
+                       probs = s->lzma.dist_special + s->lzma.rep0
+                                       - dist_slot - 1;
+                       rc_bittree_reverse(&s->rc, probs,
+                                       &s->lzma.rep0, limit);
+               } else {
+                       rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
+                       s->lzma.rep0 <<= ALIGN_BITS;
+                       rc_bittree_reverse(&s->rc, s->lzma.dist_align,
+                                       &s->lzma.rep0, ALIGN_BITS);
+               }
+       }
+}
+
+/*
+ * Decode a repeated match. The distance is one of the four most recently
+ * seen matches. The distance will be stored in s->lzma.rep0.
+ */
+static void XZ_FUNC lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
+{
+       uint32_t tmp;
+
+       if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
+               if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
+                               s->lzma.state][pos_state])) {
+                       lzma_state_short_rep(&s->lzma.state);
+                       s->lzma.len = 1;
+                       return;
+               }
+       } else {
+               if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
+                       tmp = s->lzma.rep1;
+               } else {
+                       if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
+                               tmp = s->lzma.rep2;
+                       } else {
+                               tmp = s->lzma.rep3;
+                               s->lzma.rep3 = s->lzma.rep2;
+                       }
+
+                       s->lzma.rep2 = s->lzma.rep1;
+               }
+
+               s->lzma.rep1 = s->lzma.rep0;
+               s->lzma.rep0 = tmp;
+       }
+
+       lzma_state_long_rep(&s->lzma.state);
+       lzma_len(s, &s->lzma.rep_len_dec, pos_state);
+}
+
+/* LZMA decoder core */
+static bool XZ_FUNC lzma_main(struct xz_dec_lzma2 *s)
+{
+       uint32_t pos_state;
+
+       /*
+        * If the dictionary was reached during the previous call, try to
+        * finish the possibly pending repeat in the dictionary.
+        */
+       if (dict_has_space(&s->dict) && s->lzma.len > 0)
+               dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
+
+       /*
+        * Decode more LZMA symbols. One iteration may consume up to
+        * LZMA_IN_REQUIRED - 1 bytes.
+        */
+       while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
+               pos_state = s->dict.pos & s->lzma.pos_mask;
+
+               if (!rc_bit(&s->rc, &s->lzma.is_match[
+                               s->lzma.state][pos_state])) {
+                       lzma_literal(s);
+               } else {
+                       if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
+                               lzma_rep_match(s, pos_state);
+                       else
+                               lzma_match(s, pos_state);
+
+                       if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
+                               return false;
+               }
+       }
+
+       /*
+        * Having the range decoder always normalized when we are outside
+        * this function makes it easier to correctly handle end of the chunk.
+        */
+       rc_normalize(&s->rc);
+
+       return true;
+}
+
+/*
+ * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
+ * here, because LZMA state may be reset without resetting the dictionary.
+ */
+static void XZ_FUNC lzma_reset(struct xz_dec_lzma2 *s)
+{
+       uint16_t *probs;
+       size_t i;
+
+       s->lzma.state = STATE_LIT_LIT;
+       s->lzma.rep0 = 0;
+       s->lzma.rep1 = 0;
+       s->lzma.rep2 = 0;
+       s->lzma.rep3 = 0;
+
+       /*
+        * All probabilities are initialized to the same value. This hack
+        * makes the code smaller by avoiding a separate loop for each
+        * probability array.
+        *
+        * This could be optimized so that only that part of literal
+        * probabilities that are actually required. In the common case
+        * we would write 12 KiB less.
+        */
+       probs = s->lzma.is_match[0];
+       for (i = 0; i < PROBS_TOTAL; ++i)
+               probs[i] = RC_BIT_MODEL_TOTAL / 2;
+
+       rc_reset(&s->rc);
+}
+
+/*
+ * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
+ * from the decoded lp and pb values. On success, the LZMA decoder state is
+ * reset and true is returned.
+ */
+static bool XZ_FUNC lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
+{
+       if (props > (4 * 5 + 4) * 9 + 8)
+               return false;
+
+       s->lzma.pos_mask = 0;
+       while (props >= 9 * 5) {
+               props -= 9 * 5;
+               ++s->lzma.pos_mask;
+       }
+
+       s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
+
+       s->lzma.literal_pos_mask = 0;
+       while (props >= 9) {
+               props -= 9;
+               ++s->lzma.literal_pos_mask;
+       }
+
+       s->lzma.lc = props;
+
+       if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
+               return false;
+
+       s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
+
+       lzma_reset(s);
+
+       return true;
+}
+
+/*********
+ * LZMA2 *
+ *********/
+
+/*
+ * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
+ * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
+ * wrapper function takes care of making the LZMA decoder's assumption safe.
+ *
+ * As long as there is plenty of input left to be decoded in the current LZMA
+ * chunk, we decode directly from the caller-supplied input buffer until
+ * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
+ * s->temp.buf, which (hopefully) gets filled on the next call to this
+ * function. We decode a few bytes from the temporary buffer so that we can
+ * continue decoding from the caller-supplied input buffer again.
+ */
+static bool XZ_FUNC lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
+{
+       size_t in_avail;
+       uint32_t tmp;
+
+       in_avail = b->in_size - b->in_pos;
+       if (s->temp.size > 0 || s->lzma2.compressed == 0) {
+               tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
+               if (tmp > s->lzma2.compressed - s->temp.size)
+                       tmp = s->lzma2.compressed - s->temp.size;
+               if (tmp > in_avail)
+                       tmp = in_avail;
+
+               memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
+
+               if (s->temp.size + tmp == s->lzma2.compressed) {
+                       memzero(s->temp.buf + s->temp.size + tmp,
+                                       sizeof(s->temp.buf)
+                                               - s->temp.size - tmp);
+                       s->rc.in_limit = s->temp.size + tmp;
+               } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
+                       s->temp.size += tmp;
+                       b->in_pos += tmp;
+                       return true;
+               } else {
+                       s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
+               }
+
+               s->rc.in = s->temp.buf;
+               s->rc.in_pos = 0;
+
+               if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
+                       return false;
+
+               s->lzma2.compressed -= s->rc.in_pos;
+
+               if (s->rc.in_pos < s->temp.size) {
+                       s->temp.size -= s->rc.in_pos;
+                       memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
+                                       s->temp.size);
+                       return true;
+               }
+
+               b->in_pos += s->rc.in_pos - s->temp.size;
+               s->temp.size = 0;
+       }
+
+       in_avail = b->in_size - b->in_pos;
+       if (in_avail >= LZMA_IN_REQUIRED) {
+               s->rc.in = b->in;
+               s->rc.in_pos = b->in_pos;
+
+               if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
+                       s->rc.in_limit = b->in_pos + s->lzma2.compressed;
+               else
+                       s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
+
+               if (!lzma_main(s))
+                       return false;
+
+               in_avail = s->rc.in_pos - b->in_pos;
+               if (in_avail > s->lzma2.compressed)
+                       return false;
+
+               s->lzma2.compressed -= in_avail;
+               b->in_pos = s->rc.in_pos;
+       }
+
+       in_avail = b->in_size - b->in_pos;
+       if (in_avail < LZMA_IN_REQUIRED) {
+               if (in_avail > s->lzma2.compressed)
+                       in_avail = s->lzma2.compressed;
+
+               memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
+               s->temp.size = in_avail;
+               b->in_pos += in_avail;
+       }
+
+       return true;
+}
+
+/*
+ * Take care of the LZMA2 control layer, and forward the job of actual LZMA
+ * decoding or copying of uncompressed chunks to other functions.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_run(
+               struct xz_dec_lzma2 *s, struct xz_buf *b)
+{
+       uint32_t tmp;
+
+       while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
+               switch (s->lzma2.sequence) {
+               case SEQ_CONTROL:
+                       /*
+                        * LZMA2 control byte
+                        *
+                        * Exact values:
+                        *   0x00   End marker
+                        *   0x01   Dictionary reset followed by
+                        *          an uncompressed chunk
+                        *   0x02   Uncompressed chunk (no dictionary reset)
+                        *
+                        * Highest three bits (s->control & 0xE0):
+                        *   0xE0   Dictionary reset, new properties and state
+                        *          reset, followed by LZMA compressed chunk
+                        *   0xC0   New properties and state reset, followed
+                        *          by LZMA compressed chunk (no dictionary
+                        *          reset)
+                        *   0xA0   State reset using old properties,
+                        *          followed by LZMA compressed chunk (no
+                        *          dictionary reset)
+                        *   0x80   LZMA chunk (no dictionary or state reset)
+                        *
+                        * For LZMA compressed chunks, the lowest five bits
+                        * (s->control & 1F) are the highest bits of the
+                        * uncompressed size (bits 16-20).
+                        *
+                        * A new LZMA2 stream must begin with a dictionary
+                        * reset. The first LZMA chunk must set new
+                        * properties and reset the LZMA state.
+                        *
+                        * Values that don't match anything described above
+                        * are invalid and we return XZ_DATA_ERROR.
+                        */
+                       tmp = b->in[b->in_pos++];
+
+                       if (tmp >= 0xE0 || tmp == 0x01) {
+                               s->lzma2.need_props = true;
+                               s->lzma2.need_dict_reset = false;
+                               dict_reset(&s->dict, b);
+                       } else if (s->lzma2.need_dict_reset) {
+                               return XZ_DATA_ERROR;
+                       }
+
+                       if (tmp >= 0x80) {
+                               s->lzma2.uncompressed = (tmp & 0x1F) << 16;
+                               s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
+
+                               if (tmp >= 0xC0) {
+                                       /*
+                                        * When there are new properties,
+                                        * state reset is done at
+                                        * SEQ_PROPERTIES.
+                                        */
+                                       s->lzma2.need_props = false;
+                                       s->lzma2.next_sequence
+                                                       = SEQ_PROPERTIES;
+
+                               } else if (s->lzma2.need_props) {
+                                       return XZ_DATA_ERROR;
+
+                               } else {
+                                       s->lzma2.next_sequence
+                                                       = SEQ_LZMA_PREPARE;
+                                       if (tmp >= 0xA0)
+                                               lzma_reset(s);
+                               }
+                       } else {
+                               if (tmp == 0x00)
+                                       return XZ_STREAM_END;
+
+                               if (tmp > 0x02)
+                                       return XZ_DATA_ERROR;
+
+                               s->lzma2.sequence = SEQ_COMPRESSED_0;
+                               s->lzma2.next_sequence = SEQ_COPY;
+                       }
+
+                       break;
+
+               case SEQ_UNCOMPRESSED_1:
+                       s->lzma2.uncompressed
+                                       += (uint32_t)b->in[b->in_pos++] << 8;
+                       s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
+                       break;
+
+               case SEQ_UNCOMPRESSED_2:
+                       s->lzma2.uncompressed
+                                       += (uint32_t)b->in[b->in_pos++] + 1;
+                       s->lzma2.sequence = SEQ_COMPRESSED_0;
+                       break;
+
+               case SEQ_COMPRESSED_0:
+                       s->lzma2.compressed
+                                       = (uint32_t)b->in[b->in_pos++] << 8;
+                       s->lzma2.sequence = SEQ_COMPRESSED_1;
+                       break;
+
+               case SEQ_COMPRESSED_1:
+                       s->lzma2.compressed
+                                       += (uint32_t)b->in[b->in_pos++] + 1;
+                       s->lzma2.sequence = s->lzma2.next_sequence;
+                       break;
+
+               case SEQ_PROPERTIES:
+                       if (!lzma_props(s, b->in[b->in_pos++]))
+                               return XZ_DATA_ERROR;
+
+                       s->lzma2.sequence = SEQ_LZMA_PREPARE;
+
+               case SEQ_LZMA_PREPARE:
+                       if (s->lzma2.compressed < RC_INIT_BYTES)
+                               return XZ_DATA_ERROR;
+
+                       if (!rc_read_init(&s->rc, b))
+                               return XZ_OK;
+
+                       s->lzma2.compressed -= RC_INIT_BYTES;
+                       s->lzma2.sequence = SEQ_LZMA_RUN;
+
+               case SEQ_LZMA_RUN:
+                       /*
+                        * Set dictionary limit to indicate how much we want
+                        * to be encoded at maximum. Decode new data into the
+                        * dictionary. Flush the new data from dictionary to
+                        * b->out. Check if we finished decoding this chunk.
+                        * In case the dictionary got full but we didn't fill
+                        * the output buffer yet, we may run this loop
+                        * multiple times without changing s->lzma2.sequence.
+                        */
+                       dict_limit(&s->dict, min_t(size_t,
+                                       b->out_size - b->out_pos,
+                                       s->lzma2.uncompressed));
+                       if (!lzma2_lzma(s, b))
+                               return XZ_DATA_ERROR;
+
+                       s->lzma2.uncompressed -= dict_flush(&s->dict, b);
+
+                       if (s->lzma2.uncompressed == 0) {
+                               if (s->lzma2.compressed > 0 || s->lzma.len > 0
+                                               || !rc_is_finished(&s->rc))
+                                       return XZ_DATA_ERROR;
+
+                               rc_reset(&s->rc);
+                               s->lzma2.sequence = SEQ_CONTROL;
+
+                       } else if (b->out_pos == b->out_size
+                                       || (b->in_pos == b->in_size
+                                               && s->temp.size
+                                               < s->lzma2.compressed)) {
+                               return XZ_OK;
+                       }
+
+                       break;
+
+               case SEQ_COPY:
+                       dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
+                       if (s->lzma2.compressed > 0)
+                               return XZ_OK;
+
+                       s->lzma2.sequence = SEQ_CONTROL;
+                       break;
+               }
+       }
+
+       return XZ_OK;
+}
+
+XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create(uint32_t dict_max)
+{
+       struct xz_dec_lzma2 *s;
+
+       /* Maximum supported dictionary by this implementation is 3 GiB. */
+       if (dict_max > ((uint32_t)3 << 30))
+               return NULL;
+
+       s = kmalloc(sizeof(*s), GFP_KERNEL);
+       if (s == NULL)
+               return NULL;
+
+       if (dict_max > 0) {
+               s->dict.buf = vmalloc(dict_max);
+               if (s->dict.buf == NULL) {
+                       kfree(s);
+                       return NULL;
+               }
+       }
+
+       s->dict.allocated = dict_max;
+
+       return s;
+}
+
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset(
+               struct xz_dec_lzma2 *s, uint8_t props)
+{
+       /* This limits dictionary size to 3 GiB to keep parsing simpler. */
+       if (props > 39) {
+               XZ_DEBUG_MSG("props:%d", props);
+               return XZ_OPTIONS_ERROR;
+       }
+
+       s->dict.size = 2 + (props & 1);
+       s->dict.size <<= (props >> 1) + 11;
+
+       if (s->dict.allocated > 0 && s->dict.allocated < s->dict.size) {
+#ifdef XZ_REALLOC_DICT_BUF
+               s->dict.buf = XZ_REALLOC_DICT_BUF(s->dict.buf, s->dict.size);
+                       if (!s->dict.buf)
+                               return XZ_MEMLIMIT_ERROR;
+               s->dict.allocated = s->dict.size;
+#else
+               return XZ_MEMLIMIT_ERROR;
+#endif
+       }
+
+       s->dict.end = s->dict.size;
+
+       s->lzma.len = 0;
+
+       s->lzma2.sequence = SEQ_CONTROL;
+       s->lzma2.need_dict_reset = true;
+
+       s->temp.size = 0;
+
+       return XZ_OK;
+}
+
+XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
+{
+       if (s->dict.allocated > 0)
+               vfree(s->dict.buf);
+
+       kfree(s);
+}
diff --git a/archival/libunarchive/unxz/xz_dec_stream.c b/archival/libunarchive/unxz/xz_dec_stream.c
new file mode 100644 (file)
index 0000000..e10c941
--- /dev/null
@@ -0,0 +1,787 @@
+/*
+ * .xz Stream decoder
+ *
+ * Author: Lasse Collin <lasse.collin@tukaani.org>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#include "xz_private.h"
+#include "xz_stream.h"
+
+/* Hash used to validate the Index field */
+struct xz_dec_hash {
+       vli_type unpadded;
+       vli_type uncompressed;
+       uint32_t crc32;
+};
+
+struct xz_dec {
+       /* Position in dec_main() */
+       enum {
+               SEQ_STREAM_HEADER,
+               SEQ_BLOCK_START,
+               SEQ_BLOCK_HEADER,
+               SEQ_BLOCK_UNCOMPRESS,
+               SEQ_BLOCK_PADDING,
+               SEQ_BLOCK_CHECK,
+               SEQ_INDEX,
+               SEQ_INDEX_PADDING,
+               SEQ_INDEX_CRC32,
+               SEQ_STREAM_FOOTER
+       } sequence;
+
+       /* Position in variable-length integers and Check fields */
+       uint32_t pos;
+
+       /* Variable-length integer decoded by dec_vli() */
+       vli_type vli;
+
+       /* Saved in_pos and out_pos */
+       size_t in_start;
+       size_t out_start;
+
+       /* CRC32 value in Block or Index */
+       uint32_t crc32;
+
+       /* True if CRC32 is calculated from uncompressed data */
+       uint8_t crc_type;
+
+       /* True if we are operating in single-call mode. */
+       bool single_call;
+
+       /*
+        * True if the next call to xz_dec_run() is allowed to return
+        * XZ_BUF_ERROR.
+        */
+       bool allow_buf_error;
+
+       /* Information stored in Block Header */
+       struct {
+               /*
+                * Value stored in the Compressed Size field, or
+                * VLI_UNKNOWN if Compressed Size is not present.
+                */
+               vli_type compressed;
+
+               /*
+                * Value stored in the Uncompressed Size field, or
+                * VLI_UNKNOWN if Uncompressed Size is not present.
+                */
+               vli_type uncompressed;
+
+               /* Size of the Block Header field */
+               uint32_t size;
+       } block_header;
+
+       /* Information collected when decoding Blocks */
+       struct {
+               /* Observed compressed size of the current Block */
+               vli_type compressed;
+
+               /* Observed uncompressed size of the current Block */
+               vli_type uncompressed;
+
+               /* Number of Blocks decoded so far */
+               vli_type count;
+
+               /*
+                * Hash calculated from the Block sizes. This is used to
+                * validate the Index field.
+                */
+               struct xz_dec_hash hash;
+       } block;
+
+       /* Variables needed when verifying the Index field */
+       struct {
+               /* Position in dec_index() */
+               enum {
+                       SEQ_INDEX_COUNT,
+                       SEQ_INDEX_UNPADDED,
+                       SEQ_INDEX_UNCOMPRESSED
+               } sequence;
+
+               /* Size of the Index in bytes */
+               vli_type size;
+
+               /* Number of Records (matches block.count in valid files) */
+               vli_type count;
+
+               /*
+                * Hash calculated from the Records (matches block.hash in
+                * valid files).
+                */
+               struct xz_dec_hash hash;
+       } index;
+
+       /*
+        * Temporary buffer needed to hold Stream Header, Block Header,
+        * and Stream Footer. The Block Header is the biggest (1 KiB)
+        * so we reserve space according to that. buf[] has to be aligned
+        * to a multiple of four bytes; the size_t variables before it
+        * should guarantee this.
+        */
+       struct {
+               size_t pos;
+               size_t size;
+               uint8_t buf[1024];
+       } temp;
+
+       struct xz_dec_lzma2 *lzma2;
+
+#ifdef XZ_DEC_BCJ
+       struct xz_dec_bcj *bcj;
+       bool bcj_active;
+#endif
+
+       uint32_t crc32_table[256];
+};
+
+/*
+ * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
+ * must have set s->temp.pos to indicate how much data we are supposed
+ * to copy into s->temp.buf. Return true once s->temp.pos has reached
+ * s->temp.size.
+ */
+static bool XZ_FUNC fill_temp(struct xz_dec *s, struct xz_buf *b)
+{
+       size_t copy_size = min_t(size_t,
+                       b->in_size - b->in_pos, s->temp.size - s->temp.pos);
+
+       memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
+       b->in_pos += copy_size;
+       s->temp.pos += copy_size;
+
+       if (s->temp.pos == s->temp.size) {
+               s->temp.pos = 0;
+               return true;
+       }
+
+       return false;
+}
+
+/* Decode a variable-length integer (little-endian base-128 encoding) */
+static enum xz_ret XZ_FUNC dec_vli(struct xz_dec *s,
+               const uint8_t *in, size_t *in_pos, size_t in_size)
+{
+       uint8_t byte;
+
+       if (s->pos == 0)
+               s->vli = 0;
+
+       while (*in_pos < in_size) {
+               byte = in[*in_pos];
+               ++*in_pos;
+
+               s->vli |= (vli_type)(byte & 0x7F) << s->pos;
+
+               if ((byte & 0x80) == 0) {
+                       /* Don't allow non-minimal encodings. */
+                       if (byte == 0 && s->pos != 0)
+                               return XZ_DATA_ERROR;
+
+                       s->pos = 0;
+                       return XZ_STREAM_END;
+               }
+
+               s->pos += 7;
+               if (s->pos == 7 * VLI_BYTES_MAX)
+                       return XZ_DATA_ERROR;
+       }
+
+       return XZ_OK;
+}
+
+/*
+ * Decode the Compressed Data field from a Block. Update and validate
+ * the observed compressed and uncompressed sizes of the Block so that
+ * they don't exceed the values possibly stored in the Block Header
+ * (validation assumes that no integer overflow occurs, since vli_type
+ * is normally uint64_t). Update the CRC32 if presence of the CRC32
+ * field was indicated in Stream Header.
+ *
+ * Once the decoding is finished, validate that the observed sizes match
+ * the sizes possibly stored in the Block Header. Update the hash and
+ * Block count, which are later used to validate the Index field.
+ */
+static enum xz_ret XZ_FUNC dec_block(struct xz_dec *s, struct xz_buf *b)
+{
+       enum xz_ret ret;
+
+       s->in_start = b->in_pos;
+       s->out_start = b->out_pos;
+
+#ifdef XZ_DEC_BCJ
+       if (s->bcj_active)
+               ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
+       else
+#endif
+               ret = xz_dec_lzma2_run(s->lzma2, b);
+
+       s->block.compressed += b->in_pos - s->in_start;
+       s->block.uncompressed += b->out_pos - s->out_start;
+
+       /*
+        * There is no need to separately check for VLI_UNKNOWN, since
+        * the observed sizes are always smaller than VLI_UNKNOWN.
+        */
+       if (s->block.compressed > s->block_header.compressed
+                       || s->block.uncompressed
+                               > s->block_header.uncompressed)
+               return XZ_DATA_ERROR;
+
+       if (s->crc_type == 0x01)
+               s->crc32 = xz_crc32(s->crc32_table,
+                               b->out + s->out_start,
+                               b->out_pos - s->out_start, s->crc32);
+
+       if (ret == XZ_STREAM_END) {
+               if (s->block_header.compressed != VLI_UNKNOWN
+                               && s->block_header.compressed
+                                       != s->block.compressed)
+                       return XZ_DATA_ERROR;
+
+               if (s->block_header.uncompressed != VLI_UNKNOWN
+                               && s->block_header.uncompressed
+                                       != s->block.uncompressed)
+                       return XZ_DATA_ERROR;
+
+               s->block.hash.unpadded += s->block_header.size
+                               + s->block.compressed;
+               if (s->crc_type == 0x01)
+                       s->block.hash.unpadded += 4;
+               if (s->crc_type == 0x04) /* CRC64 */
+                       s->block.hash.unpadded += 8;
+               if (s->crc_type == 0x0A) /* SHA-256 */
+                       s->block.hash.unpadded += 32;
+
+               s->block.hash.uncompressed += s->block.uncompressed;
+               s->block.hash.crc32 = xz_crc32(s->crc32_table,
+                               (const uint8_t *)&s->block.hash,
+                               sizeof(s->block.hash), s->block.hash.crc32);
+
+               ++s->block.count;
+       }
+
+       return ret;
+}
+
+/* Update the Index size and the CRC32 value. */
+static void XZ_FUNC index_update(struct xz_dec *s, const struct xz_buf *b)
+{
+       size_t in_used = b->in_pos - s->in_start;
+       s->index.size += in_used;
+       s->crc32 = xz_crc32(s->crc32_table, b->in + s->in_start, in_used, s->crc32);
+}
+
+/*
+ * Decode the Number of Records, Unpadded Size, and Uncompressed Size
+ * fields from the Index field. That is, Index Padding and CRC32 are not
+ * decoded by this function.
+ *
+ * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
+ * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
+ */
+static enum xz_ret XZ_FUNC dec_index(struct xz_dec *s, struct xz_buf *b)
+{
+       enum xz_ret ret;
+
+       do {
+               ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
+               if (ret != XZ_STREAM_END) {
+                       index_update(s, b);
+                       return ret;
+               }
+
+               switch (s->index.sequence) {
+               case SEQ_INDEX_COUNT:
+                       s->index.count = s->vli;
+
+                       /*
+                        * Validate that the Number of Records field
+                        * indicates the same number of Records as
+                        * there were Blocks in the Stream.
+                        */
+                       if (s->index.count != s->block.count)
+                               return XZ_DATA_ERROR;
+
+                       s->index.sequence = SEQ_INDEX_UNPADDED;
+                       break;
+
+               case SEQ_INDEX_UNPADDED:
+                       s->index.hash.unpadded += s->vli;
+                       s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
+                       break;
+
+               case SEQ_INDEX_UNCOMPRESSED:
+                       s->index.hash.uncompressed += s->vli;
+                       s->index.hash.crc32 = xz_crc32(s->crc32_table,
+                                       (const uint8_t *)&s->index.hash,
+                                       sizeof(s->index.hash),
+                                       s->index.hash.crc32);
+                       --s->index.count;
+                       s->index.sequence = SEQ_INDEX_UNPADDED;
+                       break;
+               }
+       } while (s->index.count > 0);
+
+       return XZ_STREAM_END;
+}
+
+/*
+ * Validate that the next four input bytes match the value of s->crc32.
+ * s->pos must be zero when starting to validate the first byte.
+ */
+static enum xz_ret XZ_FUNC crc32_validate(struct xz_dec *s, struct xz_buf *b)
+{
+       do {
+               if (b->in_pos == b->in_size)
+                       return XZ_OK;
+
+               if (((s->crc32 >> s->pos) & 0xFF) != b->in[b->in_pos++])
+                       return XZ_DATA_ERROR;
+
+               s->pos += 8;
+
+       } while (s->pos < 32);
+
+       s->crc32 = 0;
+       s->pos = 0;
+
+       return XZ_STREAM_END;
+}
+
+/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
+static enum xz_ret XZ_FUNC dec_stream_header(struct xz_dec *s)
+{
+       if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
+               return XZ_FORMAT_ERROR;
+
+       if (xz_crc32(s->crc32_table, s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
+                       != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
+               return XZ_DATA_ERROR;
+
+       /*
+        * Decode the Stream Flags field. Of integrity checks, we support
+        * only none (Check ID = 0) and CRC32 (Check ID = 1).
+        */
+       if (s->temp.buf[HEADER_MAGIC_SIZE] != 0
+        || (s->temp.buf[HEADER_MAGIC_SIZE + 1] > 1
+            && s->temp.buf[HEADER_MAGIC_SIZE + 1] != 0x04
+            && s->temp.buf[HEADER_MAGIC_SIZE + 1] != 0x0A
+           )
+       ) {
+               XZ_DEBUG_MSG("unsupported stream flags %x:%x",
+                       s->temp.buf[HEADER_MAGIC_SIZE],
+                       s->temp.buf[HEADER_MAGIC_SIZE+1]);
+               return XZ_OPTIONS_ERROR;
+       }
+
+       s->crc_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
+
+       return XZ_OK;
+}
+
+/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
+static enum xz_ret XZ_FUNC dec_stream_footer(struct xz_dec *s)
+{
+       if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
+               return XZ_DATA_ERROR;
+
+       if (xz_crc32(s->crc32_table, s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
+               return XZ_DATA_ERROR;
+
+       /*
+        * Validate Backward Size. Note that we never added the size of the
+        * Index CRC32 field to s->index.size, thus we use s->index.size / 4
+        * instead of s->index.size / 4 - 1.
+        */
+       if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
+               return XZ_DATA_ERROR;
+
+       if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->crc_type)
+               return XZ_DATA_ERROR;
+
+       /*
+        * Use XZ_STREAM_END instead of XZ_OK to be more convenient
+        * for the caller.
+        */
+       return XZ_STREAM_END;
+}
+
+/* Decode the Block Header and initialize the filter chain. */
+static enum xz_ret XZ_FUNC dec_block_header(struct xz_dec *s)
+{
+       enum xz_ret ret;
+
+       /*
+        * Validate the CRC32. We know that the temp buffer is at least
+        * eight bytes so this is safe.
+        */
+       s->temp.size -= 4;
+       if (xz_crc32(s->crc32_table, s->temp.buf, s->temp.size, 0)
+                       != get_le32(s->temp.buf + s->temp.size))
+               return XZ_DATA_ERROR;
+
+       s->temp.pos = 2;
+
+       /*
+        * Catch unsupported Block Flags. We support only one or two filters
+        * in the chain, so we catch that with the same test.
+        */
+#ifdef XZ_DEC_BCJ
+       if (s->temp.buf[1] & 0x3E)
+#else
+       if (s->temp.buf[1] & 0x3F)
+#endif
+       {
+               XZ_DEBUG_MSG("s->temp.buf[1] & 0x3E/3F != 0");
+               return XZ_OPTIONS_ERROR;
+       }
+
+       /* Compressed Size */
+       if (s->temp.buf[1] & 0x40) {
+               if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+                                       != XZ_STREAM_END)
+                       return XZ_DATA_ERROR;
+
+               s->block_header.compressed = s->vli;
+       } else {
+               s->block_header.compressed = VLI_UNKNOWN;
+       }
+
+       /* Uncompressed Size */
+       if (s->temp.buf[1] & 0x80) {
+               if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+                               != XZ_STREAM_END)
+                       return XZ_DATA_ERROR;
+
+               s->block_header.uncompressed = s->vli;
+       } else {
+               s->block_header.uncompressed = VLI_UNKNOWN;
+       }
+
+#ifdef XZ_DEC_BCJ
+       /* If there are two filters, the first one must be a BCJ filter. */
+       s->bcj_active = s->temp.buf[1] & 0x01;
+       if (s->bcj_active) {
+               if (s->temp.size - s->temp.pos < 2) {
+                       XZ_DEBUG_MSG("temp.size - temp.pos < 2");
+                       return XZ_OPTIONS_ERROR;
+               }
+
+               ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
+               if (ret != XZ_OK)
+                       return ret;
+
+               /*
+                * We don't support custom start offset,
+                * so Size of Properties must be zero.
+                */
+               if (s->temp.buf[s->temp.pos++] != 0x00) {
+                       XZ_DEBUG_MSG("size of properties != 0");
+                       return XZ_OPTIONS_ERROR;
+               }
+       }
+#endif
+
+       /* Valid Filter Flags always take at least two bytes. */
+       if (s->temp.size - s->temp.pos < 2)
+               return XZ_DATA_ERROR;
+
+       /* Filter ID = LZMA2 */
+       if (s->temp.buf[s->temp.pos++] != 0x21) {
+               XZ_DEBUG_MSG("filter ID != 0x21");
+               return XZ_OPTIONS_ERROR;
+       }
+
+       /* Size of Properties = 1-byte Filter Properties */
+       if (s->temp.buf[s->temp.pos++] != 0x01) {
+               XZ_DEBUG_MSG("size of properties != 1");
+               return XZ_OPTIONS_ERROR;
+       }
+
+       /* Filter Properties contains LZMA2 dictionary size. */
+       if (s->temp.size - s->temp.pos < 1)
+               return XZ_DATA_ERROR;
+
+       ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
+       if (ret != XZ_OK)
+               return ret;
+
+       /* The rest must be Header Padding. */
+       while (s->temp.pos < s->temp.size)
+               if (s->temp.buf[s->temp.pos++] != 0x00) {
+                       XZ_DEBUG_MSG("padding is not zero-filled");
+                       return XZ_OPTIONS_ERROR;
+               }
+
+       s->temp.pos = 0;
+       s->block.compressed = 0;
+       s->block.uncompressed = 0;
+
+       return XZ_OK;
+}
+
+static enum xz_ret XZ_FUNC dec_main(struct xz_dec *s, struct xz_buf *b)
+{
+       enum xz_ret ret;
+
+       /*
+        * Store the start position for the case when we are in the middle
+        * of the Index field.
+        */
+       s->in_start = b->in_pos;
+
+       while (true) {
+               switch (s->sequence) {
+               case SEQ_STREAM_HEADER:
+                       /*
+                        * Stream Header is copied to s->temp, and then
+                        * decoded from there. This way if the caller
+                        * gives us only little input at a time, we can
+                        * still keep the Stream Header decoding code
+                        * simple. Similar approach is used in many places
+                        * in this file.
+                        */
+                       if (!fill_temp(s, b))
+                               return XZ_OK;
+
+                       ret = dec_stream_header(s);
+                       if (ret != XZ_OK)
+                               return ret;
+
+                       s->sequence = SEQ_BLOCK_START;
+
+               case SEQ_BLOCK_START:
+                       /* We need one byte of input to continue. */
+                       if (b->in_pos == b->in_size)
+                               return XZ_OK;
+
+                       /* See if this is the beginning of the Index field. */
+                       if (b->in[b->in_pos] == 0) {
+                               s->in_start = b->in_pos++;
+                               s->sequence = SEQ_INDEX;
+                               break;
+                       }
+
+                       /*
+                        * Calculate the size of the Block Header and
+                        * prepare to decode it.
+                        */
+                       s->block_header.size
+                               = ((uint32_t)b->in[b->in_pos] + 1) * 4;
+
+                       s->temp.size = s->block_header.size;
+                       s->temp.pos = 0;
+                       s->sequence = SEQ_BLOCK_HEADER;
+
+               case SEQ_BLOCK_HEADER:
+                       if (!fill_temp(s, b))
+                               return XZ_OK;
+
+                       ret = dec_block_header(s);
+                       if (ret != XZ_OK)
+                               return ret;
+
+                       s->sequence = SEQ_BLOCK_UNCOMPRESS;
+
+               case SEQ_BLOCK_UNCOMPRESS:
+                       ret = dec_block(s, b);
+                       if (ret != XZ_STREAM_END)
+                               return ret;
+
+                       s->sequence = SEQ_BLOCK_PADDING;
+
+               case SEQ_BLOCK_PADDING:
+                       /*
+                        * Size of Compressed Data + Block Padding
+                        * must be a multiple of four. We don't need
+                        * s->block.compressed for anything else
+                        * anymore, so we use it here to test the size
+                        * of the Block Padding field.
+                        */
+                       while (s->block.compressed & 3) {
+                               if (b->in_pos == b->in_size)
+                                       return XZ_OK;
+
+                               if (b->in[b->in_pos++] != 0)
+                                       return XZ_DATA_ERROR;
+
+                               ++s->block.compressed;
+                       }
+
+                       s->sequence = SEQ_BLOCK_CHECK;
+
+               case SEQ_BLOCK_CHECK:
+                       if (s->crc_type == 0x01) {
+                               ret = crc32_validate(s, b);
+                               if (ret != XZ_STREAM_END)
+                                       return ret;
+                       }
+
+                       s->sequence = SEQ_BLOCK_START;
+                       break;
+
+               case SEQ_INDEX:
+                       ret = dec_index(s, b);
+                       if (ret != XZ_STREAM_END)
+                               return ret;
+
+                       s->sequence = SEQ_INDEX_PADDING;
+
+               case SEQ_INDEX_PADDING:
+                       while ((s->index.size + (b->in_pos - s->in_start))
+                                       & 3) {
+                               if (b->in_pos == b->in_size) {
+                                       index_update(s, b);
+                                       return XZ_OK;
+                               }
+
+                               if (b->in[b->in_pos++] != 0)
+                                       return XZ_DATA_ERROR;
+                       }
+
+                       /* Finish the CRC32 value and Index size. */
+                       index_update(s, b);
+
+                       /* Compare the hashes to validate the Index field. */
+                       if (!memeq(&s->block.hash, &s->index.hash,
+                                       sizeof(s->block.hash)))
+                               return XZ_DATA_ERROR;
+
+                       s->sequence = SEQ_INDEX_CRC32;
+
+               case SEQ_INDEX_CRC32:
+                       ret = crc32_validate(s, b);
+                       if (ret != XZ_STREAM_END)
+                               return ret;
+
+                       s->temp.size = STREAM_HEADER_SIZE;
+                       s->sequence = SEQ_STREAM_FOOTER;
+
+               case SEQ_STREAM_FOOTER:
+                       if (!fill_temp(s, b))
+                               return XZ_OK;
+
+                       return dec_stream_footer(s);
+               }
+       }
+
+       /* Never reached */
+}
+
+/*
+ * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
+ * multi-call and single-call decoding.
+ *
+ * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
+ * are not going to make any progress anymore. This is to prevent the caller
+ * from calling us infinitely when the input file is truncated or otherwise
+ * corrupt. Since zlib-style API allows that the caller fills the input buffer
+ * only when the decoder doesn't produce any new output, we have to be careful
+ * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
+ * after the second consecutive call to xz_dec_run() that makes no progress.
+ *
+ * In single-call mode, if we couldn't decode everything and no error
+ * occurred, either the input is truncated or the output buffer is too small.
+ * Since we know that the last input byte never produces any output, we know
+ * that if all the input was consumed and decoding wasn't finished, the file
+ * must be corrupt. Otherwise the output buffer has to be too small or the
+ * file is corrupt in a way that decoding it produces too big output.
+ *
+ * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
+ * their original values. This is because with some filter chains there won't
+ * be any valid uncompressed data in the output buffer unless the decoding
+ * actually succeeds (that's the price to pay of using the output buffer as
+ * the workspace).
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_run(struct xz_dec *s, struct xz_buf *b)
+{
+       size_t in_start;
+       size_t out_start;
+       enum xz_ret ret;
+
+       if (s->single_call)
+               xz_dec_reset(s);
+
+       in_start = b->in_pos;
+       out_start = b->out_pos;
+       ret = dec_main(s, b);
+
+       if (s->single_call) {
+               if (ret == XZ_OK)
+                       ret = b->in_pos == b->in_size
+                                       ? XZ_DATA_ERROR : XZ_BUF_ERROR;
+
+               if (ret != XZ_STREAM_END) {
+                       b->in_pos = in_start;
+                       b->out_pos = out_start;
+               }
+
+       } else if (ret == XZ_OK && in_start == b->in_pos
+                       && out_start == b->out_pos) {
+               if (s->allow_buf_error)
+                       ret = XZ_BUF_ERROR;
+
+               s->allow_buf_error = true;
+       } else {
+               s->allow_buf_error = false;
+       }
+
+       return ret;
+}
+
+XZ_EXTERN struct xz_dec * XZ_FUNC xz_dec_init(uint32_t dict_max)
+{
+       struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
+       if (s == NULL)
+               return NULL;
+
+       s->single_call = dict_max == 0;
+
+#ifdef XZ_DEC_BCJ
+       s->bcj = xz_dec_bcj_create(s->single_call);
+       if (s->bcj == NULL)
+               goto error_bcj;
+#endif
+
+       s->lzma2 = xz_dec_lzma2_create(dict_max);
+       if (s->lzma2 == NULL)
+               goto error_lzma2;
+
+       xz_dec_reset(s);
+       return s;
+
+error_lzma2:
+#ifdef XZ_DEC_BCJ
+       xz_dec_bcj_end(s->bcj);
+error_bcj:
+#endif
+       kfree(s);
+       return NULL;
+}
+
+XZ_EXTERN void XZ_FUNC xz_dec_reset(struct xz_dec *s)
+{
+       s->sequence = SEQ_STREAM_HEADER;
+       s->allow_buf_error = false;
+       s->pos = 0;
+       s->crc32 = 0;
+       memzero(&s->block, sizeof(s->block));
+       memzero(&s->index, sizeof(s->index));
+       s->temp.pos = 0;
+       s->temp.size = STREAM_HEADER_SIZE;
+}
+
+XZ_EXTERN void XZ_FUNC xz_dec_end(struct xz_dec *s)
+{
+       if (s != NULL) {
+               xz_dec_lzma2_end(s->lzma2);
+#ifdef XZ_DEC_BCJ
+               xz_dec_bcj_end(s->bcj);
+#endif
+               kfree(s);
+       }
+}
diff --git a/archival/libunarchive/unxz/xz_lzma2.h b/archival/libunarchive/unxz/xz_lzma2.h
new file mode 100644 (file)
index 0000000..47f21af
--- /dev/null
@@ -0,0 +1,204 @@
+/*
+ * LZMA2 definitions
+ *
+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
+ *          Igor Pavlov <http://7-zip.org/>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef XZ_LZMA2_H
+#define XZ_LZMA2_H
+
+/* Range coder constants */
+#define RC_SHIFT_BITS 8
+#define RC_TOP_BITS 24
+#define RC_TOP_VALUE (1 << RC_TOP_BITS)
+#define RC_BIT_MODEL_TOTAL_BITS 11
+#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
+#define RC_MOVE_BITS 5
+
+/*
+ * Maximum number of position states. A position state is the lowest pb
+ * number of bits of the current uncompressed offset. In some places there
+ * are different sets of probabilities for different position states.
+ */
+#define POS_STATES_MAX (1 << 4)
+
+/*
+ * This enum is used to track which LZMA symbols have occurred most recently
+ * and in which order. This information is used to predict the next symbol.
+ *
+ * Symbols:
+ *  - Literal: One 8-bit byte
+ *  - Match: Repeat a chunk of data at some distance
+ *  - Long repeat: Multi-byte match at a recently seen distance
+ *  - Short repeat: One-byte repeat at a recently seen distance
+ *
+ * The symbol names are in from STATE_oldest_older_previous. REP means
+ * either short or long repeated match, and NONLIT means any non-literal.
+ */
+enum lzma_state {
+       STATE_LIT_LIT,
+       STATE_MATCH_LIT_LIT,
+       STATE_REP_LIT_LIT,
+       STATE_SHORTREP_LIT_LIT,
+       STATE_MATCH_LIT,
+       STATE_REP_LIT,
+       STATE_SHORTREP_LIT,
+       STATE_LIT_MATCH,
+       STATE_LIT_LONGREP,
+       STATE_LIT_SHORTREP,
+       STATE_NONLIT_MATCH,
+       STATE_NONLIT_REP
+};
+
+/* Total number of states */
+#define STATES 12
+
+/* The lowest 7 states indicate that the previous state was a literal. */
+#define LIT_STATES 7
+
+/* Indicate that the latest symbol was a literal. */
+static inline void XZ_FUNC lzma_state_literal(enum lzma_state *state)
+{
+       if (*state <= STATE_SHORTREP_LIT_LIT)
+               *state = STATE_LIT_LIT;
+       else if (*state <= STATE_LIT_SHORTREP)
+               *state -= 3;
+       else
+               *state -= 6;
+}
+
+/* Indicate that the latest symbol was a match. */
+static inline void XZ_FUNC lzma_state_match(enum lzma_state *state)
+{
+       *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
+}
+
+/* Indicate that the latest state was a long repeated match. */
+static inline void XZ_FUNC lzma_state_long_rep(enum lzma_state *state)
+{
+       *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
+}
+
+/* Indicate that the latest symbol was a short match. */
+static inline void XZ_FUNC lzma_state_short_rep(enum lzma_state *state)
+{
+       *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
+}
+
+/* Test if the previous symbol was a literal. */
+static inline bool XZ_FUNC lzma_state_is_literal(enum lzma_state state)
+{
+       return state < LIT_STATES;
+}
+
+/* Each literal coder is divided in three sections:
+ *   - 0x001-0x0FF: Without match byte
+ *   - 0x101-0x1FF: With match byte; match bit is 0
+ *   - 0x201-0x2FF: With match byte; match bit is 1
+ *
+ * Match byte is used when the previous LZMA symbol was something else than
+ * a literal (that is, it was some kind of match).
+ */
+#define LITERAL_CODER_SIZE 0x300
+
+/* Maximum number of literal coders */
+#define LITERAL_CODERS_MAX (1 << 4)
+
+/* Minimum length of a match is two bytes. */
+#define MATCH_LEN_MIN 2
+
+/* Match length is encoded with 4, 5, or 10 bits.
+ *
+ * Length   Bits
+ *  2-9      4 = Choice=0 + 3 bits
+ * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
+ * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
+ */
+#define LEN_LOW_BITS 3
+#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
+#define LEN_MID_BITS 3
+#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
+#define LEN_HIGH_BITS 8
+#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
+#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
+
+/*
+ * Maximum length of a match is 273 which is a result of the encoding
+ * described above.
+ */
+#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
+
+/*
+ * Different sets of probabilities are used for match distances that have
+ * very short match length: Lengths of 2, 3, and 4 bytes have a separate
+ * set of probabilities for each length. The matches with longer length
+ * use a shared set of probabilities.
+ */
+#define DIST_STATES 4
+
+/*
+ * Get the index of the appropriate probability array for decoding
+ * the distance slot.
+ */
+static inline uint32_t XZ_FUNC lzma_get_dist_state(uint32_t len)
+{
+       return len < DIST_STATES + MATCH_LEN_MIN
+                       ? len - MATCH_LEN_MIN : DIST_STATES - 1;
+}
+
+/*
+ * The highest two bits of a 32-bit match distance are encoded using six bits.
+ * This six-bit value is called a distance slot. This way encoding a 32-bit
+ * value takes 6-36 bits, larger values taking more bits.
+ */
+#define DIST_SLOT_BITS 6
+#define DIST_SLOTS (1 << DIST_SLOT_BITS)
+
+/* Match distances up to 127 are fully encoded using probabilities. Since
+ * the highest two bits (distance slot) are always encoded using six bits,
+ * the distances 0-3 don't need any additional bits to encode, since the
+ * distance slot itself is the same as the actual distance. DIST_MODEL_START
+ * indicates the first distance slot where at least one additional bit is
+ * needed.
+ */
+#define DIST_MODEL_START 4
+
+/*
+ * Match distances greater than 127 are encoded in three pieces:
+ *   - distance slot: the highest two bits
+ *   - direct bits: 2-26 bits below the highest two bits
+ *   - alignment bits: four lowest bits
+ *
+ * Direct bits don't use any probabilities.
+ *
+ * The distance slot value of 14 is for distances 128-191.
+ */
+#define DIST_MODEL_END 14
+
+/* Distance slots that indicate a distance <= 127. */
+#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
+#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
+
+/*
+ * For match distances greater than 127, only the highest two bits and the
+ * lowest four bits (alignment) is encoded using probabilities.
+ */
+#define ALIGN_BITS 4
+#define ALIGN_SIZE (1 << ALIGN_BITS)
+#define ALIGN_MASK (ALIGN_SIZE - 1)
+
+/* Total number of all probability variables */
+#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
+
+/*
+ * LZMA remembers the four most recent match distances. Reusing these
+ * distances tends to take less space than re-encoding the actual
+ * distance value.
+ */
+#define REPS 4
+
+#endif
diff --git a/archival/libunarchive/unxz/xz_private.h b/archival/libunarchive/unxz/xz_private.h
new file mode 100644 (file)
index 0000000..9da8d70
--- /dev/null
@@ -0,0 +1,120 @@
+/*
+ * Private includes and definitions
+ *
+ * Author: Lasse Collin <lasse.collin@tukaani.org>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef XZ_PRIVATE_H
+#define XZ_PRIVATE_H
+
+#ifdef __KERNEL__
+       /* XZ_PREBOOT may be defined only via decompress_unxz.c. */
+#      ifndef XZ_PREBOOT
+#              include <linux/slab.h>
+#              include <linux/vmalloc.h>
+#              include <linux/string.h>
+#              define memeq(a, b, size) (memcmp(a, b, size) == 0)
+#              define memzero(buf, size) memset(buf, 0, size)
+#      endif
+#      include <asm/byteorder.h>
+#      include <asm/unaligned.h>
+#      define get_le32(p) le32_to_cpup((const uint32_t *)(p))
+       /* XZ_IGNORE_KCONFIG may be defined only via decompress_unxz.c. */
+#      ifndef XZ_IGNORE_KCONFIG
+#              ifdef CONFIG_XZ_DEC_X86
+#                      define XZ_DEC_X86
+#              endif
+#              ifdef CONFIG_XZ_DEC_POWERPC
+#                      define XZ_DEC_POWERPC
+#              endif
+#              ifdef CONFIG_XZ_DEC_IA64
+#                      define XZ_DEC_IA64
+#              endif
+#              ifdef CONFIG_XZ_DEC_ARM
+#                      define XZ_DEC_ARM
+#              endif
+#              ifdef CONFIG_XZ_DEC_ARMTHUMB
+#                      define XZ_DEC_ARMTHUMB
+#              endif
+#              ifdef CONFIG_XZ_DEC_SPARC
+#                      define XZ_DEC_SPARC
+#              endif
+#      endif
+#      include <linux/xz.h>
+#else
+       /*
+        * For userspace builds, use a separate header to define the required
+        * macros and functions. This makes it easier to adapt the code into
+        * different environments and avoids clutter in the Linux kernel tree.
+        */
+#      include "xz_config.h"
+#endif
+
+/*
+ * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
+ * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
+ */
+#ifndef XZ_DEC_BCJ
+#      if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
+                       || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
+                       || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
+                       || defined(XZ_DEC_SPARC)
+#              define XZ_DEC_BCJ
+#      endif
+#endif
+
+/*
+ * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
+ * before calling xz_dec_lzma2_run().
+ */
+XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create(
+               uint32_t dict_max);
+
+/*
+ * Decode the LZMA2 properties (one byte) and reset the decoder. Return
+ * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
+ * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
+ * decoder doesn't support.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset(
+               struct xz_dec_lzma2 *s, uint8_t props);
+
+/* Decode raw LZMA2 stream from b->in to b->out. */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_run(
+               struct xz_dec_lzma2 *s, struct xz_buf *b);
+
+/* Free the memory allocated for the LZMA2 decoder. */
+XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
+
+#ifdef XZ_DEC_BCJ
+/*
+ * Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
+ * calling xz_dec_bcj_run().
+ */
+XZ_EXTERN struct xz_dec_bcj * XZ_FUNC xz_dec_bcj_create(bool single_call);
+
+/*
+ * Decode the Filter ID of a BCJ filter. This implementation doesn't
+ * support custom start offsets, so no decoding of Filter Properties
+ * is needed. Returns XZ_OK if the given Filter ID is supported.
+ * Otherwise XZ_OPTIONS_ERROR is returned.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_reset(
+               struct xz_dec_bcj *s, uint8_t id);
+
+/*
+ * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
+ * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
+ * must be called directly.
+ */
+XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_run(struct xz_dec_bcj *s,
+               struct xz_dec_lzma2 *lzma2, struct xz_buf *b);
+#endif
+
+/* Free the memory allocated for the BCJ filters. */
+#define xz_dec_bcj_end(s) kfree(s)
+
+#endif
diff --git a/archival/libunarchive/unxz/xz_stream.h b/archival/libunarchive/unxz/xz_stream.h
new file mode 100644 (file)
index 0000000..efbe75a
--- /dev/null
@@ -0,0 +1,46 @@
+/*
+ * Definitions for handling the .xz file format
+ *
+ * Author: Lasse Collin <lasse.collin@tukaani.org>
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef XZ_STREAM_H
+#define XZ_STREAM_H
+
+#if defined(__KERNEL__) && !defined(XZ_INTERNAL_CRC32)
+#      include <linux/crc32.h>
+#      undef crc32
+#      define xz_crc32(crc32_table, buf, size, crc) \
+               (~crc32_le(~(uint32_t)(crc), buf, size))
+#endif
+
+/*
+ * See the .xz file format specification at
+ * http://tukaani.org/xz/xz-file-format.txt
+ * to understand the container format.
+ */
+
+#define STREAM_HEADER_SIZE 12
+
+#define HEADER_MAGIC "\3757zXZ\0"
+#define HEADER_MAGIC_SIZE 6
+
+#define FOOTER_MAGIC "YZ"
+#define FOOTER_MAGIC_SIZE 2
+
+/*
+ * Variable-length integer can hold a 63-bit unsigned integer, or a special
+ * value to indicate that the value is unknown.
+ */
+typedef uint64_t vli_type;
+
+#define VLI_MAX ((vli_type)-1 / 2)
+#define VLI_UNKNOWN ((vli_type)-1)
+
+/* Maximum encoded size of a VLI */
+#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
+
+#endif
index a171c54490d2c1364d65a3b96bb7bcf285c6736f..d8a706b44669bdc89d5b8338f81df912007f4bf6 100644 (file)
@@ -419,6 +419,7 @@ IF_UNCOMPRESS(APPLET(uncompress, _BB_DIR_BIN, _BB_SUID_DROP))
 IF_UNEXPAND(APPLET_ODDNAME(unexpand, expand, _BB_DIR_USR_BIN, _BB_SUID_DROP, unexpand))
 IF_UNIQ(APPLET(uniq, _BB_DIR_USR_BIN, _BB_SUID_DROP))
 IF_UNIX2DOS(APPLET_ODDNAME(unix2dos, dos2unix, _BB_DIR_USR_BIN, _BB_SUID_DROP, unix2dos))
+IF_UNXZ(APPLET(unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP))
 IF_UNLZMA(APPLET(unlzma, _BB_DIR_USR_BIN, _BB_SUID_DROP))
 IF_LZOP(APPLET_ODDNAME(unlzop, lzop, _BB_DIR_USR_BIN, _BB_SUID_DROP, unlzop))
 IF_UNZIP(APPLET(unzip, _BB_DIR_USR_BIN, _BB_SUID_DROP))
@@ -439,6 +440,8 @@ IF_WHICH(APPLET(which, _BB_DIR_USR_BIN, _BB_SUID_DROP))
 IF_WHO(APPLET(who, _BB_DIR_USR_BIN, _BB_SUID_DROP))
 IF_WHOAMI(APPLET_NOFORK(whoami, whoami, _BB_DIR_USR_BIN, _BB_SUID_DROP, whoami))
 IF_XARGS(APPLET_NOEXEC(xargs, xargs, _BB_DIR_USR_BIN, _BB_SUID_DROP, xargs))
+IF_UNXZ(APPLET_ODDNAME(xzcat, unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP, xzcat))
+IF_XZ(APPLET_ODDNAME(xz, unxz, _BB_DIR_USR_BIN, _BB_SUID_DROP, xz))
 IF_YES(APPLET_NOFORK(yes, yes, _BB_DIR_USR_BIN, _BB_SUID_DROP, yes))
 IF_GUNZIP(APPLET_ODDNAME(zcat, gunzip, _BB_DIR_BIN, _BB_SUID_DROP, zcat))
 IF_ZCIP(APPLET(zcip, _BB_DIR_SBIN, _BB_SUID_DROP))
index a834816ba289f4f2ac627ffea2597cf356cab10d..14cd98e24e397f0d42c7723324d5cb2198b5fc9a 100644 (file)
@@ -143,6 +143,7 @@ typedef struct inflate_unzip_result {
 } inflate_unzip_result;
 
 IF_DESKTOP(long long) int inflate_unzip(inflate_unzip_result *res, off_t compr_size, int src_fd, int dst_fd) FAST_FUNC;
+IF_DESKTOP(long long) int unpack_xz_stream_stdin(void) FAST_FUNC;
 /* lzma unpacker takes .lzma stream from offset 0 */
 IF_DESKTOP(long long) int unpack_lzma_stream(int src_fd, int dst_fd) FAST_FUNC;
 /* the rest wants 2 first bytes already skipped by the caller */
index 3aa980cdcd8098f62f7b715caf160389e80816e0..a9c4c4294b87cba130fe4bfa923ddeaead9b8a87 100644 (file)
 #define lzcat_full_usage "\n\n" \
        "Decompress to stdout"
 
+#define unxz_trivial_usage \
+       "[OPTIONS] [FILE]..."
+#define unxz_full_usage "\n\n" \
+       "Decompress FILE (or stdin)\n" \
+     "\nOptions:" \
+     "\n       -c      Write to stdout" \
+     "\n       -f      Force" \
+
+#define xz_trivial_usage \
+       "-d [OPTIONS] [FILE]..."
+#define xz_full_usage "\n\n" \
+       "Decompress FILE (or stdin)\n" \
+     "\nOptions:" \
+     "\n       -d      Decompress" \
+     "\n       -c      Write to stdout" \
+     "\n       -f      Force" \
+
+#define xzcat_trivial_usage \
+       "FILE"
+#define xzcat_full_usage "\n\n" \
+       "Decompress to stdout"
+
 #define cal_trivial_usage \
        "[-jy] [[MONTH] YEAR]"
 #define cal_full_usage "\n\n" \